首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25.  相似文献   

2.
The exact role of calbindin D9k in vitamin D-mediated calcium absorption has been debated but remains unsettled. In 129/OlaHsd mice, calbindin D9k was found highest in duodenum (36-50%) and kidney (24-34%) followed by stomach, lung and uterus. Age does not affect the relative distribution of calbindin D9k but it does decline with age in duodenum of both male and female 129/Ola mice. Recently, we produced a null calbindin D9k mutant 129/OlaHsd mouse; this mouse proved to be indistinguishable from the wild-type in phenotype and in a serum calcium level regardless of age or gender. We have now examined directly whether the mutant mouse can absorb calcium from the intestine in response to the active form of vitamin D. The calbindin D9k null mutant mouse is fully able to absorb calcium from the intestine in response to 1,25-dihydroxyvitamin D3. It is, therefore, clear that calbindin D9k is not required for vitamin D-induced intestinal calcium absorption.  相似文献   

3.
A simplified method for the determination of 25-hydroxy and 1α,25-dihydroxy metabolites of vitamins D2 and D3 in human plasma was developed. Plasma samples were deproteinizated and applied to a Bond Elut C18 OH cartridge to separate 25-hydroxyvitamin D (25-OH-D) and 1α-25-dihydroxyvitamin D [1,25(OH)2D] fractions. The 25-OH-D fraction was purified by a Bond Elut C18 cartridge and 25-OH-D2 and 25-OH-D3 were assayed by HPLC using a Zorbax SIL column. The 1,25(OH)2D fraction obtained above was subsequently applied to HPLC using a Zorbax SIL column to separate 1,25(OH)2D2 and 1,25(OH)2D3 fractions which were determined by a radioreceptor assay (RRA) using calf thymus receptor. The method was applied to nutritional studies.  相似文献   

4.
Ibudilast ophthalmic solution exhibited an improved clinical efficacy over cromoglycate in the treatment of allergic conjunctivitis. To further characterize its principal mode of action, the phosphodiesterase (PDE) inhibitory profile of ibudilast has been examined using human recombinant enzymes. Ibudilast, but not the other commonly used anti-allergic ophthalmic solutions including cromoglycate, ketotifen, tranilast and levocabastine, potently inhibits purified human PDE4A, 4B, 4C and 4D with IC50 values at 54, 65, 239 and 166 nM, respectively. Ibudilast effectively blocks lipopolysaccharide (LPS)-induced tumor necrosis factor (TNFalpha, IC50 = 6.2 microM) and N-formyl-Met-Leu-Phe (fMLP)-induced leukotriene (LT) B4 biosynthesis (IC50 = 2.5 microM) in human whole blood, which are 3 and 6-fold more potent than cilomilast, respectively. The attenuated inflammatory and allergic responses from the potent and preferential PDE4 inhibition of ibudilast may have contributed significantly to its beneficial pharmacological responses and distinguishes ibudilast from the other ophthalmic solutions in the treatment of ocular allergy.  相似文献   

5.
1,25(OH)2D3 is an antiproliferative agent that may inhibit proliferation of breast cancer (BC) cells in vitro and BC development in animals. Epidemiological studies have shown a high incidence of BC in people less exposed to solar rays. To unravel the role of Vitamin D3 in BC patients, we have investigated serum levels of 25(OH)D3 and its active form 1,25(OH)2D3 as well as tissue expression of 1alpha-hydroxylase, 24-hydroxylase, and Vitamin D-receptor (VDR), determined by semiquantitative RT-PCR, in 88 Brazilian BC patients and 35 women without cancer (submitted to mammoplasties or resection of benign lesions). Median age of women with and without cancer was 51 and 46 years, respectively, and the majority of BC patients were classified as clinical stage II (67%). Although no differences in 25(OH)D3 serum concentration were found, 1,25(OH)2D3 (40+/-21 pg/ml) levels in BC patients were lower than in women without cancer (53+/-23). Our results indicate that 24-hydroxylase, VDR and 1alpha-hydroxylase mRNA tissue expression is similar in both groups and no correlation between 24-hydroxylase, 1alpha-hydroxylase, and VDR expression in breast tumors was found. A low 1,25(OH)2D3 serum concentration seems to be associated to breast cancer, however, the mechanism involved in this regulation is still unclear.  相似文献   

