首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fully relativistic pseudo-potential ab-initio calculations have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. PbS, PbSe, PbTe and PbPo undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa, respectively. The elastic properties have also been calculated. The calculations successfully predicted the location of the band gap at L-point of Brillouin zone and the band gap for each material at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalize under pressure. The electronic structures of these materials have been computed in parent as well as in high pressure B2 phase.
Figure
Equation of state of PbPo  相似文献   

2.
Thiadiazole derivatives have been widely employed in the areas of pharmaceutical, agricultural, industrial, and polymer chemistry. The electronic and molecular structures of thiadiazoles are of interest because they have an equal number of valence electrons and similar molecular structures to thiophenes, which are currently used in the construction of organic solar cells due to their relatively high hole mobilities and good light-harvesting properties. For this reason, the electronic properties of fluorene-1,3,4-thiadiazole oligomers warrant investigation. In the present work, the structure of fluorene-1,3,4-thiadiazole with one thiadiazole unit in the structure was analyzed. This molecule was then expanded until there were 10 thiadiazole units in the structure. The band gap, HOMO and LUMO distributions, and absorption spectrum were analyzed for each molecule. All calculations were performed by applying the B3LYP/6-31G(d) chemical model in the Gaussian 03W and GaussView software packages. The electronic properties were observed to significantly enhance as the number of monomeric units increased, which also caused the gap energy to decrease from 3.51 eV in the oligomer with just one thiadiazole ring to 2.33 eV in the oligomer with 10 units. The HOMO and LUMO regions were well defined and separated for oligomers with at least 5 monomer units of thiadiazole.
Figure
The TDA5FL oligomer is shown in this figure. The number of thiadiazole units was increased in an attempt to decrease the HOMO–LUMO gap and achieve a maximum absorption wavelength that is close to the maximum of the solar spectrum  相似文献   

3.
Self-consistent-charge density-functional tight-binding (SCC-DFTB) approximated method was employed to investigate the structural, mechanical and electronic properties of the zigzag and armchair nano-fibriform silica (SNTs) and their outer surface organic modified derivatives (MSNTs) with internal radii in the range of 8 to 36 Å. The strain energy curves showed that the nanotubes structures are energetically more stable compared to the respective sheet structures. External hydroxyl dihedral angles in silica nanotubes have small influence, about 0.5 meV.atom?1, in the strain energy curve tendency of those materials favoring the zigzag chirality. The chemical modification of outer surface of SNTs by dimethyl silane group affects their relative stability favoring the armchair chirality in approximately 2 meV.atom?1. MSNTs have axial elastic constants, Young’s moduli, determined at the harmonic approximation, around 100 GPa smaller than the respective SNTs. The Young’s moduli of zigzag and armchair SNTs are in the range of 150–195 GPa and 232–260 GPa, respectively. And for the zigzag and armchair MSNTs these values are in the range of 77–89 and 110–140 GPa, respectively. The SNTs and MSNTs were characterized as insulators with band gaps around 8–10 eV.
Figure
Structural and electronic modifications of nano-fibriform silica as a result of dimethyl silane organic functionalization  相似文献   

4.
Covalent organic frameworks (COFs) are a class of covalently linked crystalline nanoporous materials, versatile for nanoelectronic and storage applications. 3D COFs, in particular, have very large pores and low mass densities. Extensive theoretical studies of their energetic and mechanical stability, as well as their electronic properties, have been carried out for all known 3D COFs. COFs are energetically stable and their bulk modulus ranges from 3 to 20 GPa. Electronically, all COFs are semiconductors with band gaps corresponding to the HOMO–LUMO gaps of the building units.
Figure
 3D covalent organic frameworks  相似文献   

5.
The structural, mechanical, electronic, and optical properties of orthorhombic Bi2S3 and Bi2Se3 compounds have been investigated by means of first principles calculations. The calculated lattice parameters and internal coordinates are in very good agreement with the experimental findings. The elastic constants are obtained, then the secondary results such as bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, anisotropy factor, and Debye temperature of polycrystalline aggregates are derived, and the relevant mechanical properties are also discussed. Furthermore, the band structures and optical properties such as real and imaginary parts of dielectric functions, energy-loss function, the effective number of valance electrons, and the effective optical dielectric constant have been computed. We also calculated some nonlinearities for Bi2S3 and Bi2Se3 (tensors of elasto-optical coefficients) under pressure.
Figure
Energy spectra of dielectric function and energy-loss function (L) along the x- and z-axes for Bi2S3  相似文献   

