首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Tamura  K Kimura  H Takahara  K Akasaka 《Biochemistry》1991,30(47):11307-11313
Cold denaturation and heat denaturation of the protein Streptomyces subtilisin inhibitor (SSI) were studied in the pH range 1.84-3.21 and in the temperature range -3-70 degrees C by circular dichroism and scanning microcalorimetry. The native structure of the protein was apparently most stabilized at about 20 degrees C and was denatured upon heating and cooling from this temperature. Each denaturation was reversible and cooperative, proceeding in two-state transitions, that is, from the native state to the cold-denatured state or from the native state to the heat-denatured state. The two denatured states, however, were not perfect random-coiled structures, and they differed from each other, indicating that there exist three states in this temperature range, i.e., cold denatured, native, and heat denatured. The difference between the cold and heat denaturations was indicated first by circular dichroism. The isodichroic point for the transition from the native state to the cold-denatured state was different from that from the native state to the heat-denatured state in the pH range between 3.21 and 2.45. Moreover, molar ellipticity for the cold-denatured state was different from that of the heat-denatured state, and the transition from the former to the latter was observed at pH values below 2. Values of van't Hoff enthalpies from the native state to the heat-denatured state at pH values between 3.21 and 2.45 were obtained by curve fitting of the CD data, and delta Cp = 1.82 (+/- 0.11) [kcal/(mol.K)] was obtained from the linear plot of the enthalpies against temperature. The parameters obtained from the heat denaturation studies gave curves for delta G zero which were not in agreement with the experimental data in the cold denaturation region when extrapolated to the low temperature. Moreover, the value of the apparent delta Cp for the cold denaturation in the pH range 3.03-2.45 was estimated to be different from that for the heat denaturation, indicating that the mechanism of the cold denaturation of SSI is different from a simple cold denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The thermal denaturation of bacterial ribonuclease in the interval of pH 2.5-7.0 has been investigated by means of infra-red spectroscopy method. The protein melting for pH 2.5 begins at the temperature 25 degrees C and is accompanied by secondary protein structure reconstruction, partially destroying native beta-structure and leading to new denatured conformation appearance of different types of beta-turns. Spectral changes for pH 3.5 and 7.0 are significantly less in the same frequency areas. At the temperature more than 50 degrees C protein aggregation takes place with inter-molecule-beta-form formation.  相似文献   

3.
The kinetics of thermal denaturation of a biliprotein, C-phycocyanin (C-PC) isolated from Spirulina platensis were studied at different pH values, ranging from 4.0 to 8.0. The denaturation of C-PC follows the first order kinetics and rate constant at pH 5.0 and temperature 55 degrees C is found to be 4.37 x 10(-5) s(-1), which increases to 5.46 x 10(-1) s(-1) at pH 7.0. The denaturation rate is much higher at 65 degrees C and pH 7.0 (7.96 x 10(-4)), as compared to at pH 5.0 (1.46 x 10(-4)). The thermal stability of C-PC is more at pH 5.0, as compared to other pH values. The observed differences in entropy values at pH 5.0, as compared to other pH values indicate a considerably close fit structure of the protein at pH 5.0, which increases the stability of native structure, even at higher temperature (65 degrees C).  相似文献   

4.
Freezing denaturation of ovalbumin at acid pH   总被引:1,自引:0,他引:1  
The effects of rapid freezing and thawing at acid pH on the physiochemical properties of ovalbumin were examined. At low pH (around 2), UV difference spectra showed microenvironmental changes around the aromatic amino acid residues; elution curves by gel permeation chromatography showed decreasing numbers of monomers after neutralization. These changes depended on the incubation temperature (between -196 and -10 degrees C) and the protein concentration (0.5-10 mg/ml), and a low concentration of ovalbumin incubated at around -40 degrees C suffered the most damage to its conformation. With freezing and then incubation at -40 degrees C, three of the four sulfhydryl groups in the ovalbumin molecule reacted with 2,2'-dithiodipyridine. The CD spectra showed these changes in the secondary structure, but they were smaller than those when guanidine hydrochloride was used for denaturation. Supercooling at -15 degrees C or freezing at -196 degrees C had little or no effect on the conformation of the ovalbumin molecule. Thus, irreversible conformational changes of ovalbumin were caused under the critical freezing condition at an acid pH. These changes arose from partial denaturation and resembled those with thermal denaturation of ovalbumin at neutral pH.  相似文献   