6.
Of the various risk factors contributing to osteoporosis, dietary/lifestyle factors are important. In a clinical study we reported that women with caffeine intakes >300 mg/day had higher bone loss and women with vitamin D receptor (VDR) variant, tt were at a greater risk for this deleterious effect of caffeine. However, the mechanism of how caffeine effects bone metabolism is not clear. 1,25-Dihydroxy vitamin D3 (1,25(OH)2D3) plays a critical role in regulating bone metabolism. The receptor for 1,25(OH)2D3, VDR has been demonstrated in osteoblast cells and it belongs to the superfamily of nuclear hormone receptors. To understand the molecular mechanism of the role of caffeine in relation to bone, we tested the effect of caffeine on VDR expression and 1,25(OH)2D3 mediated actions in bone. We therefore examined the effect of different doses of caffeine (0.2, 0.5, 1.0 and 10 mM) on 1,25(OH)2D3 induced VDR protein expression in human osteoblast cells. We also tested the effect of different doses of caffeine on 1,25(OH)2D3 induced alkaline phosphatase (ALP) activity, a widely used marker of osteoblastic activity. Caffeine dose dependently decreased the 1,25(OH)2D3 induced VDR expression and at concentrations of 1 and 10 mM, VDR expression was decreased by about 50–70%, respectively. In addition, the 1,25(OH)2D3 induced alkaline phosphatase activity was also reduced at similar doses thus affecting the osteoblastic function. The basal ALP activity was not affected with increasing doses of caffeine. Overall, our results suggest that caffeine affects 1,25(OH)2D3 stimulated VDR protein expression and 1,25(OH)2D3 mediated actions in human osteoblast cells.  相似文献   

7.
The metabolism of 1α,25-dihydroxyvitamin D2 (1α,25(OH)2D2) by human CYP24A1 was examined using the recombinant enzyme expressed in Escherichia coli cells. HPLC analysis revealed that human CYP24A1 produces at least 10 metabolites, while rat CYP24A1 produces only three metabolites, indicating a remarkable species-based difference in the CYP24A1-dependent metabolism of 1α,25(OH)2D2 between humans and rats. LC-MS analysis and periodate treatment of the metabolites strongly suggest that human CYP24A1 converts 1α,25(OH)2D2 to 1α,24,25,26(OH)4D2, 1α,24,25,28(OH)4D2, and 24-oxo-25,26,27-trinor-1α(OH)D2 via 1α,24,25(OH)3D2. These results indicate that human CYP24A1 catalyzes the C24-C25 bond cleavage of 1α,24,25(OH)2D2, which is quite effective in the inactivation of the active form of vitamin D2. The combination of hydroxylation at multiple sites and C-C bond cleavage could form a large number of metabolites. Our findings appear to be useful to predict the metabolism of vitamin D2 and its analogs in the human body.  相似文献   

8.
9.
Tryptamine derivatives, a new structural class of cyclin dependent kinase 4 inhibitors, have been identified during extensive biological screening of synthetic molecules. The molecules were synthesized based on the structure of fascaplysin, which is not only a specific inhibitor of the Cdk4-cyclin D1 enzyme but also a relatively toxic molecule, probably because it binds and intercalates DNA. Interestingly, the new structural analogues of fascaplysin do not interact or intercalate with double-stranded DNA, although they inhibit Cdk4-cyclin D1 specifically. We found that compound CA199 was the most potent molecule, showing at least 25-fold specificity towards Cdk4-cyclin D1 (IC50 for Cdk4-cyclin D1 = 20 microM, Cdk2 > 500 microM). CA199 inhibits the growth of different cancer cell lines at concentrations ranging from 10-40 microM. It blocks growth of asynchronous cells at G0/G1 in a retinoblastoma protein (pRb) dependent manner. Moreover, CA199 blocks growth only at early G1 in synchronised cells released from a mimosine-induced G1/S block. These observations are reminiscent of a true Cdk4 inhibitor.  相似文献   

