首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Formation and activity of bacterial nitrifying biofilms play an important role in the closed seawater systems for shrimp cultivation. The structure of microbial biofilm on empty oyster shells, used as a biofilm carrier in biofiltration of aquacultural water, was studied using fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy. FISH was performed with specific oligonucleotide probes for Bacteria and ammonia-oxidizing Nitrosomonas spp. The bacterial cells were arranged within the biofilm as a layer of vertically elongated aggregates. Aggregates of ammonia-oxidizing bacteria were embedded within the matrix formed by other bacteria. Vertically elongated cell aggregates may be ecologically important in bacterial biofilms because they have a higher surface-to-volume ratio than that of laminated biofilms.  相似文献   

2.
The evolution of selfing in hermaphrodites has been studied to reveal the demographic conditions that lead to intermediate selfing rates. Using a demographic model based on Ricker-type density regulation, we assume first that, independent of population density, inbred individuals survive less well than outbred individuals and second, that inbred and outbred individuals differ in their competitive abilities in density-regulated populations. The evolution of selfing, driven by inbreeding depression and the cost of outcrossing, is then analysed for three fundamentally different demographic scenarios: stable population densities, deterministically varying population densities (resulting from cyclical or chaotic population dynamics) and stochastic fluctuations of carrying capacities (resulting from environmental noise). We show that even under stable demographic conditions evolutionary outcomes are not confined to either complete selfing or full outcrossing. Instead, intermediate selfing rates arise under a wide range of conditions, depending on the nature of competitive interactions between inbred and outbred individuals. We also explore the evolution of selfing under deterministic and stochastic density fluctuations to demonstrate that such environmental conditions can evolutionarily stabilize intermediate selfing rates. This is the first study, to our knowledge, to consider in detail the effect of density regulation on the evolution of selfing rates.  相似文献   

3.
4.
5.
It is well known that the ratio of ammonia-oxidizing archaea (AOA) and bacteria (AOB) ranges widely in soils, but no data exist on what might influence this ratio, its dynamism, or how changes in relative abundance influences the potential contributions of AOA and AOB to soil nitrification. By sampling intensively from cropped-to-fallowed and fallowed-to-cropped phases of a 2-year wheat/fallow cycle, and adjacent uncultivated long-term fallowed land over a 15-month period in 2010 and 2011, evidence was obtained for seasonal and cropping phase effects on the soil nitrification potential (NP), and on the relative contributions of AOA and AOB to the NP that recovers after acetylene inactivation in the presence and absence of bacterial protein synthesis inhibitors. AOB community composition changed significantly (P⩽0.0001) in response to cropping phase, and there were both seasonal and cropping phase effects on the amoA gene copy numbers of AOA and AOB. Our study showed that the AOA:AOB shifts were generated by a combination of different phenomena: an increase in AOA amoA abundance in unfertilized treatments, compared with their AOA counterparts in the N-fertilized treatment; a larger population of AOB under the N-fertilized treatment compared with the AOB community under unfertilized treatments; and better overall persistence of AOA than AOB in the unfertilized treatments. These data illustrate the complexity of the factors that likely influence the relative contributions of AOA and AOB to nitrification under the various combinations of soil conditions and NH4+-availability that exist in the field.  相似文献   

6.
Isolation of ammonia-oxidizing autotrophic bacteria   总被引:18,自引:0,他引:18  
  相似文献   

7.
Inactivation of biofilm bacteria.   总被引:6,自引:14,他引:6       下载免费PDF全文
The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria.  相似文献   

8.
Ammonia-oxidizer numbers decreased under conditions of moisture limitation in litter, fermentation and humus layers of forest soil in the field, but the extent of regrowth after rehydration varied between layers. Nitrosospira 16S rRNA genes were amplified from all layers, regardless of moisture content or soil pH which varied between 4.1 and 5.2. Nitrosomonas spp. were detected less often, but appeared to exhibit more rapid recovery than the Nitrosospira spp. when drought conditions were relieved by rainfall.  相似文献   

