首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
Population dynamics for voles (Cricetidae), Tengmalm's owl (Aegolius funereus (L.)), red fox (Vulpes vulpes (L.)) willow grouse (Lagopus lagopus (L.)), black grouse (Lyrurus tetrix (L.)), capercaillie (Tetrao urogallus L.), hazel hen (Tetrastes bonasia (L.)), mountain hare (Lepus timidus L.) and tularemia (Francisella tularensis (McCoy & Chapin)) and game bird recruitment were studied by index methods in northern Sweden. In addition contemporary temperature records and spruce (Picea abies (L.) Karst.) and pine (Pinus silvestris L.) cone crops (as indices for plant production) and the occurrence of forest damage, caused by voles eating bark, were studied.During 1970–80 two synchronous 4-year cycles were observed for voles, predators (Tengmalm's owl and red fox) and their alternative prey species (grouse and mountain hare). In grouse the change of numbers was correlated with that of recruitment. Autumn vole numbers peaked about a year before the other species and extensive forest damage occurred at winter peak densities of voles. These population fluctuations are consistent with a predator-prey model for their regulation. In short the model suggests that vole-food plant interactions trigger the cycle of voles, that voles generate the cycle of predators and that these in turn synchronize alternative prey populations to the others at vole declines.For voles, grouse and red fox the amplitude was higher in the first cycle compared to the second one whilst the opposite was true for the mountain hare. Although temperature and cone crops showed large interannual variations they still implied that herbivore food conditions were better during the former cycle. Hence, the reduction of the amplitude of the vole cycle may be explained by inter-cyclic differences in plant food conditions, implying food shortage (as indicated by bark-eating) at different population levels. The similar decrease of grouse and red fox populations may also be explained by deteriorated food conditions and/or for the fox by an outbreak of sarcoptic mange (Sarcoptes scabiae var. vulpes). The increased amplitude of the mountain hare cycle was part of a long-term rise in numbers after a tularemia epidemic in 1967. This is interpreted as a recovery, probably towards the generally higher pre-epidemic population level.  相似文献   

2.
The regional synchrony of short-term population fluctuations of small rodents and small game has usually been explained by varying impacts of generalist predators subsisting on both voles and small game (the "alternative prey hypothesis" APH). APH says that densities of predators increase as a response to increasing vole densities and then these predators shift their diet from the main prey to the alternative prey when the main prey decline and vice versa. We studied the diet composition of breeding common buzzards Buteo buteo during 1985-92 in western Finland. Microtus voles were the main prey and water voles, shrews, forest grouse, hares and small birds the most important alternative prey. Our data from the between-year variation in the diet composition of buzzards fulfilled the main predictions of APH. The yearly proportion of main prey (Microtus voles) in the diet was higher in years of high than low vole abundance. The proportion of grouse in the diet of buzzards was negatively related to the abundance of Microtus voles in the field and was nearly independent of grouse abundance in the field. In addition, buzzards mainly took grouse chicks and young hares which is consistent with the prediction of APH. Therefore, we conclude that buzzards are able to shift their diet in the way predicted by the APH and that buzzards, together with other generalist predators, may reduce the breeding success of small game in the decline phase of the vole cycle, and thus substantially contribute to the existence of short-term population cycles of small game.  相似文献   

3.
Medium-sized predators sometimes switch to alternative prey species as their main prey declines. Our objective of this study was to test the alternative prey hypothesis for a medium sized predator (red fox, Vulpes vulpes ), a small cyclically fluctuating main prey (microtine voles) and larger alternative prey (roe deer fawns, Capreolus capreolus ). We used long-term time series (28 years) on voles, red fox and roe deer from the Grimsö Wildlife Research Area (59°40'N, 15°25'E) in south-central Sweden to investigate interspecific relationships in the annual fluctuations in numbers of the studied species. Annual variation in number of roe deer fawns in autumn was significantly and positively related to vole density and significantly and negatively related to the number of fox litters in the previous year. In years of high vole density, predation on roe deer fawns was small, but in years of low vole density predation was more severe. The time lag between number of fox litters and predation on fawns was due to the time lag in functional response of red fox in relation to voles. This study demonstrates for the first time that the alternative prey hypothesis is applicable to the system red fox, voles and roe deer fawns.  相似文献   