5.
Effects of temperature and pH on the structure of rabbit muscle alpha-actinin were studied by means of an intrinsic fluorescence method. Alkaline denaturation of alpha-actinin at 15 degrees C begins at pH above 9, while acidification of the solution does not cause unfolding of the protein structure, but results in protein aggregation. The maximal intensity of the isoelectric aggregation process is registered at pH 5. Thermal denaturation of alpha-actinin occurs within the temperature range from 45 degrees C to 65 degrees C. Protein has the second thermally induced transition in the region from 17 to 30 degrees C.  相似文献   

6.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

7.
Two main types of conformational fluctuations--local and global are characteristic of the native protein structure and revealed by hydrogen exchange. The probability of those fluctuations changes to a different extent upon hemoglobin oxygenation, changing of pH, splitting of the intersubunit contacts. To compare with the influence of the heme removal the rate of the H-D exchange of the peptide NH atoms of the human apoHb was studied at the pH range 5.5-9.0 and temperature 10-38 degrees C by the IR spectroscopy. The removal of the heme increases the rate of the H-D exchange of the 80% peptide NH atoms with the factor retardation of the exchange rate (P) in the range approximately 10(2)-10(8). For the most of the peptide NH atoms the probability of the local fluctuations weakly depends on the temperature, the enthalpy changes upon all such local conformational transitions deltaH(op) degrees are 0-15 kcal/M. Characterized by the stronger temperature dependence the global fluctuations are not arised upon the temperature increases up to 38 degrees C at pH 7.0 inspite of in these conditions the slow denaturation and aggregation of apoHb begin to occur. Upon the destabilization of the apoHb structure by the simultaneous decreasing of pH to 5.5 and temperature to 10 degrees C the global fluctuations of the apoHb native structure described by deltaH(op)o < 0 begin to intensify. The mechanism of the overall intensification of the local fluctuations upon the heme removal, the peculiarity of the heat denaturation of apoHb in conditions, close to that existing upon the selfassembly of Hb in vivo, and analogy between low temperature global fluctuations and cold denaturation of globular proteins are discussed.  相似文献   

8.
F Ahmad  P McPhie 《Biochemistry》1978,17(2):241-246
The denaturation of swine pepsinogen has been studied as a function of urea concentration, pH, and temperature. The unfolding of the protein by urea has been found to be fully reversible under different conditions of pH, temperature, and denaturant concentration. Kinetic experiments have shown that the transition shows two-state behavior at 25 degrees C in the pH range 6-8 covered in this study. Analysis of the equilibrium data obtained at 25 degrees C according to Tanford (Tanford, C. (1970), Adv. Protein Chem. 24, 1) and Pace (Pace, N.C. (1975), Crit. Rev. Biochem. 3, 1) leads to the conclusion that the free energy of stabilization of native pepsinogen, relative to the denatured state, under physiological conditions, is only 6-12 kcal mol-1. The temperature dependence of the equilibrium constant for the unfolding of pepsinogen by urea in the range 20-50 degrees C at pH 8.0 can be described by assigning the following values of thermodynamic parameters for the denaturation at 25 degrees C: deltaH=31.5 kcal mol-1; deltaS=105 cal deg-1 mol-1; and deltaCp=5215 cal deg-1 mol-1.  相似文献   

9.
Infrared spectra of 2.5 mM solutions of beta-lactoglobulin B were recorded as a function of pH (from pH 2 to pH 13) and as a function of temperature (from -100 degrees C to +90 degrees C). An analysis of the pH- and temperature-induced changes in the secondary structure was performed based on changes in the conformation-sensitive amide I bands of beta-lactoglobulin. Whereas the total amount of beta-structure remains constant (56-59%) between pH 2 and pH 10, the proportions of the various beta-components do change. In particular, the dimerization of the monomeric protein, induced by raising the pH from 2 to 3 , leads to an increase in the intensity of the 1636 cm-1 band (associated with antiparallel beta-sheet), at the expense of the 1626 cm-1 band (associated with exposed beta-strands). Both the thermal and alkaline denaturation of beta-lactoglobulin occur in two distinct stages. Although the spectra (i.e., the structures) after complete thermal or alkaline denaturation are clearly different, the spectrum of the protein after the first stage of thermal denaturation (at about 60 degrees C) is the same as that after the first stage of alkaline denaturation (at pH 11), suggesting a common denaturation intermediate, which probably represents a crossover point in a complex potential hypersurface.  相似文献   