10.
1alpha,25(OH)(2)D(3) activates protein kinase C (PKC) in rat growth plate chondrocytes via mechanisms involving phosphatidylinositol-specific phospholipase C (PI-PLC) and phospholipase A(2) (PLA(2)). The purpose of this study was to determine if 1alpha,25(OH)(2)D(3) activates PI-PLC directly or through a PLA(2)-dependent mechanism. We determined which PLC isoforms are present in the growth plate chondrocytes, and determined which isoform(s) of PLC is(are) regulated by 1alpha,25(OH)(2)D(3). Inhibitors and activators of PLA(2) were used to assess the inter-relationship between these two phospholipid-signaling pathways. PI-PLC activity in lysates of prehypertrophic and upper hypertrophic zone (growth zone) cells that were incubated with 1alpha,25(OH)(2)D(3), was increased within 30s with peak activity at 1-3 min. PI-PLC activity in resting zone cells was unaffected by 1alpha,25(OH)(2)D(3). 1beta,25(OH)(2)D(3), 24R,25(OH)(2)D(3), actinomycin D and cycloheximide had no effect on PLC in lysates of growth zone cells. Thus, 1alpha,25(OH)(2)D(3) regulation of PI-PLC enzyme activity is stereospecific, cell maturation-dependent, and nongenomic. PLA(2)-activation (mastoparan or melittin) increased PI-PLC activity to the same extent as 1alpha,25(OH)(2)D(3); PLA(2)-inhibition (quinacrine, oleyloxyethylphosphorylcholine (OEPC), or AACOCF(3)) reduced the effect of 1alpha,25(OH)(2)D(3). Neither arachidonic acid (AA) nor its metabolites affected PI-PLC. In contrast, lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) activated PI-PLC (LPE>LPC). 1alpha,25(OH)(2)D(3) stimulated PI-PLC and PKC activities via Gq; GDPbetaS inhibited activity, but pertussis toxin did not. RT-PCR showed that the cells express PLC-beta1a, PLC-beta1b, PLC-beta3 and PLC-gamma1 mRNA. Antibodies to PLC-beta1 and PLC-beta3 blocked the 1alpha,25(OH)(2)D(3) effect; antibodies to PLC-delta and PLC-gamma did not. Thus, 1alpha,25(OH)(2)D(3) regulates PLC-beta through PLA(2)-dependent production of lysophospholipid.  相似文献   

11.
1alpha,25-Dihydroxy-2beta-(3-hydroxypropoxy)vitamin D(3) (ED-71), an analog of active vitamin D(3), 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] is under phase III clinical trials in Japan for the treatment of osteoporosis and bone fracture prevention. Since ED-71 has a substituent at the 2beta-position of the A-ring, it is recognized that the metabolic pathway of ED-71 might be more complicated than 1,25(OH)(2)D(3) because of metabolism at the 2beta-position substituent in addition to the inherent metabolism of the side chain. To clarify the metabolism of hydroxypropoxy substituent of the 2beta-positon and a combination of metabolism between side chain and 2beta-positon, four putative metabolites of ED-71 have been prepared as authentic samples. The metabolites at the 2beta-positon, the methyl ester derivative considered as an ester standard of the oxidized metabolite and the tetraol derivative as the truncated metabolite were synthesized from alpha-epoxide, a key intermediate of ED-71 synthesis. The combination metabolites between side chain and 2beta-positon, the 24(S)- and 24(R)-pentaols were synthesized using Trost's convergent method.  相似文献   

12.
We investigated the potential roles of specific isoforms of protein kinase C (PKC) in the regulation of leukotriene D(4)-induced Ca(2+) signaling in the intestinal epithelial cell line Int 407. RT-PCR and Western blot analysis revealed that these cells express the PKC isoforms alpha, betaII, delta, epsilon, zeta, and mu, but not betaI, gamma, eta, or theta;. The inflammatory mediator leukotriene D(4) (LTD(4)) caused the TPA-sensitive PKC isoforms alpha, delta, and epsilon, but not betaII, to rapidly translocate to a membrane-enriched fraction. The PKC inhibitor GF109203X at 30 microM but not 2 microM significantly impaired the LTD(4)-induced Ca(2+) signal, indicating that the response involves a novel PKC isoform, such as delta or epsilon, but not alpha. LTD(4)-induced Ca(2+) signaling was significantly suppressed in cells pretreated with TPA for 15 min and was abolished when the pretreatment was prolonged to 2 h. Immunoblot analysis revealed that the reduction in the LTD(4)-induced calcium signal coincided with a reduction in the cellular content of PKCepsilon and, to a limited extent, PKCdelta. LTD(4)-induced Ca(2+) signaling was also markedly suppressed by microinjection of antibodies against PKCepsilon but not PKCdelta. These data suggest that PKCepsilon plays a unique role in regulation of the LTD(4)-dependent Ca(2+) signal in intestinal epithelial cells.  相似文献   

