首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene for autosomal, dominantly inherited, non-chromaffin paragangliomas has previously been mapped at 11q23-qter by linkage analysis of a single family. In the present study, we have used genetic markers from 11q for the analysis of two distantly related pedigrees with the same disorder. Linkage analysis and haplotyping indicate that the gene underlying the disorder in the present family is located on chromosome 11q proximal to the tyrosinase gene locus (11q14–q21). Closely linked markers are the human homologue of the murine INT2 protooncogene and the anonymous DNA marker D11S527. A maximum lod score of 5.4 (=0.0) has been obtained for linkage between the disorder and the chromosomal region defined by these markers. The human INT2 gene can be regarded as a candidate for the disorder on the basis of its expression pattern during embryogenesis in the mouse. However, haplotype analysis indicates that this gene is probably not the predisposing genetic factor in the present family.  相似文献   

2.
We have constructed a physical map of chromosome 11q13, using 54 DNA markers that had been localized to 11q13.1----q13.5 by means of somatic hybrid cell panels. Although the map has some gaps, it spans nearly 14 Mb and includes the region containing the gene responsible for multiple endocrine neoplasia type 1 (MEN1) and also the region that is amplified in several types of malignant tumors. As the estimated average distance between each locus is roughly 300 kb, the markers reported here will be valuable resources for construction of contig maps with yeast artificial chromosomes and/or cosmid clones. Furthermore, these clones will be useful in efforts to identify the MEN1 gene and in analyses of the amplification units present at 11q13 in certain tumors.  相似文献   

3.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder in which affected individuals develop tumors primarily in the parathyroids, anterior pituitary, endocrine pancreas, and duodenum. The locus for MEN1 is tightly linked to the marker PYGM on chromosome 11q13, and linkage analysis has previously placed the MEN1 gene within a 2-Mb interval flanked by markers D11S1883 and D11S449. Loss of heterozygosity (LOH) studies in MEN1 and sporadic tumors have helped narrow the location of the gene to a 600-kb interval between PYGM and D11S449. Eighteen new polymerase chain reaction (PCR)-based polymorphic markers were generated for the MEN1 region, with ten mapping to the PYGM-D11S449 interval. These new markers, along with 14 previously known polymorphic markers, were precisely mapped on a 2.8-Mb (D11S480–D11S913) high-density clone contig-based, physical map generated for the MEN1 region. Received: 21 February 1997 / Accepted: 5 June 1997  相似文献   

4.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder that predisposes affected individuals to neoplasms of the parathyroid glands, endocrine pancreas, anterior pituitary, and carcinoids. The MEN1 locus has been localized by family studies to 11q13, flanked by markers PGA and D11S97. Eight new polymorphisms located in three separate radiation-reduced somatic cell hybrid segregation groups were developed. The order of the new markers, within the context of previously described loci, was determined by linkage analysis on the Venezuelan reference pedigree. Four independent MEN1 families, consisting of 57 affected individuals, and 70 individuals at-risk for the disease were genotyped. Sixteen people inherited a chromosome that shows recombination between a linked marker and the disease. The nearest proximal and distal markers that show recombination with the disease are D11S822 and GSTP1, respectively, thereby narrowing the candidate region for MEN1 by 50% on the distal side. Using these loci in haplotype analysis, an accurate presymptomatic molecular diagnostic test has been developed. These new markers in 11q13 linked to MEN1 also facilitate the genetic and physical characterization of this very gene-rich region.  相似文献   

5.
We have constructed a high-resolution genetic linkage map in the vicinity of the gene responsible for multiple endocrine neoplasia type 1 (MEN1). The mutation causing this disease, inherited as an autosomal dominant, predisposes carriers to development of neoplastic tumors in the parathyroid, the endocrine pancreas, and the anterior lobe of the pituitary. The 12 markers on the genetic linkage map reported here span nearly 20 cM, and linkage analysis of MEN1 pedigrees has placed the MEN1 locus within the 8-cM region between D11S480 and D11S546. The markers on this map will be useful for prenatal or presymptomatic diagnosis of individuals in families that segregate a mutant allele of the MEN1 gene.  相似文献   