10.
The secondary structure of bovine beta-casein was characterized using circular dichroism (CD) and FTIR spectroscopies under physiologically relevant conditions. Analytical ultracentrifugation technique was used to follow the highly temperature, pH and concentration dependent self-association behavior. CD measurements provide convincing evidence for short segments of polyproline II-like structures in beta-casein in addition to a wide range of secondary structure elements, such as 10-20% alpha-helix, approximately 30% turns, 32-35% extended sheet. Results obtained at extreme pH (10.5) revealed structural destabilization in the monomeric form of the protein. At least four distinct structural transitions at 10, 33, 40 and 78 degrees C were observed at pH 6.75 by CD analysis, compared to only two transitions, 26 and 40 degrees C, at pH 10.5. Calculations from analytical ultracentrifugation suggest that the transitions at lower temperature (< or = 30 degrees C) occur primarily in the monomer. It is hypothesized that the transition at 10 degrees C and neutral pH may represent a general conformational change or cold denaturation. Those middle ranged transitions, i.e. 33 and 40 degrees C are more likely the reflection of hydrophobic changes in the core of beta-casein. As beta-casein undergoes self-association and increases in size, the transition at higher temperature (78 degrees C) is perhaps caused by the apparent conformational change within the micelle-like polymers. It has been shown that beta-casein binds the hydrophobic fluorescent probe ANS with high affinity in much similar fashion to molten globular proteins. The effect of urea denaturation on the bound complex effectively supports this observation.  相似文献   

11.
The equilibrium behaviour of the bovine phosphatidylethanolamine-binding protein (PEBP) has been studied under various conditions of pH, temperature and urea concentration. Far-UV and near-UV CD, fluorescence and Fourier transform infrared spectroscopies indicate that, in its native state, PEBP is mainly composed of beta-sheets, with Trp residues mostly localized in a hydrophobic environment; these results suggest that the conformation of PEBP in solution is similar to the three-dimensional structure determined by X-ray crystallography. The pH-induced conformational changes show a transition midpoint at pH 3.0, implying nine protons in the transition. At neutral pH, the thermal denaturation is irreversible due to protein precipitation, whereas at acidic pH values the protein exhibits a reversible denaturation. The thermal denaturation curves, as monitored by CD, fluorescence and differential scanning calorimetry, support a two-state model for the equilibrium and display coincident values with a melting temperature Tm = 54 degrees C, an enthalpy change DeltaH = 119 kcal.mol-1 and a free energy change DeltaG(H2O, 25 degrees C) = 5 kcal.mol-1. The urea-induced unfolding profiles of PEBP show a midpoint of the two-state unfolding transition at 4.8 M denaturant, and the stability of PEBP is 4.5 kcal.mol-1 at 25 degrees C. Moreover, the surface active properties indicate that PEBP is essentially a hydrophilic protein which progressively unfolds at the air/water interface over the course of time. Together, these results suggest that PEBP is well-structured in solution but that its conformation is weakly stable and sensitive to hydrophobic conditions: the PEBP structure seems to be flexible and adaptable to its environment.  相似文献   

12.
The thermodynamic parameters of five different highly purified viroid "species" were determined by applying UV-absorption melting analysis and temperature jump methods. Their thermal denaturation proved to be a highly cooperative process with midpoint-temperatures (Tm) between 48.5 and 51 degrees C in 0.01 M sodium cacodylate, 1 mM EDTA, pH 6.8. The values of the apparent reaction enthalpies of the different viroid species range between 3,140 and 3,770 kJ/mol. Although the cooperativity is as high as found in homogeneous RNA double helices the Tm-value of viroid melting is more than 30 degrees C lower than in the homogeneous RNA. In order to explain this deviation, melting curves were simulated for different models of the secondary structure of viroids using literature values of the thermodynamic parameters of nucleic acids. Our calculations show that the following refinement of our earlier model is in complete accordance with the experimental data: In their native conformation viroids exist as an extended rodlike structure characterized by a series of double helical sections and internal loops. In the different viroid species 250-300 nucleotides out of total 350 nucleotides are needed to interprete the thermodynamic behaviour.  相似文献   