13.
Khanal RC  Smith NM  Nemere I 《Steroids》2007,72(2):158-164
Phosphate homeostasis is controlled in part by absorption from the intestine, and reabsorption in the kidney. While the effect of Vitamin D metabolites on enterocytes is well documented, in the current study we assess selected responses in primary cultures of kidney cells. Time course studies revealed a rapid stimulation of phosphate uptake in cells treated with 1,25(OH)(2)D(3), relative to controls. Dose-response studies indicated a biphasic curve with optimal stimulation at 300 pM 1,25(OH)(2)D(3) and inhibition at 600 pM seco-steroid. Antibody 099--against the 1,25D(3)-MARRS receptor - abolished stimulation by the steroid hormone. Moreover, phosphate uptake was mediated by the protein kinase C pathway. The metabolite 24,25(OH)(2)D(3), which was found to inhibit the rapid stimulation of phosphate uptake in intestinal cells, had a parallel effect in cultured kidney cells. Finally, the 24,25(OH)(2)D(3) binding protein, catalase, was assessed for longer term down regulation. In both intestinal epithelial cells and kidney cells incubated with 24,25(OH)(2)D(3) for 5-24h, both the specific activity of the enzyme and protein levels were decreased relative to controls, while 1,25(OH)(2)D(3) increased both parameters over the same time periods. We conclude that the Vitamin D metabolites have similar effects in both kidney and intestine, and that 24,25(OH)(2)D(3) may have effects at the level of gene expression.  相似文献   

14.
A method for the determination of 25-hydroxyvitamin D3, the major metabolite of vitamin D3 in human plasma, using a non-radioactive internal standard and reversed-phase high-performance liquid chromatography with UV detection (265 nm) has been developed. The method was applied to the determination of the metabolite in plasma from healthy subjects (n=25) and from patients with chronic renal failure (n=12). 25-Hydroxyvitamin D3 3-sulfate, a major conjugated metabolite of 25-hyroxyvitamin D3, was also determined and the correlation between the concentrations of these metabolites was examined. The study showed that almost equal amounts of both compounds were detected in the plasma of healthy subjects, however, in two subjects, the amount of sulfate in the free form was found to be about twice as high as normally detected. In contrast, the free form was predominant in the plasma of patients with chronic renal failure and the sulfate was not detected in four patients.  相似文献   

15.
vitamin D is 25-hydroxylated in the liver, before being activated by 1alpha-hydroxylation in the kidney. Recently, the rat cytochrome P450 2J3 (CYP2J3) has been identified as a principal vitamin D 25-hydroxylase in the rat [Yamasaki T, Izumi S, Ide H, Ohyama Y. Identification of a novel rat microsomal vitamin D3 25-hydroxylase. J Biol Chem 2004;279(22):22848-56]. In this study, we examine whether human CYP2J2 that exhibits 73% amino acid homology to rat CYP2J3 has similar catalytic properties. Recombinant human CYP2J2 was overexpressed in Escherichia coli, purified, and assayed for vitamin D 25-hydroxylation activity. We found significant 25-hydroxylation activity toward vitamin D3 (turnover number, 0.087 min(-1)), vitamin D2 (0.16 min(-1)), and 1alpha-hydroxyvitamin D3 (2.2 min(-1)). Interestingly, human CYP2J2 hydroxylated vitamin D2, an exogenous vitamin D, at a higher rate than it did vitamin D3, an endogenous vitamin D, whereas, rat CYP2J3 hydroxylated vitamin D3 (1.4 min(-1)) more efficiently than vitamin D2 (0.86 min(-1)). Our study demonstrated that human CYP2J2 exhibits 25-hydroxylation activity as well as rat CYP2J3, although the activity of human CYP2J2 is weaker than rat CYP2J3. CYP2J2 and CYP2J3 exhibit distinct preferences toward vitamin D3 and D2.  相似文献   

