首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Environmental transmission of the zoonotic parasite Toxoplasma gondii, which is shed only by felids, poses risks to human and animal health in temperate and tropical ecosystems. Atypical T. gondii genotypes have been linked to severe disease in people and the threatened population of California sea otters. To investigate land-to-sea parasite transmission, we screened 373 carnivores (feral domestic cats, mountain lions, bobcats, foxes, and coyotes) for T. gondii infection and examined the distribution of genotypes in 85 infected animals sampled near the sea otter range.

Methodology/Principal Findings

Nested PCR-RFLP analyses and direct DNA sequencing at six independent polymorphic genetic loci (B1, SAG1, SAG3, GRA6, L358, and Apico) were used to characterize T. gondii strains in infected animals. Strains consistent with Type X, a novel genotype previously identified in over 70% of infected sea otters and four terrestrial wild carnivores along the California coast, were detected in all sampled species, including domestic cats. However, odds of Type X infection were 14 times higher (95% CI: 1.3–148.6) for wild felids than feral domestic cats. Type X infection was also linked to undeveloped lands (OR = 22, 95% CI: 2.3–250.7). A spatial cluster of terrestrial Type II infection (P = 0.04) was identified in developed lands bordering an area of increased risk for sea otter Type II infection. Two spatial clusters of animals infected with strains consistent with Type X (P≤0.01) were detected in less developed landscapes.

Conclusions

Differences in T. gondii genotype prevalence among domestic and wild felids, as well as the spatial distribution of genotypes, suggest co-existing domestic and wild T. gondii transmission cycles that likely overlap at the interface of developed and undeveloped lands. Anthropogenic development driving contact between these cycles may increase atypical T. gondii genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals, and wildlife.  相似文献   

2.
Sea otters in California are commonly infected with Toxoplasma gondii. A unique Type X strain is responsible for 72% of otter infections, but its prevalence in terrestrial animals and marine invertebrates inhabiting the same area was unknown. Between 2000 and 2005, 45 terrestrial carnivores (lions, bobcats, domestic cats and foxes) and 1396 invertebrates (mussels, clams and worms) were screened for T. gondii using PCR and DNA sequencing to determine the phylogeographic distribution of T. gondii archetypal I, II, III and Type X genotypes. Marine bivalves have been shown to concentrate T. gondii oocysts in the laboratory, but a comprehensive survey of wild invertebrates has not been reported. A California mussel from an estuary draining into Monterey Bay was confirmed positive for Type X T. gondii by multilocus PCR and DNA sequencing at the B1 and SAG1 loci. This mussel was collected from nearshore marine waters just after the first significant rainfall event in the fall of 2002. Of 45 carnivores tested at the B1, SAG1, and GRA6 typing loci, 15 had PCR-confirmed T. gondii infection; 11 possessed alleles consistent with infection by archetypal Type I, II or III strains and 4 possessed alleles consistent with Type X T. gondii infection. No non-canonical alleles were identified. The four T. gondii strains with Type X alleles were identified from two mountain lions, a bobcat and a fox residing in coastal watersheds adjacent to sea otter habitat near Monterey Bay and Estero Bay. Confirmation of Type X T. gondii in coastal-dwelling felids, canids, a marine bivalve and nearshore-dwelling sea otters supports the hypotheses that feline faecal contamination is flowing from land to sea through surface runoff, and that otters can be infected with T. gondii via consumption of filter-feeding marine invertebrates.  相似文献   