9.
Many but not all ammonia-oxidizing bacteria (AOB) produce urease (urea amidohydrolase, EC 3.5.1.5) and are capable of using urea for chemolithotrophic growth. We sequenced the urease operons from two AOB, the beta-proteobacterium Nitrosospira sp. strain NpAV and the gamma-proteobacterium Nitrosococcus oceani. In both organisms, all seven urease genes were contiguous: the three structural urease genes ureABC were preceded and succeeded by the accessory genes ureD and ureEFG, respectively. Green fluorescent protein reporter gene fusions revealed that the ure genes were under control of a single operon promoter upstream of the ureD gene in Nitrosococcus oceani. Southern analyses revealed two copies of ureC in the Nitrosospira sp. strain NpAV genome, while a single copy of the ure operon was detected in the genome of Nitrosococcus oceani. The ureC gene encodes the alpha subunit protein containing the active site and conserved nickel binding ligands; these conserved regions were suitable primer targets for obtaining further ureC sequences from additional AOB. In order to develop molecular tools for detecting the ureolytic ecotype of AOB, ureC genes were sequenced from several beta-proteobacterial AOB. Pairwise identity values ranged from 80 to 90% for the UreC peptides of AOB within a subdivision. UreC sequences deduced from AOB urease genes and available UreC sequences in the public databases were used to construct alignments and make phylogenetic inferences. The UreC proteins from beta-proteobacterial AOB formed a distinct monophyletic group. Unexpectedly, the peptides from AOB did not group most closely with the UreC proteins from other beta-proteobacteria. Instead, it appears that urease in beta-proteobacterial autotrophic ammonia oxidizers is the product of divergent evolution in the common ancestor of gamma- and beta-proteobacteria that was initiated before their divergence during speciation. Sequence motifs conserved for the proteobacteria and variable regions possibly discriminatory for ureC from beta-proteobacterial AOB were identified for future use in environmental analysis of ureolytic AOB. These gene sequences are the first publicly available for ure genes from autotrophic AOB.  相似文献   

10.
Comparisons of the activities and diversities of ammonia-oxidizing bacteria (AOB) in the root environment of different cultivars of rice (Oryza sativa L.) indicated marked differences despite identical environmental conditions during growth. Gross nitrification rates obtained by the 15N dilution technique were significantly higher in a modern variety, IR63087-1-17, than in two traditional varieties. Phylogenetic analysis based on the ammonium monooxygenase gene (amoA) identified strains related to Nitrosospira multiformis and Nitrosomonas europaea as the predominant AOB in our experimental rice system. A method was developed to determine the abundance of AOB on root biofilm samples using fluorescently tagged oligonucleotide probes targeting 16S rRNA. The levels of abundance detected suggested an enrichment of AOB on rice roots. We identified 40 to 69% of AOB on roots of IR63087-1-17 as Nitrosomonas spp., while this subpopulation constituted 7 to 23% of AOB on roots of the other cultivars. These results were generally supported by denaturing gradient gel electrophoresis of the amoA gene and analysis of libraries of cloned amoA. In hydroponic culture, oxygen concentration profiles around secondary roots differed significantly among the tested rice varieties, of which IR63087-1-17 showed maximum leakage of oxygen. The results suggest that varietal differences in the composition and activity of root-associated AOB populations may result from microscale differences in O2 availability.  相似文献   

11.
This study investigated the effects of ammonium and nitrite on ammonia-oxidizing bacteria (AOB) from an activated sludge process in laboratory-scale continuous-flow reactors. AOB communities were analyzed using specific PCR followed by denaturing gel gradient electrophoresis, cloning and sequencing of the 16S rRNA gene, and AOB populations were quantified using real-time PCR. To study the effect of ammonium, activated sludge from a sewage treatment system was enriched in four reactors receiving inorganic medium containing four different ammonium concentrations (2, 5, 10 and 30 mM NH(4) (+)-N). One of several sequence types of the Nitrosomonas oligotropha cluster predominated in the reactors with lower ammonium loads (2, 5 and 10 mM NH(4) (+)-N), whereas Nitrosomonas europaea was the dominant AOB in the reactor with the highest ammonium load (30 mM NH(4) (+)-N). The effect of nitrite was studied by enriching the enriched culture possessing both N. oligotropha and N. europaea in four reactors receiving 10-mM-ammonium inorganic medium containing four different nitrite concentrations (0, 2, 12 and 22 mM NO(2) (-)-N). Nitrosomonas oligotropha comprised the majority of AOB populations in the reactors without nitrite accumulation (0 and 2 mM NO(2) (-)-N), whereas N. europaea was in the majority in the 12- and 22-mM NO(2) (-)-N reactors, in which nitrite concentrations were 2.1-5.7 mM (30-80 mg N L(-1)).  相似文献   

12.
Growth of lithotrophic ammonia-oxidizing bacteria on hydroxylamine   总被引:1,自引:0,他引:1  
Abstract A new obligately anaerobic, extremely thermophilic, cellulolytic bacterium is described. The strain designated Tp8T 6331 is differentiated from thermophilic cellulolytic clostridia on the basis of physiological characteristics and phylogenetic position within the Bacillus/Clostridium subphylum of the Gram-positive bacteria. Strain Tp8T 6331 is assigned to a new genus Caldicellulosiruptor , as Caldicellulosiruptor saccharolyticus gen., nov., sp. nov.  相似文献   