6.
The multiple endocrine neoplasia type 1 (MEN1) locus has been previously localised to 11q13 by combined tumour deletion mapping and linkage studies and a 3.8-cM region flanked by PYGM and D11S97 has been defined. The zinc finger in the MEN1 locus (ZFM1) gene, which has also been mapped to this region, represents a candidate gene for MEN1. The ZFM1 gene, which consists of 14 exons, encodes a 623-amino acid protein and exons 2, 8 and 12 encode the putative nuclear localisation signal, a zinc finger motif, and a proline-rich region, respectively. We have investigated these potentially functional regions for germ-line mutations by single-stranded conformational polymorphism (SSCP) analysis in 64 unrelated MEN1 patients. In addition, we performed DNA sequence analysis of all the 14 exons and 13 of the 26 exon-intron boundaries in four unrelated MEN1 patients. A 6-bp deletion that resulted in the loss of two proline residues at codons 479 and 480 in exon 12 was found in one MEN1 patient. However, this did not co-segregate with MEN1 in the family and represented a rare polymorphism. Analysis by SSCP, DNA sequencing, northern blotting, Southern blotting and pulsed field gel electrophoresis revealed no additional genetic abnormalities of ZFM1 in the other MEN1 patients. Thus, our results indicate that ZFM1 is excluded as a candidate gene for MEN1. Received: 29 October 1996 / Revised: 16 December 1996  相似文献   

7.
Autosomal dominant familial exudative vitreoretinopathy (adFEVR) is a hereditary disorder characterized by the incomplete vascularization of the peripheral retina. The primary biochemical defect in adFEVR is unknown. The adFEVR locus has tentatively been assigned to 11q by linkage studies. We report the results of an extended multipoint linkage analysis of two families with adFEVR by using five markers (INT2, D11S533, D11S527, D11S35, and CD3D) from 11q13-q23. Pairwise linkage data obtained in the two families were rather similar and hence have not provided evidence for genetic heterogeneity. The highest complied two-point lod score (3.67, at a recombination fraction of .07) was obtained for the disease locus versus D11S533. Multipoint analyses showed that the adFEVR locus maps most likely, with a maximum location score of over 20, between D11S533/D11S527 and D11S35, at recombination rates of .147 and .104, respectively. Close linkage without recombination (maximum lod score 11.26) has been found between D11S533 and D11S527.  相似文献   

8.
9.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder with a high penetrance characterized by tumors of the parathyroid glands, the endocrine pancreas, and the anterior pituitary. TheMEN1gene, a putative tumor suppressor gene, has been mapped to a 3- to 8-cM region in chromosome 11q13 but it remains elusive as yet. We have combined the efforts and resources from four laboratories to form the European Consortium on MEN1 with the aims of establishing the genetic and the physical maps of 11q13 and of further narrowing the MEN1 region. A 5-Mb integrated map of the region was established by fluorescencein situhybridization on both metaphase chromosomes and DNA fibers, by hybridization to DNA from somatic cell hybrids containing various parts of human chromosome 11, by long-range restriction mapping, and by characterization of YACs and cosmids. Polymorphic markers were positioned and ordered by physical mapping and genetic linkage in 86 MEN1 families with 452 affected individuals. Two critical recombinants identified in two affected cases placed theMEN1gene in an ≈2-Mb region aroundPYGM,flanked by D11S1883 and D11S449.  相似文献   

10.
Multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disease characterized by neoplasia of the parathyroid glands, anterior pituitary and endocrine pancreas, is rarely reported in Asian populations. The MEN1 gene, mapped to chromosome 11q13 but yet to be cloned, has been found to be homogeneous in Caucasian populations through linkage analysis. Here, two previously unreported Asian kindreds with MEN1 are described; link-age analysis using microsatellite polymorphic markers in the MEN1 region was carried out. The first kindred, of Mongolian-Chinese origin, is a multigeneration family with over 150 living members, eight of whom are affected toB. T. Teh and S. I. Hii are to be considered as joint first authors  相似文献   

11.
Summary Multiple endocrine neoplasia type 1 (MEN1) is characterized by neoplasia of the parathyroids, the pancreas, and the pituitary. Tumorigenesis involves unmasking of a recessive mutation at the MEN1 locus, which has been mapped to the centromeric part of chromosomal region 11q. In order to localize the MEN1 gene further and to make its isolation possible, a number of new markers were isolated. Two radiation-reduced somatic cell hybrids were identified that only contained markers close to and flanking the MEN1 region. DNA from these hybrids was used for the construction of a cosmid library, and clones containing human inserts were isolated. In addition, cosmid clones were isolated for locus expansion of 7 other markers that were mapped to the 11q12–13.2 region. The 33 newly isolated clones together with 25 previously published markers from this region were analyzed in a panel of radiation-reduced somatic cell hybrids. From the hybridization pattern, the region was divided into 11 parts. New restriction fragment length polymorphisms were identified in 7 of the newly isolated cosmid clones and in one plasmid. These were then used to sublocalize meiotic cross-overs more precisely in two MEN1 families, thus refining the mapping of the disease gene.  相似文献   