3.
Anthropogenic landscape change can lead to increased opportunities for pathogen transmission between domestic and non-domestic animals. Pumas, bobcats, and domestic cats are sympatric in many areas of North America and share many of the same pathogens, some of which are zoonotic. We analyzed bobcat, puma, and feral domestic cat samples collected from targeted geographic areas. We examined exposure to three pathogens that are taxonomically diverse (bacterial, protozoal, viral), that incorporate multiple transmission strategies (vector-borne, environmental exposure/ingestion, and direct contact), and that vary in species-specificity. Bartonella spp., Feline Immunodeficiency Virus (FIV), and Toxoplasma gondii IgG were detected in all three species with mean respective prevalence as follows: puma 16%, 41% and 75%; bobcat 31%, 22% and 43%; domestic cat 45%, 10% and 1%. Bartonella spp. were highly prevalent among domestic cats in Southern California compared to other cohort groups. Feline Immunodeficiency Virus exposure was primarily associated with species and age, and was not influenced by geographic location. Pumas were more likely to be infected with FIV than bobcats, with domestic cats having the lowest infection rate. Toxoplasma gondii seroprevalence was high in both pumas and bobcats across all sites; in contrast, few domestic cats were seropositive, despite the fact that feral, free ranging domestic cats were targeted in this study. Interestingly, a directly transmitted species-specific disease (FIV) was not associated with geographic location, while exposure to indirectly transmitted diseases--vector-borne for Bartonella spp. and ingestion of oocysts via infected prey or environmental exposure for T. gondii--varied significantly by site. Pathogens transmitted by direct contact may be more dependent upon individual behaviors and intra-specific encounters. Future studies will integrate host density, as well as landscape features, to better understand the mechanisms driving disease exposure and to predict zones of cross-species pathogen transmission among wild and domestic felids.  相似文献   

4.
Abstract: Humans introduce many toxicants into the environment, the long-term and indirect effects of which are generally unknown. We investigated exposure to anticoagulant rodenticides and evaluated the association between notoedric mange, an ectoparasitic disease, and anticoagulant exposure in bobcats (Lynx rufus) and mountain lions (Puma concolor) in a fragmented urban landscape in southern California, USA. Beginning in 2002, an epizootic of notoedric mange, a disease previously reported only as isolated cases in wild felids, in 2 years reduced the annual survival rate of bobcats from 0.77 (5-yr average) to 0.28. Anticoagulants were present in 35 of 39 (90%) bobcats we tested, multiple compounds were present in 27 of these 35 (77%), and total toxicant load was positively associated with the use of developed areas by radiocollared animals. Mange-associated mortality in bobcats showed a strong association with anticoagulant exposure, as 19 of 19 (100%) bobcats that died with severe mange were also exposed to the toxicants, and for bobcats with anticoagulant residues >0.05 ppm, the association with mange was highly significant (X2 = 10.36, P = 0.001). We speculate that concomitant elevated levels of rodenticide exposure may have increased the susceptibility of bobcats to advanced mange disease. Bobcats were locally extirpated from some isolated habitat patches and have been slow to recover. In 2004, 2 adult mountain lions died directly from anticoagulant toxicity, and both animals also had infestations of notoedric mange, although not as advanced as in the emaciated bobcats that died with severe disease. Two other mountain lions that died in intraspecific fights also exhibited exposure to 2-4 different anticoagulants. These results show that the effects of secondary poisoning on predators can be widespread, reach even the highest-level carnivores, and have both direct and possibly indirect effects on mortality. Further research is needed to investigate the lethal and sub-lethal effects of anticoagulants and other toxicants on wildlife in terrestrial environments.  相似文献   