13.
Thermal denaturation of penicillin acylase (PA) from Escherichia coli has been studied by high-sensitivity differential scanning calorimetry as a function of heating rate, pH and urea concentration. It is shown to be irreversible and kinetically controlled. Upon decrease in the heating rate from 2 to 0.1 K min(-1) the denaturation temperature of PA at pH 6.0 decreases by about 6 degrees C, while the denaturation enthalpy does not change notably giving an average value of 31.6+/-2.1 J g(-1). The denaturation temperature of PA reaches a maximum value of 64.5 degrees C at pH 6.0 and decreases by about of 15 degrees C at pH 3.0 and 9.5. The pH induced changes in the denaturation enthalpy follow changes in the denaturation temperature. Increasing the urea concentration causes a decrease in both denaturation temperature and enthalpy of PA, where denaturation temperature obeys a linear relation. The heat capacity increment of PA is not sensitive to the heating rate, nor to pH, and neither to urea. Its average value is of 0.58+/-0.02 J g(-1) K(-1). The denaturation transition of PA is approximated by the Lumry-Eyring model. The first stage of the process is assumed to be a reversible unfolding of the alpha-subunit. It activates the second stage involving dissociation of two subunits and subsequent denaturation of the beta-subunit. This stage is irreversible and kinetically controlled. Using this model the temperature, enthalpy and free energy of unfolding of the alpha-subunit, and a rate constant of the irreversible stage are determined as a function of pH and urea concentration. Structural features of the folded and unfolded conformation of the alpha-subunit as well as of the transition state of the PA denaturation in aqueous and urea solutions are discussed.  相似文献   

14.
In this study the thermal and denaturant induced denaturation behaviors of apolipoprotein A-I(Milano) (apo A-IM) have been studied by differential scanning calorimetry and circular dichroism spectroscopy, as well as solution properties by analytical ultracentrifugation. Thermal denaturation is dependent on pH, sodium phosphate concentration and NaCl concentration. The protein is highly self-associated at the protein concentrations used in this study. Denaturation of apo A-IM at pH 7.4 and 8.0 occurs in two steps. The midpoint between the transition is at 37 degrees C. The first step at 31 degrees C involves melting of tertiary structure and rearrangement of protein association complexes, i.e. a transition into an intermediate molten globular-like state. Subsequent melting of this intermediate state into an unfolded state occurs at 52 degrees C. At pH 2.8 the protein lacks all tertiary structure and denaturation occurs over a large temperature interval, indicating the induction of a molten globular-like state at low pH.  相似文献   

15.
The secondary and tertiary structures of bacteriophage cro protein were studied by circular dichroism. The pH dependence of this structure was investigated: cro protein is stable over pH 4.5-10.5. At these pH-values cro protein contains approximately 35% alpha-helix, approximately 20% antiparallel beta-structure and approximately 15% beta-turn, while the remaining part of the protein molecule is in the irregular state. The secondary and tertiary structures of the protein are modified abruptly at more acid and more alkaline pH-values. The curves characterizing the secondary and tertiary structures of the protein are symbatic. The effect of Gu-HCl on the secondary and tertiary structures of cro protein at 22 degrees C and pH 7.2 was studied also. The conformational transition occurs within 0.6-1.9 M Gu-HCl. The changes in the secondary and tertiary structures of the protein have a symbatic character. Thermal denaturation of cro protein was examined. A possible mechanism of the protein denaturation is discussed.  相似文献   

16.
17.
Sso7d is a 62-residue, basic protein from the hyperthermophilic archaeon Sulfolobus solfataricus. Around neutral pH, it exhibits a denaturation temperature close to 100 degrees C and a non-sequence-specific DNA binding activity. Here, we report the characterization by circular dichroism and fluorescence measurements of a variant form of Sso7d truncated at leucine 54 (L54Delta). It is shown that L54Delta has a folded conformation at neutral pH and that its thermal unfolding is a reversible process, represented well by the two-state N <=> D transition model, with a denaturation temperature of 53 degrees C. Fluorescence titration experiments indicate that L54Delta binds tightly to calf thymus DNA, even though the binding parameters are smaller than those of the wild-type protein. Therefore, the truncation of eight residues at the C-terminus of Sso7d markedly affects the thermal stability of the protein, which nevertheless retains a folded structure and DNA binding activity.  相似文献   