12.
Summary Gastrinomas are pancreatic endocrine neoplasms that arise either sporadically or are inherited as part of the multiple endocrine neoplasia type I syndrome (MEN I). Loss of heterozygosity (LOH) in the region flanking the MEN I gene at chromosome 11q13 has been documented in a few sporadic and familial pancreatic endocrine tumors, but not previously in sporadic gastrinomas. It has therefore been suggested that gastrinomas develop by a mechanism different from other tumors associated with the MENI syndsrome. We report LOH on chromosome 11 in 5 of 11 sporadic gastrinomas. Four of these tumors have LOH for markers flanking the MEN I region. Molecular evaluation of segments of chromosomes 3, 13, and 17 known to contain cloned or putative tumor suppressor genes fail to show LOH except at one locus in one tumor. These data suggest that a tumor suppressor DNA segment exists at 11q13 that may be involved in the development of sporadic gastrinomas.  相似文献   

13.
14.
Gene(s) for the autosomal dominant endocrine cancer syndromes, multiple endocrine neoplasia type 2A (MEN2A), multiple endocrine neoplasia type 2B (MEN2B), and familial medullary thyroid carcinoma (MTC1) all map to the pericentromeric region of chromosome 10. Predictive testing for the inheritance of mutant alleles in individuals at risk for these disorders has been limited by the availability of highly informative and closely linked flanking markers. We describe the development of eight new markers, including two PCR-based dinucleotide repeat polymorphisms and six RFLPs that flank the disease loci. One of the dinucleotide repeat markers (sJRH-1) derives from the RBP3 locus on 10q11.2 and has a PIC of .88. The other dinucleotide repeat (sTCL-1) defines a new locus, D10S176, that maps by in situ hybridization to 10p11.2 and has a PIC of .68. We have constructed a new genetic linkage map of the pericentromeric region of chromosome 10, on the basis of 13 polymorphisms at six loci, which places the MEN2A locus between the dinucleotide repeat markers, with odds of 5,750:1 over the next most likely position. Using this set of markers, predictive genetic testing of 130 at-risk individuals from six families segregating MEN2A revealed that 95% were jointly informative with flanking markers, representing a significant improvement in genetic testing capabilities.  相似文献   

15.
Multiple endocrine neoplasia type 2A (MEN2A) is a rare cancer syndrome that is inherited in an apparently autosomal dominant fashion. Previous linkage studies had assigned the MEN2A locus to chromosome 10 in the pericentromeric region. We recently have described several new easily scorable RFLPs for the chromosome 10-specific alpha satellite DNA (the D10Z1) locus that is known, on the basis of previous in situ hybridization experiments, to lie at the centromere. We report here tight linkage between MEN2A and D10Z1, as demonstrated by a maximum lod score of 12.02 at the recombination frequency of zero (1-lod-unit support interval 0-4 cM), indicating that the genetic defect in MEN2A lies in the immediate vicinity of the centromere. By means of a set of ordered polymorphic DNA markers from the pericentromeric region, multipoint as well as pairwise linkage analyses place the MEN2A locus at the middle of a small region (approximately 11 cM) bracketing the centromere with FNRB (at 10p11.2) and RBP3 (at 10q11.2) on either side, providing further support for the centromeric location of the MEN2A locus. Marked sex difference in recombination frequencies exists in this pericentromeric region: significantly (P less than .01) more female than male crossovers were observed across all of the adjacent intervals D10S24-FNRB, FNRB-D10Z1, and D10Z1-RBP3. However, a sex difference was not seen in the 7-cM interval from RBP3 to D10S5, suggesting that large variation in the sex difference in recombination can occur over small chromosomal regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A five-generation kindred (19 affected, two obligate carriers and 20 unaffected) from Oklahoma USA, in which familial benign (hypocalciuric) hypercalcaemia (FBH) was associated with a developmental elevation in serum parathyroid hormone (PTH) levels, has been investigated for linkage to the candidate chromosomal regions 3q21-q24 and 19p13.3, 11q13, and 11p15, to which the genes for FBH, multiple endocrine neoplasia type 1 (MEN1) and PTH have been mapped respectively. By means of 17 polymorphic markers from these regions, linkage was excluded [LOD scores <-2.00 at () = 0.05–0.25]. In addition, an analysis of multipoint crossovers and use of the LINKMAP program confirmed the exclusion from these regions. Thus, this form of FBH, designated the Oklahoma variant FBH(Ok), is not linked to markers that segregate with FBH, MEN1 and PTH; our results indicate further genetic heterogeneity and the presence of a third locus for FBH.  相似文献   