5.
Toxoplasma gondii infections in zoo animals are of interest because many captive animals die of clinical toxoplasmosis and because of the potential risk of exposure of children and elderly to T. gondii oocysts excreted by cats in the zoos. Seroprevalence of T. gondii antibodies in wild zoo felids, highly susceptible zoo species, and feral cats from 8 zoos of the midwestern United States was determined by using the modified agglutination test (MAT). A titer of 1:25 was considered indicative of T. gondii exposure. Among wild felids, antibodies to T. gondii were found in 6 (27.3%) of 22 cheetahs (Acynonyx jubatus jubatus), 2 of 4 African lynx (Caracal caracal), 1 of 7 clouded leopards (Neofelis nebulosa), 1 of 5 Pallas cats (Otocolobus manul), 12 (54.5%) of 22 African lions (Panthera leo), 1 of 1 jaguar (Panthera onca), 1 of 1 Amur leopard (Panthera pardus orientalis), 1 of 1 Persian leopard (Panthera pardus saxicolor), 5 (27.8%) of 18 Amur tigers (Panthera tigris altaica), 1 of 4 fishing cats (Prionailurus viverrinus), 3 of 6 pumas (Puma concolor), 2 of 2 Texas pumas (Puma concolor stanleyana), and 5 (35.7%) of 14 snow leopards (Uncia uncia). Antibodies were found in 10 of 34 feral domestic cats (Felis domesticus) trapped in 3 zoos. Toxoplasma gondii oocysts were not found in any of the 78 fecal samples from wild and domestic cats. Among the macropods, antibodies were detected in 1 of 3 Dama wallabies (Macropus eugenii), 1 of 1 western grey kangaroo (Macropus fuliginosus), 1 of 2 wallaroos (Macropus robustus), 6 of 8 Bennett's wallabies (Macropus rufogriseus), 21 (61.8%) of 34 red kangaroos (Macropus rufus), and 1 of 1 dusky pademelon (Thylogale brunii). Among prosimians, antibodies were detected in 1 of 3 blue-eyed black lemurs (Eulemur macaco flavifrons), 1 of 21 ring-tailed lemurs (Lemur catta), 2 of 9 red-ruffed lemurs (Varecia variegata rubra), and 2 of 4 black- and white-ruffed lemurs (Varecia variegata variegata). Among the avian species tested, 2 of 3 bald eagles (Haliaeetus leucocephalus) were seropositive. Among 7 possible risk factors, sex, freezing meat temperature (above -13 C vs. below -13 C), washing vegetables thoroughly, frequency of feral cat sightings on zoo grounds (occasionally vs. frequently), frequency of feral cat control programs, capability of feral cats to enter hay/grain barn, and type of animal exhibit, exhibiting animals in open enclosures was the only factor identified as a significant risk (OR 3.22, P = 0.00).  相似文献   

6.
SYNOPSIS. The effects of age and sex of the cat on oocyst shedding, multiplication of Toxoplasma gondii in tissues of cats, and acquisition of immunity were investigated after oral inoculation of cats with Toxoplasma cysts. Twenty-five cats varying in age from 1 week to 39 months were killed 7-97 days after inoculation with T. gondii. Homogenates of brain, heart, mesenteric lymph nodes, retina, and blood from these cats were inoculated into mice to test for Toxoplasma infectivity. Toxoplasma was isolated more frequently and in higher titers in mice receiving inocula from cats of the youngest age group (1 week old). Toxoplasma gondii was isolated from tissues of only 2 of 21 cats older than 2 months (at the time of inoculation), although all of the animals shed oocysts within 1 week after ingesting the parasites. The number of oocysts shed varied among littermates of the same sex and between sexes. Generally, cats younger than 12 months shed more oocysts than older cats. The number of oocysts shed by older cats varied considerably; males generally shed more oocysts than the females. However, the numbers of cats examined were too small for statistical comparison. Nevertheless, the observations suggest that cats older than 12 months should not be used in experiments where numbers of oocysts shed is critical.  相似文献   

7.
The risk of disease transmission from waterborne protozoa is often dependent on the origin (e.g., domestic animals versus wildlife), overall parasite load in contaminated waterways, and parasite genotype, with infections being linked to runoff or direct deposition of domestic animal and wildlife feces. Fecal samples collected from domestic animals and wildlife along the central California coast were screened to (i) compare the prevalence and associated risk factors for fecal shedding of Cryptosporidium and Giardia species parasites, (ii) evaluate the relative importance of animal host groups that contribute to pathogen loading in coastal ecosystems, and (iii) characterize zoonotic and host-specific genotypes. Overall, 6% of fecal samples tested during 2007 to 2010 were positive for Cryptosporidium oocysts and 15% were positive for Giardia cysts. Animal host group and age class were significantly associated with detection of Cryptosporidium and Giardia parasites in animal feces. Fecal loading analysis revealed that infected beef cattle potentially contribute the greatest parasite load relative to other host groups, followed by wild canids. Beef cattle, however, shed host-specific, minimally zoonotic Cryptosporidium and Giardia duodenalis genotypes, whereas wild canids shed potentially zoonotic genotypes, including G. duodenalis assemblages A and B. Given that the parasite genotypes detected in cattle were not zoonotic, the public health risk posed by protozoan parasite shedding in cattle feces may be lower than that posed by other animals, such as wild canids, that routinely shed zoonotic genotypes.  相似文献   