4.
We examined population fluctuations of the voles Microtus agrestis L. and Clethrionomys glareolus Schreb. by biannual trapping; black grouse Tetrao tetrix L., mountain hare Lepus timidus L., and red fox Vulpes vulpes L. by using bag records from all over Sweden, questionnaires from south-central Sweden, and population indices from Grimsö Wildlife Research Area in south-central Sweden. Synchronous population fluctuations between voles as a group and the other species conformed to a 3–4 year periodic pattern in both autumn and spring populations only in northern and central Sweden (the boreal forest region). Spring populations of boreal forest grouse, hare, and probably also fox, lagged one year behind the voles. The northerly areas also formed geographical units of co-fluctuation within each game species. Using our own data as well as reviewing previous studies in Fennoscandia, we conclude that synchronized 3–4 year population fluctuations of voles and medium-sized herbivores are confined to the central and northern part of Fennoscandia, although voles may exhibit short-term population fluctuations further south. The synchronizing link between the herbivores could be (1) food plant quality and/or quantity and/or (2) predation. We could not reject either of these two plausible mechanisms as a cause of interspecifically synchronous fluctuations.  相似文献   

5.
To test the alternative prey hypothesis (APH), we examined 29-yr time series of bank voles (indexed by snap-trapping) and 6 game species (indexed by bag records) from Gavleborg county, central Sweden, for the occurrence of synchronous population fluctuations Only voles and the 3 grouse species exhibited cyclic fluctuations, grouse fluctuations were highly synchronous, and positively correlated with vole fluctuations Although hares were positively correlated with grouse, they were negatively correlated with voles Fox were positively correlated with voles and grouse, however, a strong negative relationship was observed between fox and hares During a sharp decline in fox numbers during the early 1980's due to sarcoptic mange, both grouse and hares exhibited a strong positive numerical response, but, not in synchrony In addition, grouse exhibited large fluctuations during the fox decrease whereas hares did not Due to the contradictory predator-prey interactions observed, these results provide only partial support for APH  相似文献   

6.
Diet composition of a generalist predator, the red fox (Vulpes vulpes) in relation to season (winter or summer) and abundance of multi-annually cyclic voles was studied in western Finland from 1983 to 1995. The proportion of scats (PS; a total of 58 scats) including each food category was calculated for each prey group. Microtus voles (the field vole M. agrestis and the sibling vole M. rossiaemeridionalis) were the main prey group of foxes (PS = 0.55) and they frequently occurred in the scats both in the winter and summer (PSs 0.50 and 0.62, respectively). There was a positive correlation between the PSs of Microtus voles in the winter diet of foxes and the density indices of these voles in the previous autumn. Other microtine rodents (the bank vole Clethrionomys glareolus, the water vole Arvicola terrestris and the muskrat Ondatra zibethicus) were consumed more in winter than in summer. The unusually high small mustelid predation by red foxes (PS = approx. 0.10) in our study area gives qualitative support for the hypothesis on the limiting impact of mammalian predators on least weasel and stoat populations. None of the important prey groups was preyed upon more at low than at high densities of main prey (Microtus voles). This is consistent with the notion that red foxes are generalist predators that tend to opportunistically subsist on many prey groups. Among these prey groups, particularly hares and birds (including grouse), were frequently used as food by foxes.  相似文献   