13.
Activity of nitrification inhibitors to several typical ammonia-oxidizing bacteria isolated recently, i. e. Nitrosococcus, Nitrosolobus, Nitrosomonas, Nitrosospira and Nitrosovibrio species was assayed using 2-amino-4-methyl-trichloromethyl-1,3,5-triazine (MAST), 2-amino-4-tribromomethyl-6-trichloromethyl-1,3,5-triazine (Br-MAST), 2-chloro-6-trichloromethylpyridine (nitrapyrin) and others, and compared to confirm the adequate control of ammonia-oxidizing bacteria by the inhibitors. The order of activity of the inhibitors to 13 species of ammonia-oxidizing bacteria examined was approximately summarized as Br-MAST > or = nitrapyrin > or = MAST > other inhibitors. Two Nitrosomonas strains, N. europaea ATCC25978 and N. sp. B2, were extremely susceptible to Br-MAST, exhibiting a pI50 > or = 6.40. These values are the position logarithms of the molar half-inhibition concentration. The 16S rRNA gene sequence similarity for the highly susceptible 4 strains of genus Nitrosomonas was 94% to 100% of Nitrosomonas europaea, although those of the less susceptible 3 strains of ammonia-oxidizing bacteria, Nitrosococcus oceanus C-107 ATCC19707, Nitrosolobus sp. PJA1 and Nitrosolobus multiformis ATCC25196, were 77.85, 91.53 and 90.29, respectively. However, no clear correlation has been found yet between pI50-values and percent similarity of 16S rRNA gene sequence among ammonia-oxidizing bacteria.  相似文献   

14.
Nitrite is the highly toxic end product of ammonia oxidation that accumulates in the absence of a nitrite-consuming process and is inhibitory to nitrifying and other bacteria. The effects of nitrite on ammonia oxidation rates and regulation of a common gene set were compared in three ammonia-oxidizing bacteria (AOB) to determine whether responses to this toxic metabolite were uniform. Mid-exponential-phase cells of Nitrosomonas europaea ATCC 19718, Nitrosospira multiformis ATCC 25196, and Nitrosomonas eutropha C-91 were incubated for 6 h in mineral medium supplemented with 0, 10, or 20 mM NaNO(2) . The rates of ammonia oxidation (nitrite production) decreased significantly only in NaNO(2) -supplemented incubations of N. eutropha; no significant effect on the rates was observed for N. europaea or N. multiformis. The levels of norB (nitric oxide reductases), cytL (cytochrome P460), and cytS (cytochrome c'-β) mRNA were unaffected by nitrite in all strains. The levels of nirK (nitrite reductase) mRNA increased only in N. europaea in response to nitrite (10 and 20 mM). Nitrite (20 mM) significantly reduced the mRNA levels of amoA (ammonia monooxygenase) in N. multiformis and norS (nitric oxide reductase) in the two Nitrosomonas spp. Differences in response to nitrite indicated nonuniform adaptive and regulatory strategies of AOB, even between closely related species.  相似文献   

15.
Competition between ammonia-oxidizing bacteria and benthic microalgae   总被引:2,自引:0,他引:2  
The abundance, activity, and diversity of ammonia-oxidizing bacteria (AOB) were studied in prepared microcosms with and without microphytobenthic activity. In the microcosm without alga activity, both AOB abundance, estimated by real-time PCR, and potential nitrification increased during the course of the experiment. AOB present in the oxic zone of these sediments were able to fully exploit their nitrification potential because NH(4)(+) did not limit growth. In contrast, AOB in the alga-colonized sediments reached less than 20% of their potential activity, suggesting starvation of cells. Starvation resulted in a decrease with time in the abundance of AOB as well as in nitrification potential. This decrease was correlated with an increase in alga biomass, suggesting competitive exclusion of AOB by microalgae. Induction of N limitation in the oxic zone of the alga-colonized sediments and O(2) limitation of the majority of AOB in darkness were major mechanisms by which microalgae suppressed the growth and survival of AOB. The competition pressure from the algae seemed to act on the entire population of AOB, as no differences were observed by denaturing gradient gel electrophoresis of amoA fragments during the course of the experiment. Enumeration of bacteria based on 16S rRNA gene copies and d-amino acids suggested that the algae also affected other bacterial groups negatively. Our data indicate that direct competitive interaction takes place between algae and AOB and that benthic algae are superior competitors because they have higher N uptake rates and grow faster than AOB.  相似文献   