8.
Toxoplasma gondii infects virtually all warm‐blooded hosts worldwide. Recently, attention has been focused on the genetic diversity of the parasite to explain its pathogenicity in different hosts. It has been hypothesized that interaction between feral and domestic cycles of T. gondii may increase unusual genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals, and wildlife. In the present study, we tested black bear (Ursus americanus), bobcat (Lynx rufus), and feral cat (Felis catus) from the state of Pennsylvania for T. gondii infection. Antibodies to T. gondii were found in 32 (84.2%) of 38 bears, both bobcats, and 2 of 3 feral cats tested by the modified agglutination test (cut off titer 1:25). Hearts from seropositive animals were bioassayed in mice, and viable T. gondii was isolated from 3 of 32 bears, 2 of 2 bobcats, and 2 of 3 feral cats. DNA isolated from culture‐derived tachyzoites of these isolates was characterized using multilocus PCR‐RFLP markers. Three genotypes were revealed, including ToxoDB PCR‐RFLP genotype #1 or #3 (Type II, 1 isolate), #5 (Type 12, 3 isolates), and #216 (3 isolates), adding to the evidence of genetic diversity of T. gondii in wildlife in Pennsylvania. Pathogenicity of 3 T. gondii isolates (all #216, 1 from bear, and 2 from feral cat) was determined in outbred Swiss Webster mice; all three were virulent causing 100% mortality. Results indicated that highly mouse pathogenic strains of T. gondii are circulating in wildlife, and these strains may pose risk to infect human through consuming of game meat.  相似文献   

9.
Two RNA-containing viruses, feline infectious peritonitis virus (FIPV) and feline immunodeficiency virus (FIV), have been observed to infect cheetahs. Although both viruses cause lethal immunogenetic pathology in domestic cats, only FIPV has documented pathogenesis in cheetahs. We summarize and update here a worldwide survey of serum and plasma from cheetah and other nondomestic felids for antibodies to FIV and FIPV, based on Western blot and immunofluorescence assays. FIPV exposure shows an acute pattern with recognizable outbreaks in several zoological facilities, but is virtually nonexistent in sampled free-ranging populations of cheetahs. FIV is more endemic in certain natural cheetah populations, but infrequent in zoological collections. FIV exposure was also seen in lions, bobcats, leopards, snow leopards, and jaguars. FIV causes T-cell lymphocyte depletion and associated diseases in domestic cats, but there is little direct evidence for FIV pathology in exotic cats to date. Because of the parallels with a high incidence of simian immunodeficiency virus in free-ranging African primates without disease, the cat model may also reflect historic infections that have approached an evolutionary balance between the pathogen and immune defenses of their feline host species. Published 1993 Wiley-Liss, Inc.  相似文献   

10.
SYNOPSIS. The development of Toxoplasma cysts was studied in mice inoculated with tachyzoites by several routes. After 1–30 days of infection, murine tissues were examined microscopically, and portions or whole carcasses were fed to mice and cats. The feces of the cats were examined for oocyst shedding. Cyst-like structures containing distinct PAS-positive granules were first seen after 3 days of infection with tachyzoites, and became numerous by 6 days. Argyrophilic walls were first seen after 6 days, and became numerous by 16 days of infection with tachyzoites. Prepatent periods to oocyst shedding (PPO) were either “short” (3–10 days) or “long” (19–48 days). The “short” PPO was found only in cats that had ingested mice infected for 3 days or longer, and was related to the development of PAS-positive granules in T. gondii, and to high, 60–100%, oral infectivity rates for cats. The “long” PPO followed the ingestion of mice infected for only 1–2 days, and was related to tachyzoites without distinct PAS-positive granules and low, 32% or less, infectivity for cats. The “long” PPO followed also the ingestion of oocysts and the parenteral inoculation of tachyzoites, bradyzoites, or sporozoites. Using the “short” PPO as a criterion for detecting cysts in tissues, it was shown that (a) numerous cysts developed in mice 5 days after inoculation with tachyzoites, 7–9 days after inoculation with cysts, and 9–10 days after inoculation with oocysts, and (b) cysts developed faster and more frequently in the brain and muscle than in lungs, liver, spleen, and kidneys of mice inoculated with tachyzoites.  相似文献   