7.
Tornberg R  Helle P  Korpimäki E 《Oecologia》2011,166(3):577-584
The plant cycle hypothesis says that poor-quality food affects both herbivorous voles (Microtinae spp.) and grouse (Tetraonidae spp.) in vole decline years, leading to increased foraging effort in female grouse and thus a higher risk of predation by the goshawk Accipiter gentilis. Poor-quality food (mainly the bilberry Vaccinium myrtillus) for these herbivores is induced by seed masting failure in the previous year, when the bilberry is able to allocate resources for chemical defence (the mast depression hypothesis; MDH). The predation facilitation hypothesis (PFH) in turn states that increased searching activity of vole-eating predators during or after the decline year of voles disturbs incubating and brooding grouse females. The behaviours used by grouse to avoid these terrestrial predators make them more vulnerable to predation by goshawks. We tested the main predictions of the MDH and PFH by collecting long-term (21-year) data from black grouse Tetrao tetrix hens and cocks killed by breeding goshawks supplemented with indices of bilberry crop, vole abundance and small carnivores in the vicinity of Oulu, northern Finland. We did not find obvious support for the prediction of the MDH that there is a negative correlation of bilberry crop in year t with vole abundance and with predation index of black grouse hens in year t + 1. We did find obvious support for the prediction of the PFH that there is a positive correlation between predator abundance and predation index of grouse hens, because the stoat Mustela erminea abundance index was positively related to the predation index of black grouse hens. We suggest that changes in vulnerability of grouse hens may mainly be caused by the guild of vole-eating predators, who shift to alternative prey in the decline phase of the vole cycle, and thus chase grouse hens and chicks to the talons of goshawks and other avian predators.  相似文献   

8.
The alternative prey hypothesis predicts that predators respond both functionally and numerically (with a time lag) to fluctuations in the main prey abundance, which affects the survival of alternative prey. This pattern was found in northern Europe in the community formed by voles (Microtidae), red foxes (Vulpes vulpes) and roe deer (Capreolus capreolus). We studied the same predator—prey community in a temperate latitude where, according to the predation hypothesis, only the functional response of predators to changes in main prey availability should occur. In the years 1997–2007, in western Poland, we estimated the index of common vole (Microtus arvalis) abundance (burrow counts), the density of foxes (spotlight counts), the young production in foxes (young/adult ratio), the index of fox predation on fawns (prey remains near dens) as well as the reproduction index (fawn/female ratio) and density of roe deer (total counts). The vole abundance fluctuated considerably, the young production in foxes did not correlate with the main prey availability, but the density of foxes showed direct numerical response. The index of fox predation on fawns decreased with the vole abundance and negatively affected the fawn/female ratio in roe deer. Thus, the relationships between voles and foxes were not fully consistent with the predation hypothesis. The direct numerical response of foxes should tend to stabilize this predator—prey community. It is suggested, however, that responses showed by vole-eating predators in temperate latitudes may sometimes affect their alternative prey, including animals with unfavourable conservation status.  相似文献   

9.
Fox predation on cyclic field vole populations in Britain   总被引:3,自引:0,他引:3  
The diet of the red fox Vulpes vulpes L. was studied during three winter periods in spruce pklantations in Britain, during which time the cyclic field vole Microtus agrestis L. populations varied in abundance. Field voles and roe deer Capreolus capreolus L. were the two main prey species in the diet of the red fox. The contribution of lagomorphs to fox diet never exceeded 35% and species of small mammal other than field voles were of minor importance. The contribution of field voles was dependent on vole density. The non-linear density dependent relationship with a rather abrupt increase of field voles in fox did when vole density exceeded ca 100 voles ha−1 was consistent with a prey-switching response. The contribution of field voles to fox diet during the low phase of population cycles was lower in Kielder Forest than in other ecosystems with cyclic vole populations. The number of foxes killed annually by forestry rangers was consistent with the evidence from other studies that foxes preying on cyclic small rodents might show a delayed numerical response to changes in vole abundance. Estimates of the maximum predation rate of the fox alone (200–290 voles ha−1 of vole habitat year−1) was well above a previously predicted value for the whole generalist predator community in Kielder Forest. Our data on the functional response of red foxes and estimates of their predation rates suggest that foxes should have a strong stabilising impact on vole populations, yet voles show characteristic 3-4 yr cycles.  相似文献   