17.
The multiple endocrine neoplasia type 1 (MEN1) locus has been previously localised to 11q13 by combined tumour deletion mapping and recombination studies, and a 0.5-Mb region, flanked by PYGM and D11S449, has been defined. In the course of constructing a contig, we have identified the location of the gene encoding the B56β subunit of protein phosphatase 2A (PP2A), which is involved in cell signal transduction pathways and thus represents a candidate gene for MEN1. We have searched for mutations in the PP2A-B56β coding region, together with the 5′ and 3′ untranslated regions in six MEN1 patients. DNA sequence abnormalities were not identified and thus the PP2A-B56β gene is excluded as the candidate gene for MEN1. However, our precise localisation of PP2A-B56β to this region of 11q13 may help in elucidating the basis for other disease genes mapping to this gene-rich region. Received: 17 April 1997 / Accepted: 22 April 1997  相似文献   

18.
Nemaline myopathy (NEM) is a neuromuscular disorder characterized by the presence, in skeletal muscle, of nemaline rods composed at least in part of alpha-actinin. A candidate gene and linkage approach was used to localize the gene (NEM1) for an autosomal dominant form (MIM 161800) in one large kindred with 10 living affected family members. Markers on chromosome 19 that were linked to the central core disease gene, a marker at the complement 3 locus, and a marker on chromosome 1 at the alpha-actinin locus exclude these three candidate genes. The family was fully informative for APOA2, which is localized to 1q21-q23. NEM1 was assigned to chromosome 1 by close linkage for APOA2, which is localized to 1q21-q23. NEM1 was assigned to chromosome 1 by close linkage to APOA2, with a lod score of 3.8 at a recombination fraction of 0. Recombinants with NGFB (1p13) and AT3 (1q23-25.1) indicate that NEM1 lies between 1p13 and 1q25.1. In total, 47 loci were investigated on chromosomes 1, 2, 4, 5, 7-11, 14, 16, 17, and 19, with no indications of significant linkage other than to markers on chromosome 1.  相似文献   

19.
Familial exudative vitreoretinopathy (FEVR) is an ocular disorder characterized by deficient vascularization of the peripheral retina and causes visual loss attributable to various types of retinal detachment. The locus of the gene responsible for the autosomal dominant form of FEVR (EVR1) has been assigned to 11q13-23. However, a detailed evaluation of the critical region has not been made. We present the results of linkage analysis of the EVR1 locus on 11q13-23 in 43 individuals belonging to seven unrelated families of Japanese origin. Multipoint analysis has shown that six families out of the seven are linked with 11q13-23 markers. Haplotype analysis reveals that the putative region is probably flanked by polymorphic markers D11S1362 and CHLC.GATA30G01, which are approximately 200 kb apart, although the recombination events in small families such as presented in this study should be interpreted cautiously.  相似文献   

20.
Familial multiple endocrine neoplasia, type 1 (FMEN1), is an autosomal dominant trait generated by hyperfunction of various endocrine glands. The gene for MEN1 has been mapped to chromosome 11q13 by genetic linkage and deletion mapping in tumors. Eight Finnish families, including 46 individuals carrying the risk haplotype, have been typed for four polymorphic microsatellite DNA markers spanning the MEN1 chromosomal region. Three of the loci concerned, D11S913, D11S987, and D11S1337, displayed maximum lod scores (Z max ) 6.70, 9.88, and 2.54, respectively, with no recombinations with the disease gene, whereas a Z max of 8.43 was obtained for D11S971 at a recombination fraction of 0.03. Our results indicate that the use of this set of markers considerably improves the diagnostic value of genotyping patients at risk of developing MEN1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号