6.
In the study behavior of molecular electrostatic potential, averaged local ionization energy, and reaction electronic flux along the reaction coordinate of hydration process of three representative Ru(II) and Pt(II) complexes were explored using both post-HF and DFT quantum chemical approximations. Previously determined reaction mechanisms were explored by more detailed insight into changes of electronic properties using ωB97XD functional and MP2 method with 6–311++G(2df,2pd) basis set and CCSD/6–31(+)G(d,p) approach. The dependences of all examined properties on reaction coordinate give more detailed understanding of the hydration process.
Figure
The ALIE and MEP changes during cisplatin hydration  相似文献   

7.
Self-diffusion and structural properties of n-alkanes have been studied by molecular dynamics simulation in the temperature range between the melting pressure curve and 600 K at pressures up to 300 MPa. The simulated results of lower n-alkanes are in good agreement with the existing experimental data, and support the reliability of results of the simulations of self-diffusion coefficients obtained at the extreme conditions. We predict the self-diffusion coefficients for methane, ethane, propane and n-butane at the similar reduced temperatures and pressures to draw a comparison between them. Then the correlation between self-diffusion and structural properties are further investigated by calculating the coordination numbers. Moreover, we define four distances and their corresponding relative deviations to characterize the flexibility of long-chain n-alkanes. The simulated results show that the self-diffusion of n-alkane molecules is mainly affected by the close packing, and the flexibility has a strong impact on the self-diffusion of longer n-alkane molecules.
Figure
Four distances and their corresponding relative deviations were defined to characterize the flexibility of long-chain n-alkanes  相似文献   

8.
The geometries, energies, and electronic properties of the two possible configurations of bis-[dibenzo[a.i]fluorenylidene] were investigated theoretically by density functional theory DFT B3LYP at the UB3LYP/6-311?+?G(2d,p) // UB3LYP/6-31?+?G(d,p) level of theory. According to the performed calculations, it was found that the singlet is 3.4?kcal?mol-1 lower in energy compared to triplet state at room temperature. This gap is compared with those of other alkenes like ethylene, (61.9?kcal?mol-1) tetra-tert-butyethylene, (6.4?kcal?mol-1) and bis-fluorenylidene (19.5?kcal?mol-1). These results confirm the experimental findings of the paramagnetic properties determined by Franzen and Joschek. The low singlet-triplet gap in the case of bis-[dibenzo[a.i]fluorenylidene] is the result of a steric destabilization of the singlet due to strain and stabilization of the triplet electronic state by delocalization of each free electron within each aromatic moiety. This correlates with the special electronic structure of the triplet state of this compound, where facial interaction of two hydrogen atoms lying close to the lobes of each p-orbital occupied with a single electron at the distorted double bond in the triplet electronic state.
Figure
a) The singlet form of bis-dibenzo[a.i]fluorenylidene. b) The triplet form of bis-dibenzo[a.i]fluorenylidene. The central dihedral angle around the C=C double bond changes from 53.2° in the singlet electronic structure to 90.0° in the triplet electronic structure. Of great interest is the very low singlet-triplet gap of this electronic system which equals to 3.4 kcal/mol according to calculation by DFT UB3LYP/6-311+G(2d,p) // UB3LYP/6-31+G(d,p) level of theory.  相似文献   