10.
Summary On islands off the west coast of Sweden the density of mountain hares (Lepus timidus L.) is very high. One of the main predators on hares, the red fox (Vulpes vulpes L.), is only present during short periods. Data on hare density and predation by red fox and eagle owl (Bubo bubo (L.)) has been analyzed from five islands over several years. Winter mortality in years with low predation pressure was independent of hare density. But when red fox or eagle owl were present on islands (i.e., high predation pressure) winter mortality became density dependent. Thus, at low density, winter mortality did not increase through red fox predation. But at densities up to two hares/ha, predation pressure was increasing and could be limiting for these populations. At still higher hare density predation pressure became less intensive. The functional response for foxes preying on hares showed a type II or a sigmoid type III response pattern. In normal summers, the population increase due to reproduction was at least two-fold. When a fox was present there was instead a sharp decrease in hare numbers. Fox predation had a stronger effect in summer than in winter. By switching between islands and mainland areas from winter to summer, a fox can stabilize fluctuations in hare numbers on the islands. This is dependent on how often the ice permits a fox to reach an island and the lack of numerical response by predators.  相似文献   

11.
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one‐predator, two‐prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine‐scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central‐place vs. noncentral‐place forager) affected the prey space race under shared predation.  相似文献   

12.
Laura R. Prugh 《Oikos》2005,110(2):253-264
The foraging behavior of predators can have a large influence on community dynamics and has been shown to increase stability in some cases and decrease stability in others. I studied the foraging behavior of coyotes ( Canis latrans ) in the Alaska Range during the peak and decline of a snowshoe hare ( Lepus americanus ) population cycle (1999–2002). Coyote diet was compared with prey availability to test for changes in prey selection and to examine the effect of coyote predation on the vertebrate prey community. Coyotes responded to the hare decline by increasing selection for hares and porcupines, whereas selection for voles, ground squirrels and Dall sheep did not change. Although the study area was characterized by considerable habitat heterogeneity, coyotes utilized the area as a fine-grained environment. Coyote foraging behavior was driven primarily by changes in snowshoe hare abundance, and their sensitivity to change in alternative prey density was low. Predation by coyotes may therefore decrease the stability of alternative prey populations rather than dampening fluctuations. In order for predation to enhance the stability of prey populations, I hypothesize that prey profitability must be determined primarily by abundance.  相似文献   

13.
We studied the effects of removal of breeding nomadic avian predators (the kestrel, Falco tinnunculus and Tengmalm's owl, Aegolius funereus) on small mammals (voles of the genera Microtus and Clethrionomys and the common shrew, Sorex araneus) during 1989–1992 in western Finland to find out if these predators have a regulating or limiting impact on their prey populations. We removed potential breeding sites of raptors from five manipulation areas (c. 3 km2 each), whereas control areas had nest-boxes in addition to natural cavities and stick-nests. Densities of small mammals were monitored by snap-trapping in April, June, and August, and densities of mammalian predators (the least weasel, Mustela nivalis nivalis, the stoat, M. erminea and the red fox, Vulpes vulpes) by snow tracking in early spring and late autumn. The yearly mean number of raptor breeding territories was 0.2–1.0 in reduction areas and 3.0–8.2 in control areas. Breeding raptors alone did not regulate prey populations in the long term, but probably caused short-term changes in the population dynamics of both the main prey, the sibling vole (Microtus rossiaemeridionalis) and an alternative prey (the common shrew). The densities of an alternative prey, the bank vole (Clethrionomys glareolus) decreased in raptor reduction areas, most likely due to increased least weasel predation pressure in the absence of breeding avian predators.  相似文献   

14.
ABSTRACT The roles that diet and prey abundance play in habitat selection of Canada lynx (Lynx canadensis) in the contiguous United States is poorly understood. From 1998–2002, we back-tracked radiocollared lynx (6 F, 9 M) for a distance of 582 km and we located 86 kills in northwestern Montana, USA. Lynx preyed on 7 species that included blue grouse (Dendragapus obscurus), spruce grouse (Canachites canadensis), northern flying squirrel (Glaucomys sabrinus), red squirrel (Tamiasciurus hudsonicus), snowshoe hare (Lepus americanus), least weasel (Mustela nivalis), and white-tailed deer (Odocoileus virginianus). Snowshoe hares (69 kills) accounted for 96% (4-yr average, range = 94–99%) of prey biomass during the sample period. Red squirrels were the second-most-common prey (11 kills), but they only provided 2% biomass of the winter diet. Red squirrels contributed little to the lynx diet despite low hare densities. A logistic regression model of snowshoe hare, red squirrel, and grouse abundance, as indexed by the number of track crossings of use and available lynx back-tracks, was a significant (Wald statistic = 19.03, df = 3, P < 0.001) predictor of habitat use. As we expected, lynx (P < 0.001) selected use-areas with higher snowshoe hare abundance compared to random expectation. However, the red squirrel index had a weak (P = 0.087) negative relationship to lynx use, and grouse was nonsignificant (P = 0.432). Our results indicate that lynx in western Montana prey almost exclusively on snowshoe hares during the winter with little use of alternative prey. Thus, reductions in horizontal cover for hares would degrade lynx habitat.  相似文献   