18.
Phaseolus vulgaris phytohemagglutinin L is a homotetrameric-leucoagglutinating seed lectin. Its three-dimensional structure shows similarity with other members of the legume lectin family. The tetrameric form of this lectin is pH dependent. Gel filtration results showed that the protein exists in its dimeric state at pH 2.5 and as a tetramer at pH 7.2. Contrary to earlier reports on legume lectins that possess canonical dimers, thermal denaturation studies show that the refolding of phytohemagglutinin L at neutral pH is irreversible. Differential scanning calorimetry (DSC) was used to study the denaturation of this lectin as a function of pH that ranged from 2.0 to 3.0. The lectin was found to be extremely thermostable with a transition temperature around 82 degrees C and above 100 degrees C at pH 2.5 and 7.2, respectively. The ratio of calorimetric to vant Hoff enthalpy could not be calculated because of its irreversible-folding behavior. However, from the DSC data, it was discovered that the protein remains in its compact-folded state, even at pH 2.3, with the onset of denaturation occurring at 60 degrees C.  相似文献   

19.
Osmolytes stabilize proteins to thermal and chemical denaturation. We have studied the effects of the osmolytes sarcosine, betaine, trimethylamine-N-oxide, and taurine on the structure and stability of the protein.peptide complex RNase S using x-ray crystallography and titration calorimetry, respectively. The largest degree of stabilization is achieved with 6 m sarcosine, which increases the denaturation temperatures of RNase S and S pro by 24.6 and 17.4 degrees C, respectively, at pH 5 and protects both proteins against tryptic cleavage. Four crystal structures of RNase S in the presence of different osmolytes do not offer any evidence for osmolyte binding to the folded state of the protein or any perturbation in the water structure surrounding the protein. The degree of stabilization in 6 m sarcosine increases with temperature, ranging from -0.52 kcal mol(-1) at 20 degrees C to -5.4 kcal mol(-1) at 60 degrees C. The data support the thesis that osmolytes that stabilize proteins, do so by perturbing unfolded states, which change conformation to a compact, folding competent state in the presence of osmolyte. The increased stabilization thus results from a decrease in conformational entropy of the unfolded state.  相似文献   

20.
The temperature adaptation of pyrrolidone carboxyl peptidase (PCP) from a hyperthermophile, Pyrococcus furiosus (Pf PCP), was characterized in the context of an assembly form of the protein which is a homotetramer at neutral pH. The Pf PCP exhibited maximal catalytic activity at 90-95 degrees C and its activity was higher in the temperature range 30-100 degrees C than its counterpart from the mesophilic Bacillus amyloliquefaciens (BaPCP). Thermal stability was monitored by differential scanning calorimetry (DSC). Two clearly separated peaks appeared on the DSC curves for Pf PCP at alkaline and acidic pH. Using the oxidized Pf PCP and two mutant proteins (Pf C188S and Pf C142/188S), it was found that the peaks on the high and low temperature sides of the DSC curve of Pf PCP were produced by the forms with an intersubunit disulfide bridge between the two subunits and without the bridge, respectively, indicating the stabilization effect of intersubunit disulfide bridges. The denaturation temperature (Td) of Pf PCP with intersubunit disulfide bridges was higher by 53 degrees C at pH 9.0 than that of BaPCP. An analysis of the equilibrium ultracentrifugation patterns showed that the tetrameric Pf C142/188S dissociated into dimers with decreasing pH in the acidic region and became monomer subunits at pH 2.5. The heat denaturation of Pf PCP and its two Cys mutants was highly reversible in the dimeric forms, but completely irreversible in the tetrameric form. The Td of Pf C142/188S decreased as the enzyme became dissociated, but the monomeric form of the protein was still folded at pH 2.5, although BaPCP was completely denatured at acidic pH. These results indicate that subunit interaction plays an important role in stabilizing PCP from P. furiosus in addition to the intrinsic enhanced stability of its monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号