9.
We present a theoretical assessment of the photosensitization properties of meso-mono(N-methylpyridyl) triphenylporphyrin (1, MmPyP+), which interacts with DNA nucleotide pairs [adenine (A)-thymine (T); guanine (G)-cytosine (C)] via an external binding mode. The photosensitization properties of the arrangements 1A, 1T, 1G and 1C were investigated. A set of density functionals (B3LYP, PBE0, CAM-B3LYP, M06-2X, B97D) with the 6-31G(d) basis set was used to calculate the electronic absorption spectra in solution (water) following TD-DFT methodology. In all the arrangements, with the exception of 1C, the functional PBE0 produced the lowest deviation of the Soret band (0.1–0.2 eV). Using this functional, we show that the porphyrin–nucleotide interaction is stabilized, as reflected by a larger HOMO–LUMO gap than free porphyrin. A more important effect of the interaction corresponds to the red-shift of the Soret band of MmPyP+, which is in agreement with experimental results. This behavior could be explained by the higher symmetry found in arrangements with a lower dipole moment, and by the more symmetrical distribution of electronic density along the molecular orbitals, which provokes electronic transitions of lower energy. The structural model allowed us to show that MmPyP+ improves the characteristics as a photosensitizer when it interacts with nucleotide pairs due to the longer wavelength required for the Soret band. Results obtained for porphyrins with larger monocationic substituents (2, MmAP+; 3, MONPP+) do not lead to the same behavior. Although the structural model is insufficient to describe porphyrin photosensitization, it suggests that improvements in this property are produced by the inclusion of a cationic charge in the pyridyl ring and a smaller size of the substituent leading to a better communication in the porphyrin–nucleotide pair.  相似文献   

10.
11.
Physical and chemical adsorption of CO2 on ZnO surfaces were studied by means of two different implementations of periodic density functional theory. Adsorption energies were computed and compared to values in the literature. In particular, it was found that the calculated equilibrium structure and internuclear distances are in agreement with previous work. CO2 adsorption was analyzed by inspection of the density of states and electron localization function. Valence bands, band gap and final states of adsorbed CO2 were investigated and the effect of atomic displacements analyzed. The partial density of states (PDOS) of chemical adsorption of CO2 on the ZnO(0001) surface show that the p orbitals of CO2 were mixed with the ZnO valence band state appearing at the top of the valence band and in regions of low-energy conduction band.
Figure
ELF analysis of bidentate and tridentate chemical adsorptions  相似文献   

12.
The adsorption of CO onto Ni-doped boron nitride nanotubes (BNNTs) was investigated using density functional theory at the B3LYP/LanL2DZ level of theory. The structures of the Ni-doped BNNTs and their CO-adsorbed configurations were obtained. It was found that the strength of adsorption of CO onto Ni-doped perfect BNNTs is higher than that on defective BNNTs. The electronic properties of all of the adsorption configurations of CO on Ni-doped BNNTs are reported.
Figure
The optimized structures of CO adsorption on Ni-doped BNNTs  相似文献   

13.
In this work, a series of donor-acceptor (D-A) copolymers (PBDTFPD(Pa1), PBDTTPD (Pa2) and PBDTSePD(Pa3)) were selected and theoretically investigated using O3LYP/6-31G(d), PBE0/6-31G(d), TD-O3LYP/6-31G(d)//O3LYP/6-31G(d) and periodic boundary conditions methods. The calculated results go well with the available experimental data of highest occupied and lowest unoccupied molecular orbital (HOMO/LUMO) energy levels and band gaps. A series of conjugated polymers (Pb1?~?Pb3) comprised of electron-deficient benzodithiophene and electron-rich furo-, thieno-, and selenopheno[3,4-c]thiophene-4,6-dione were further designed and studied. Compared with Pa1-Pa3, the designed polymers of Pb1?~?Pb3 show better performances with smaller band gaps, lower HOMO energy levels, red shift of absorption spectra, and larger open circuit voltage (Voc). For investigated polymers (Pa1, Pa2, Pa3, Pb1, Pb2, Pb3), the power conversion efficiencies (PCEs) of ~6.1 %, ~7.2 %, ~7.9 %, ~8.0 %, ~9.5 % and ~9.0 % are predicted by Scharber diagrams when they are used in combination with PC60BM as an acceptor. The results illustrate that these designed polymers which turn the electron-withdrawing capability in D-A conjugated polymers are expected to turn into highly efficient donor materials for organic solar cells.
Figure
We designed and predicted the properties of a series of polymers. The designed polymers show good photophysical properties and high power conversion efficiency. They may act as a promising donor candidate for organic solar cell applications  相似文献   