11.
Populations of feral pigs (Sus scrofa) may serve as an environmental reservoir of Cryptosporidium parvum oocysts and Giardia sp. cysts for source water. We conducted a cross-sectional study to determine the prevalence of and associated demographic and environmental risk factors for the shedding of C. parvum oocysts and Giardia sp. cysts. Feral pigs were either live-trapped or dispatched from 10 populations located along the coastal mountains of western California, and fecal samples were obtained for immunofluorescence detection of C. parvum oocysts and Giardia sp. cysts. We found that 12 (5.4%) and 17 (7.6%) of 221 feral pigs were shedding C. parvum oocysts and Giardia sp. cysts, respectively. The pig's sex and body condition and the presence of cattle were not associated with the probability of the shedding of C. parvum oocysts. However, younger pigs (< or = 8 months) and pigs from high-density populations (> 2.0 feral pigs/km2) were significantly more likely to shed oocysts compared to older pigs (> 8 months) and pigs from low-density populations (< or = 1.9 feral pigs/km2). In contrast, none of these demographic and environmental variables were associated with the probability of the shedding of Giardia sp. cysts among feral pigs. These results suggest that given the propensity for feral pigs to focus their activity in riparian areas, feral pigs may serve as a source of protozoal contamination for surface water.  相似文献   

12.
Domestic cats are the natural reservoir of Bartonella henselae, B. clarridgeiae and B. koehlerae. To determine the role of wild felids in the epidemiology of Bartonella infections, blood was collected from 14 free-ranging California mountain lions (Puma concolor) and 19 bobcats (Lynx rufus). Bartonella spp. were isolated from four (29%) mountain lions and seven (37%) bobcats. These isolates were characterized using growth characteristics, biochemical reactions, molecular techniques, including PCR-RFLP of selected genes or interspacer region, pulsed-field gel electrophoresis (PFGE), partial sequencing of several genes, and DNA-DNA hybridization. Two isolates were identical to B. henselae genotype II. All other isolates were distinguished from B. henselae and B. koehlerae by PCR-RFLP of the gltA gene using endonucleases HhaI, TaqI and AciI, with the latter two discriminating between the mountain lion and the bobcat isolates. These two novel isolates displayed specific PFGE profiles distinct from B. henselae, B. koehlerae and B. clarridgeiae. Sequences of amplified gene fragments from the three mountain lion and six bobcat isolates were closely related to, but distinct from, B. henselae and B. koehlerae. Finally, DNA-DNA hybridization studies demonstrated that the mountain lion and bobcat strains are most closely related to B. koehlerae. We propose naming the mountain lion isolates B. koehlerae subsp. boulouisii subsp. nov. (type strain: L-42-94), and the bobcat isolates B. koehlerae subsp. bothieri subsp. nov. (type strain: L-17-96), and to emend B. koehlerae as B. koehlerae subsp. koehlerae. The mode of transmission and the zoonotic potential of these new Bartonella subspecies remain to be determined.  相似文献   