16.
The first step of nitrification, the oxidation of ammonia to nitrite, is important for reducing eutrophication in freshwater environments when coupled with anammox (anaerobic ammonium oxidation) or denitrification. We analyzed active formerly biofilm-associated aerobic ammonia-oxidizing communities originating from Ammerbach (AS) and Leutra South (LS) stream water (683 ± 550 [mean ± standard deviation] and 16 ± 7 μM NH(4)(+), respectively) that were developed in a flow-channel experiment and incubated under three temperature regimens. By stable-isotope probing using (13)CO(2), we found that members of the Bacteria and not Archaea were the functionally dominant autotrophic ammonia oxidizers at all temperatures under relatively high ammonium loads. The copy numbers of bacterial amoA genes in (13)C-labeled DNA were lower at 30°C than at 13°C in both stream enrichment cultures. However, the community composition of the ammonia-oxidizing bacteria (AOB) in the (13)C-labeled DNA responded differently to temperature manipulation at two ammonium concentrations. In LS enrichments incubated at the in situ temperature (13°C), Nitrosomonas oligotropha-like sequences were retrieved with sequences from Nitrosospira AmoA cluster 4, while the proportion of Nitrosospira sequences increased at higher temperatures. In AS enrichments incubated at 13°C and 20°C, AmoA cluster 4 sequences were dominant; Nitrosomonas nitrosa-like sequences dominated at 30°C. Biofilm-associated AOB communities were affected differentially by temperature at two relatively high ammonium concentrations, implicating them in a potential role in governing contaminated freshwater AOB distributions.  相似文献   

17.
Ammonia-oxidizing bacteria (AOB) are thought to contribute significantly to N2O production and methane oxidation in soils. Most of our knowledge derives from experiments with Nitrosomonas europaea, which appears to be of minor importance in most soils compared to Nitrosospira spp. We have conducted a comparative study of levels of aerobic N2O production in six phylogenetically different Nitrosospira strains newly isolated from soils and in two N. europaea and Nitrosospira multiformis type strains. The fraction of oxidized ammonium released as N2O during aerobic growth was remarkably constant (0.07 to 0.1%) for all the Nitrosospira strains, irrespective of the substrate supply (urea versus ammonium), the pH, or substrate limitation. N. europaea and Nitrosospira multiformis released similar fractions of N2O when they were supplied with ample amounts of substrates, but the fractions rose sharply (to 1 to 5%) when they were restricted by a low pH or substrate limitation. Phosphate buffer (versus HEPES) doubled the N2O release for all types of AOB. No detectable oxidation of atmospheric methane was detected. Calculations based on detection limits as well as data in the literature on CH4 oxidation by AOB bacteria prove that none of the tested strains contribute significantly to the oxidation of atmospheric CH4 in soils.  相似文献   

18.
Inactivation of biofilm bacteria   总被引:18,自引:0,他引:18  
The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria.  相似文献   

19.
Metabolism of inorganic N compounds by ammonia-oxidizing bacteria   总被引:8,自引:0,他引:8  
Ammonia oxidizing bacteria extract energy for growth from the oxidation of ammonia to nitrite. Ammonia monooxygenase, which initiates ammonia oxidation, remains enigmatic given the lack of purified preparations. Genetic and biochemical studies support a model for the enzyme consisting of three subunits and metal centers of copper and iron. Knowledge of hydroxylamine oxidoreductase, which oxidizes hydroxylamine formed by ammonia monooxygenase to nitrite, is informed by a crystal structure and detailed spectroscopic and catalytic studies. Other inorganic nitrogen compounds, including NO, N2O, NO2, and N2 can be consumed and/or produced by ammonia-oxidizing bacteria. NO and N2O can be produced as byproducts of hydroxylamine oxidation or through nitrite reduction. NO2 can serve as an alternative oxidant in place of O2 in some ammonia-oxidizing strains. Our knowledge of the diversity of inorganic N metabolism by ammonia-oxidizing bacteria continues to grow. Nonetheless, many questions remain regarding the enzymes and genes involved in these processes and the role of these pathways in ammonia oxidizers.  相似文献   

20.
The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities under different long-term (17 years) fertilization practices were investigated using real-time polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). A sandy loam with pH (H(2)O) ranging from 8.3 to 8.7 was sampled in years 2006 and 2007, including seven fertilization treatments of control without fertilizers (CK), those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): NP, NK, PK and NPK, half chemical fertilizers NPK plus half organic manure (1/2OMN) and organic manure (OM). The highest bacterial amoA gene copy numbers were found in those treatments receiving N fertilizer. The archaeal amoA gene copy numbers ranging from 1.54 x 10(7) to 4.25 x 10(7) per gram of dry soil were significantly higher than those of bacterial amoA genes, ranging from 1.24 x 10(5) to 2.79 x 10(6) per gram of dry soil, which indicated a potential role of AOA in nitrification. Ammonia-oxidizing bacteria abundance had significant correlations with soil pH and potential nitrification rates. Denaturing gradient gel electrophoresis patterns revealed that the fertilization resulted in an obvious change of the AOB community, while no significant change of the AOA community was observed among different treatments. Phylogenetic analysis showed a dominance of Nitrosospira-like sequences, while three bands were affiliated with the Nitrosomonas genus. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). These results suggest that long-term fertilization had a significant impact on AOB abundance and composition, while minimal on AOA in the alkaline soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号