14.
We have analyzed the effect of external electric field on the zigzag (6,0) single-wall BC2N nanotube using density functional theory calculations. Analysis of the structural parameters indicates that the nanotube is resistant against the external electric field strengths. Analysis of the electronic structure of the nanotube indicates that the applied parallel electric field strengths have a much stronger interaction with the nanotube with respect to the transverse electric field strengths and the nanotube is easier to modulate by the applied parallel electric field. Our results show that the properties of the nanotube can be controlled by the proper external electric field for use in nano-electronic circuits.
Figure
Three-dimensional (3D) views of the (6,0) zigzag BC2N nanotube under electric field effect  相似文献   

15.
Ethylendiaminetetraacetic acid (EDTA) substituted and diethylenetriaminopentaacetic acid (DTPA) substituted aminated free-base tetraphenylporphyrins (H2ATPP) and the corresponding lutetium(III) complexes have been studied computationally at the density functional theory (DFT) and second-order algebraic diagrammatic construction (ADC(2)) levels using triple-ξ basis sets augmented with polarization functions. The molecular structures were optimized using Becke's three-parameter hybrid functional (B3LYP). The electronic excitation spectra in the range of 400–700 nm were calculated using the ADC(2) and the linear-response time-dependent DFT methods. The calculated spectra are compared to those measured in ethanol solution. The calculated excitation energies agree well with those deduced from the experimental spectra. The excitation energies for the Qx band calculated at the B3LYP and ADC(2) level are 0.20-0.25 eV larger than the experimental values. The excitation energies for the Qy band calculated at the B3LYP level are 0.10-0.20 eV smaller than the ADC(2) ones and are thus in good agreement with experiment. The calculated excitation energies corresponding to the Bx and By bands are 0.10-0.30 eV larger than the experimental values. The excitation energies of the Bx and By bands calculated at the B3LYP level are in somewhat better agreement with experiment than the ADC(2) ones. The calculated and measured band strengths largely agree.
Figure
The ground-state molecular structures of H2TPP-EDTA, H2ATPP-DTPA, H2ATPPLuEDTA and H2ATPP-LuDTPA optimized at the B3LYP/TZVP level of theory  相似文献   

16.
A study of the electronic and optical properties of the hydrogen-terminated GaAs nanocrystals Ga68As68H96 and Ga92As80H108 is presented. In this study, their dielectric functions, refractive indices, and absorption coefficients were calculated using density functional theory (DFT). The influence of a uniform external electric field on the optical properties of the nanocrystals was also explored. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) for each nanocrystal were studied in the absence and the presence of the uniform external electric field. Our results indicate that the HOMO–LUMO gap decreases with increasing electric field strength. The calculated density of states revealed that the main reason for this shrinking gap is an increase in the delocalization of the gallium π-orbitals under the influence of an increasing external electric field. The permanent dipole moment and the polarizability of the nanocrystals under the induced electric field increased with increasing nanocrystal radius. The induced electric field caused a noticeable redshift in the absorption peaks. The electric field also increased the absorption intensity, particularly when the field strength was >0.25 V/Å.
Figure
Optimized geometries of hydrogen-terminated GaAs nanocrystals with different diameters  相似文献   

17.
The electronic structure of the two most stable isomers of squaric acid and their complexes with BeH2 were investigated at the B3LYP/6-311?+?G(3df,2p)// B3LYP/6-31?+?G(d,p) level of theory. Squaric acid forms rather strong beryllium bonds with BeH2, with binding energies of the order of 60 kJ?mol?1. The preferential sites for BeH2 attachment are the carbonyl oxygen atoms, but the global minima of the potential energy surfaces of both EZ and ZZ isomers are extra-stabilized through the formation of a BeH···HO dihydrogen bond. More importantly, analysis of the electron density of these complexes shows the existence of significant cooperative effects between the beryllium bond and the dihydrogen bond, with both becoming significantly reinforced. The charge transfer involved in the formation of the beryllium bond induces a significant electron density redistribution within the squaric acid subunit, affecting not only the carbonyl group interacting with the BeH2 moiety but significantly increasing the electron delocalization within the four membered ring. Accordingly the intrinsic properties of squaric acid become perturbed, as reflected in its ability to self-associate.
Figure
The ability of squaric acid to self-associate is significantly enhanced when this molecule forms beryllium bonds with BeH2  相似文献   