13.
This case report describes a multicentric lymphoma in a 4 yr old female wildborn captive cheetah (Acinonyx jubatus) in Namibia after being housed in an enclosure adjacent to a feline leukemia virus (FeLV) infected cheetah that had previously been in contact with domestic cats. The year prior to the onset of clinical signs, the wild-born cheetah was FeLV antigen negative. The cheetah subsequently developed lymphoma, was found to be infected with FeLV, and then rapidly deteriorated and died. At necropsy, the liver, spleen, lymph nodes, and multiple other organs were extensively infiltrated with neoplastic T-lymphocytes. Feline leukemia virus DNA was identified in neoplastic lymphocytes from multiple organs by polymerase chain reaction and Southern blot analysis. Although the outcome of infection in this cheetah resembles that of FeLV infections in domestic cats, the transmission across an enclosure fence was unusual and may indicate a heightened susceptibility to infection in cheetahs. Caution should be exercised in holding and translocating cheetahs where contact could be made with FeLV-infected domestic, feral, or wild felids.  相似文献   

14.
Domestic cats are the most important definitive hosts for Toxoplasma gondii, the agent of an important global zoonosis. Serial sera from cats orally inoculated either with T. gondii tissue cysts (n = 3) or sporulated oocysts (n = 3) and from 65 client-owned cats, plus sera from 1,757 client-owned cats presented to veterinarians in Switzerland were analysed for an antibody response to T. gondii by ELISA. Risk factors for seropositivity and prevalence were estimated with a generalised linear and beta regression model. The first model examined the association of an OD405 value as the dependent variable, with gender, age, and outside access as possible independent variables. In the second model, we first analysed the data assuming a bimodal distribution representing two overlapping distributions of OD405 values from positive and negative cats, enabling the assignment of a probability of true infection status to each cat. Mean probabilities of true infection status across groups represent an estimate of true prevalence. These probabilities were then regressed against age, gender and outside access. Antibody kinetics in cats orally inoculated with tissue cysts, shedding oocysts, did not differ significantly from those of cats inoculated with sporulated oocysts without detectable oocyst excretion, suggesting extraintestinal parasite invasion and exposure to tachyzoites in both situations at an early stage of infection. Analysis of serial serum samples suggested a persisting long-term humoral immune response. Of the client-owned cats, 42.4% (95% confidence interval (CI): 40.1–44.6) had a positive true infection status. This was higher (56.3% (95% CI: 53.2–59.6)) in cats with outside access than in those without (22.1% (95% CI: 18.9–25.4)). In the first model, the factors age (P < 0.0001), gender (male: P = 0.046), and outside access (P < 0.0001) were independently associated with significantly higher OD405 values. In the second model, the probability of having a positive true infection status increased with age (P < 0.0001), was higher with outside access (P < 0.0001) and in outdoor male cats (P = 0.0006).  相似文献   

15.
The blood type of 131 non-domesticated felids belonging to 26 felid species was surveyed in this study. Based upon a tube hemagglutination assay established for domestic cats, 80% of felids had type-A, 18% type-B, and 2% type-AB blood. Felids in the Puma group and African and Asian golden cats had blood type B, whereas all other species were found to have blood type A. Two cheetahs and one bobcat had type-AB blood. Red cell glycolipids analysed by high performance thin layer chromatography revealed a similar ganglioside pattern in wild cats as reported in domestic cats. Independent of the AB blood group system, incompatible blood crossmatch reactions were detected between different felid groups. In conclusion, wild felids display the same AB-erythrocyte antigens as domestic cats, and the same blood typing procedures can be applied for wild and domestic felids.  相似文献   

16.
Munson L 《Theriogenology》2006,66(1):126-134
Contraceptives are used for reversible reproductive control in genetically valuable wild felids, as permanent reproductive control in generic wild felids, and as an economically practicable means to control feral cats. The progestin contraceptives, megestrol acetate, melengesterol acetate, medroxyprogesterone acetate, and levonorgestrol (administered orally, in implants, or as depot injections), are effective in preventing pregnancy. However, long-term use is associated with endometrial hyperplasia, endometrial cancer, and mammary cancer. Gonadotropin releasing hormone analogs or luteinizing hormone vaccines that achieve contraception by suppressing ovarian or testicular function, do not have the adverse health effects of progestins. However, reliable reversibility has not been demonstrated, and male secondary sex characteristics may be suppressed. Bisdiamines also inhibit spermatogenesis and lower circulating testosterone concentrations in treated male cats. Porcine zona pellucida vaccines are ineffective contraceptives in felids and may cause serious health problems when combined with some adjuvants. Because of the limited availability of non-progestin contraceptives and side effects associated with some agents, widespread application of contraception to felids has been curtailed. More non-steroidal methods of contraception should be tested in the future to provide alternatives for controlling reproduction in felids. Furthermore, all empirical information on contraceptive safety and efficacy should be assembled in a database to provide the knowledge needed by veterinarians and managers to determine benefits/risks of currently available contraceptives in felids, both domestic and wild.  相似文献   