15.
VIDAR SELÅS 《Ibis》2006,148(4):678-686
According to the alternative prey hypothesis, autumn populations of ground-nesting game birds fluctuate in synchrony with vole numbers because generalist predators that mainly eat voles switch to alternative prey, such as eggs and chicks, when vole numbers decline. In hunting statistics from Nord-Trøndelag, central Norway, 1901–24, annual fluctuations in the number of Willow Grouse Lagopus lagopus and Western Capercaillie Tetrao urogallus , but not of Woodcock Scolopax rusticola , were positively related to vole numbers in the current year. Both Woodcock and grouse indices were related to hunting indices of Goshawk Accipiter gentilis and to weather variables assumed to influence the birds' survival or reproduction, suggesting that the indices actually reflected local population levels. Synchronous vole and grouse fluctuations are consistent with the alternative prey hypothesis (although predator densities were low in the early 1900s), but the asynchronous Woodcock fluctuations refute the hypothesis. Rather, because the Woodcock does not feed on plants utilized by voles and grouse, I suggest that food quality is the ultimate factor for the synchrony in vole and grouse numbers in Norway.  相似文献   

16.
Delayed density-dependent mortality induced by delayed numerical response of predators can drive prey populations to fluctuate in high-amplitude cycles. We studied numerical response of goshawks Accipiter gentilis to varying densities of their main prey (forest grouse) in western Finland during 1979–1996. Occupancy rate of goshawk territories tracked grouse numbers with a two year lag. Occupancy rate of goshawk territories and pooled number of adult and young goshawks correlated negatively with a 1–2 year lag to the chick production of grouse. Goshawk to grouse ratio was negatively related to grouse density. This suggests that goshawk predation on grouse is inversely dependent on grouse density. We conclude that in northern Europe with few alternative preys, goshawk predation might contribute to the generation of multiannual cycles of forest grouse. This should be tested experimentally.  相似文献   

17.
Summary We examined variation in diet choice by marten (Martes americana) among seasons and between sexes and ages from 1980–1985. During this period prey populations crashed simultaneously, except for ruffed grouse (Bonasa umbellus) which was common at the beginning and end of the study, and masked shrews (Sorex cinereus) which were abundant in 1983. Marten were catholic in selection of prey and made use of most available mammalian prey, ruffed grouse, passerine birds, berries, and insects. Diet niche was widest during the latter three years when prey was scare, particularly in late winter. Diet niche breadth was negatively correlated with abundance of all common prey species. Proportion of small prey species in the diet was correlated with absolute abundance of those species, but proportion of some large prey was related to their relative abundance. Diet choice varied among years and among seasons. Berries and insects were common in summer diets while large prey, particularly varying hare (Lepus americanus), were more frequent in winter diet than in summer diet. We found little evidence that any small mammal species was a preferred prey. Sexual size dimorphism between the sexes did not affect prey choice, nor did age. Reduced foraging effort in winter resulted in a wider diet niche only when prey was scarce. The only prediction of optimal foraging models fully supported by our data was a wider diet niche with reduced prey abundance. However, among the three most profitable prey species choice was dependent on the absolute abundance of the most profitable type (varying hare). We suggest that marten primarily forage for large prey but employ a strategy which results in encounters with small prey as well. These small prey are eaten as they provide energy at minimal cost, between captures of large prey.  相似文献   