18.
The structural and thermodynamic properties of an anthraquinone derivative were studied by means of quantum-chemical calculations. Conformational analysis using ab initio and density functional theory methods revealed 14 low-energy conformers. In order to discuss similarities and differences in entropy of the conformers, the rotational and vibrational contributions to entropy were correlated with changes in conformer structure. The component of the moment of inertia perpendicular to the molecular plane gives significant input to ΔS rot , whereas the largest contributions to the ΔS vib have vibrations associated with the τ S1C20 coordinate.
Figure
Optimized B3LYP/6-311++G(d,p) geometry of 1-[(2-mercaptoethyl)amino]-9,10-anthraquinone (MEAA) and vibrational contributions to entropy (ΔSvib, in J mol?1?K?1) relative to the most stable conformer  相似文献   

19.
The work uses MD simulation to study effects of five water contents (3 %, 10 %, 20 %, 50 %, 100 %?v/v) on the tetrahedral intermediate of chymotrypsin - trifluoromethyl ketone in polar acetonitrile and non-polar hexane media. The water content induced changes in the structure of the intermediate, solvent distribution and H-bonding are analyzed in the two organic media. Our results show that the changes in overall structure of the protein almost display a clear correlation with the water content in hexane media while to some extent U-shaped/bell-shaped dependence on the water content is observed in acetonitrile media with a minimum/maximum at 10–20 % water content. In contrast, the water content change in the two organic solvents does not play an observable role in the stability of catalytic hydrogen-bond network, which still exhibits high stability in all hydration levels, different from observations on the free enzyme system [Zhu L, Yang W, Meng YY, Xiao X, Guo Y, Pu X, Li M (2012) J Phys Chem B 116(10):3292–3304]. In low hydration levels, most water molecules mainly distribute near the protein surface and an increase in the water content could not fully exclude the organic solvent from the protein surface. However, the acetonitrile solvent displays a stronger ability to strip off water molecules from the protein than the hexane. In a summary, the difference in the calculated properties between the two organic solvents is almost significant in low water content (<10 %) and become to be small with increasing water content. In addition, some structural properties at 10?~?20 %?v/v hydration zone, to large extent, approach to those in aqueous solution.
Figure
The work uses MD simulation to study effects of five water contents on the tetrahedral intermediate of chymotrypsin-trifluoromethyl ketone in polar acetonitrile and non-polar hexane media. The water content induced changes in the structure of the intermediate, solvent distribution and H-bonding was discussed in the two organic media  相似文献   

20.
Motivated by the great advance in graphene hydroxide—a versatile material with various applications—we performed density functional theory (DFT) calculations to study the functionalization of the two-dimensional hexagonal boron nitride (h-BN) sheet with hydroxyl (OH) radicals, which has been achieved experimentally recently. Particular attention was paid to searching for the most favorable site(s) for the adsorbed OH radicals on a h-BN sheet and addressing the roles of OH radical coverage on the stability and properties of functionalized h-BN sheet. The results indicate that, for an individual OH radica, the most stable configuration is that it is adsorbed on the B site of the h-BN surface with an adsorption energy of ?0.88 eV and a magnetic moment of 1.00 μB. Upon adsorption of more than one OH radical on a h-BN sheet, however, these adsorbates prefer to adsorb in pairs on the B and its nearest N atoms from both sides of h-BN sheet without magnetic moment. An energy diagram of the average adsorption energy of OH radicals on h-BN sheet as a function of its coverage indicates that when the OH radical coverage reaches to 60 %, the functionalized h-BN sheet is the most stable among all studied configurations. More importantly, this configuration exhibits good thermal and dynamical stability at room temperature. Owing to the introduction of certain impurity levels, the band gap of h-BN sheet gradually decreases with increasing OH coverage, thereby enhancing its electrical conductivity.
Figure
The obtained stable configuration of 100 % OH coverage on h-BN sheet  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号