16.
Recently, epimerization of the hydroxyl group at C-3 has been identified as a unique metabolic pathway of vitamin D compounds. We measured C-3 epimerization activity in subcellular fractions prepared from cultured cells and investigated the basic properties of the enzyme responsible for the epimerization. C-3 epimerization activity was detected using a NADPH-generating system containing glucose-6-phosphate, NADP, glucose-6-phosphate dehydrogenase, and Mg(2+). The highest level of activity was observed in a microsomal fraction prepared from rat osteoblastic UMR-106 cells but activity was also observed in microsomal fractions prepared from MG-63, Caco-2, Hep G2, and HUH-7 cells. In terms of maximum velocity (V(max)) and the Michaelis constant (K(m)), 25-hydroxyvitamin D(3) [25(OH)D(3)] exhibited the highest specificity for the epimerization at C-3 among 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], 25(OH)D(3), 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)], and 22-oxacalcitriol (OCT). The epimerization activity was not inhibited by various cytochrome P450 inhibitors and antiserum against NADPH cytochrome P450 reductase. Neither CYP24, CYP27A1, CYP27B1 nor 3(alpha-->beta)hydroxysteroid epimerase (HSE) catalyzed the epimerization in vitro. Based on these results, the enzyme(s) responsible for the epimerization of vitamin D(3) at C-3 are thought to be located in microsomes and different from cytochrome P450 and HSE.  相似文献   

17.
18.
We have shown that the pro-inflammatory mediator LTD4, via its G-protein-coupled receptor CysLT1, signals through both pertussis-toxin-sensitive and -insensitive G-proteins to induce various cellular responses. To further characterise the initial step of the different signalling pathways emanating from the CysLT1 receptor, we transfected intestinal epithelial cells, Int 407, with different mini vectors that each express a specific inhibitory peptide directed against a unique alpha subunit of a specific heterotrimeric G-protein. Our results revealed that LTD4-induced stress fibre formation is inhibited approximately 80% by a vector expressing an inhibitory peptide against the pertussis-toxin-insensitive Galpha12-protein in intestinal epithelial Int 407 cells. Control experiments revealed that the LPA-induced stress fibre formation, mediated via the Galpha12-protein in other cell types, was blocked by the same peptide in intestinal Int 407 cells. Furthermore, the CysLT1-receptor-mediated calcium signal and activation of the proliferative ERK1/2 kinase are blocked in cells transfected with a vector expressing an inhibitory peptide against the Galphai3-protein, whereas in cells transfected with an empty ECFP-vector or vectors expressing inhibitory peptides against the Galphai1-2-, Galpha12-, GalphaR-proteins these signals are not significantly affected. Consequently, the CysLT1 receptor has the capacity to activate at least two distinctly different heterotrimeric G-proteins that transduce activation of unique downstream cellular events.  相似文献   

19.
Yang L  Wang J  Fan Y  Chen S  Wang L  Ma J 《Cellular immunology》2011,(1):173-179
1,25(OH)2D3, the active metabolite of vitamin D3, its activity is not limited to mineral and skeletal homeostasis. In recent years, there has been increasing evidence pointing to the role of its activity in the regulation of cell proliferation, cell differentiation and immunomodulation. Here we report lipopolysaccharide (LPS), a glycolipid that is produced and secreted by gram-negative bacteria during peritonitis, plus high glucose (HG) can significantly inhibit mesothelial cell viability while induce more apoptosis in rat peritoneal mesothelial cells (RPMC). Pretreatment with 1,25(OH)2D3 can reverse the above effect in a concentration dependent manner. HG plus LPS can down-regulate the levels of both mRNA and protein of VDR, and up-regulate the expression of TGF-β1 and TNF-α in RPMC, which can also be effectively reversed by pretreatment with 1,25(OH)2D3. The above results suggest that HG plus LPS may induce changes in RPMC’s viability and apoptosis, leading to peritoneal injury. 1,25(OH)2D3 can reverse the inhibition of cell viability, the increase of apoptotic rate and induction of fibrosis related cytokine TGF-β1 and TNF-α by HG plus LPS in RPMC, thus protect peritoneal membrane.  相似文献   

20.
Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) has anti-cancer activity in several colon cancers. 1α,25(OH)2D3 induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKIIβ) but not PIPKIIα is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLCδ1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLCδ1 PHD inhibited 1α,25(OH)2D3-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P2 production mediates E-cadherin expression through PIPKIIβ in a VDR-dependent manner. PIPKIIβ is also involved in the suppression of the cell motility induced by 1α,25(OH)2D3. These results indicate that PIPKIIβ-mediated PI(4,5)P2 signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号