18.
How, and where, a prey species survives predation by a specialist predator during low phases of population fluctuations or a cycle, and how the increase phase of prey population is initiated, are much-debated questions in population and theoretical ecology. The persistence of the prey species could be due mainly to habitats that act as refuges from predation and/or due to anti-predatory behaviour of individuals. We present models for the former conjecture in two (and three) habitat systems with a specialist predator and its favoured prey. The model is based on dispersal of prey between habitats with high reproductive output but high risk of predation, and less productive habitats with relatively low risk of predation. We illustrate the predictions of our model using parameters from one of the most intriguing vertebrate predator–prey systems, the multi-annual population cycles of boreal voles and their predators. We suggest that cyclic population dynamics could result from a sequence of extinction and re–colonization events. Field voles (Microtus agrestis), a key vole species in the system, can be hunted to extinction in their preferred meadow habitat, but persist in sub-optimal wet habitats where their main predator, the least weasel (Mustela nivalis nivalis) has a low hunting efficiency. Re–colonization of favourable habitats would occur after the predator population crashes. At the local scale, the model suggests that the periodicity and amplitude of population cycles can be strongly influenced by the relative availability of risky and safe habitats for the prey. Furthermore, factors like intra-guild predation may lead to reduced predation pressure on field voles in sub-optimal habitats, which would act as a refuge for voles during the low phase of their population cycles. Elasticity analysis suggested that our model is quite robust to changes in most parameters but sensitive to changes in the population dynamics of field voles in the optimal grassland habitat, and to the maximum predation rate of weasels.  相似文献   

19.
Comprehensive analyses of long-term (1977-2003) small-mammal abundance data from western Finland showed that populations of Microtus voles (field voles M. agrestis and sibling voles M. rossiaemeridionalis) voles, bank (Clethrionomys glareolus) and common shrews (Sorex araneus) fluctuated synchronously in 3 year population cycles. Time-series analyses indicated that interspecific synchrony is influenced strongly by density-dependent processes. Synchrony among Microtus and bank voles appeared additionally to be influenced by density-independent processes. To test whether interspecific synchronization through density-dependent processes is caused by predation, we experimentally reduced the densities of the main predators of small mammals in four large agricultural areas, and compared small mammal abundances in these to those in four control areas (2.5-3 km(2)) through a 3 year small-mammal population cycle. Predator reduction increased densities of the main prey species, Microtus voles, in all phases of the population cycle, while bank voles, the most important alternative prey of predators, responded positively only in the low and the increase phase. Manipulation also increased the autumn densities of water voles (Arvicola terrestris) in the increase phase of the cycle. No treatment effects were detected for common shrews or mice. Our results are in accordance with the alternative prey hypothesis, by which predators successively reduce the densities of both main and alternative prey species after the peak phase of small-mammal population cycles, thus inducing a synchronous low phase.  相似文献   

20.
Competing species benefit from eavesdropping on each other's signals by learning about shared resources or predators. But conspicuous signals are also open to exploitation by eavesdropping predators and should also pose a threat to other sympatric prey species. In western Finland, sibling voles Microtus rossiameridionalis and field voles M. agrestis compete for food and space, and both species rely upon scent marks for intraspecific communication. Both vole species are prey to a range of terrestrial scent hunting predators such as least weasels, however, the competitively superior sibling voles are taken preferentially. We tested in large out‐door enclosures whether field voles eavesdrop on the signals of its competitor, and whether they behave as though this eavesdropping carries a risk of predation. We presented field voles with scent marks from unknown conspecifics and sibling voles and measured their visitation, activity and scent marking behaviours at these scents under high (weasel present) and low (weasel absent) predation risk. Field voles readily visited both field and sibling vole scents under both high and low predation risk; however their activity at sibling vole scent marks declined significantly under increased predation risk. In contrast, predation risk did not affect field voles’ activity at conspecific scents. Thus, field voles were compelled to maintain eavesdropping on heterospecific scents under an increased risk of predation, however they compensated for this additional risk by reducing their activity at these risky scents. Scent marking rates declined significantly under high predation risk. Our results therefore reveal a hidden complexity in the use of social signals within multi‐species assemblages that is clearly sensitive to the potential for increased predation risk. The predation risks of interspecific eavesdropping demonstrated here represents a significant generalisation of the concept of associational susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号