17.
The seroprevalence of antibodies to Toxoplasma gondii was investigated in trapped lynx (Lynx canadensis) and bobcats (Lynx rufus) from Québec, Canada. Forty-seven of 106 (44%) lynx and 4 of 10 (40%) bobcats had positive titers for T. gondii (> or = 25) by means of the modified agglutination test incorporating mercaptoethanol and formalin-fixed tachyzoites. Seroprevalence was significantly higher (P < 0.0001) in adult lynx than in juvenile lynx. The presence of antibodies to T. gondii in lynx and bobcats suggests that this organism is widespread in the wild and that exposure to wild felids and game animals from Québec may represent a potential source of infection for humans.  相似文献   

18.
Detection of Toxoplasma gondii Oocysts in Drinking Water   总被引:2,自引:0,他引:2       下载免费PDF全文
The world’s largest outbreak of waterborne toxoplasmosis occurred in a municipality in the western Canadian province of British Columbia. When drinking water emerged as a possible source of infection during the outbreak investigation, a laboratory method was needed to attempt detection of the parasite, Toxoplasma gondii. The method developed was based on the current U.S. Environmental Protection Agency method for detection of Cryptosporidium oocysts. Collection of large-volume drinking water samples and cartridge filter processing were unchanged, although identification of Toxoplasma oocysts in the filter retentate was carried out by using a previously described rodent model. Validation of the method developed was tested by using oocysts from a well-characterized Toxoplasma strain.  相似文献   

19.
Waterborne toxoplasmosis - Recent developments   总被引:2,自引:0,他引:2  
Humans become infected with Toxoplasma gondii mainly by ingesting uncooked meat containing viable tissue cysts or by ingesting food or water contaminated with oocysts from the feces of infected cats. Circumstantial evidence suggests that oocyst-induced infections in humans are clinically more severe than tissue cyst-acquired infections. Until recently, waterborne transmission of T. gondii was considered uncommon, but a large human outbreak linked to contamination of a municipal water reservoir in Canada by wild felids and the widespread infection of marine mammals in the USA provided reasons to question this view. The present paper examines the possible importance of T. gondii transmission by water.  相似文献   

20.
Differences in availability of food resources are often manifested in the differentiation of feeding habits of closely related mammal species. Therefore, we assumed that the diet composition and trophic niche of house (i.e., highly dependent on human households), feral (i.e. independent on human households) domestic cats (Felis silvestris catus) and wildcats (Felis s. silvestris) differs. Based on the literature data from Europe (53 study sites), we compared the diet of these three felids analyzed with use of indirect methods (stomach and scat analyses). In the case of the house cat, we additionally compared consumption data obtained directly from prey brought home. Data were expressed as the relative frequency of occurrence to compare dietary patterns. The main prey of the three cat types were small mammals in different ratios. According to the stomach and scat samples, the diet composition of the cat types showed differences in the consumption of rodents, insectivores, wild ungulates, and household food, supporting the “dietary differences originate from varying resources” hypothesis. More opportunistic house cats had a broader trophic niche than feeding specialist wildcats, while feral cats had an intermediate position. The trophic niche breadth of all three cat types increased along a latitudinal gradient from northern to southern areas of Europe. The predation of the house cat which was examined from prey brought home differed from the data obtained by indirect diet analysis; however, it yielded similar results to the diet of the feral cat and the wildcat. Due to their high numbers and similarity of its diet to the wildcat, house cats are a threat to wild animals; therefore, their predation pressure needs to be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号