首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical investigation is completed on the mechanism of electrical breakdown strength increment of polyethylene. It is shown that it is one of the most important factors for increasing electrical breakdown strength of polyethylene through keto-enol isomerization of acetophenone and its analogues at the ground state S0 and the lowest triplet state T1. The minimum structures and transition states of the keto- and the enol-tautomer of acetophenone and its analogues at the S0 and T1 states are obtained at the B3LYP/6-311+G(d,p) level, as well as the harmonic vibration frequencies of the equilibrium geometries and the minimum energy path (MEP) by the intrinsic reaction coordinate (IRC) theory at the same level. The two C–C bond cleavage reaction channels have been identified in acetophenone. The calculated results show that the energy barriers of keto-enol isomerization of acetophenone and its analogues at S0 and T1 states are much smaller than the average C-C bond energy of polyethylene, and the acetophenone doping or bond linked into polyethylene can increase the electrical breakdown strength and inhibit polyethylene electrical tree initiation and aging.
Figure
Potential energy surface of keto-enol isomerization reaction of acetophenone has been investigated. The mechanism of electrical breakdown strength increment of cross-linking polyethylene has been explained. It is expected to provide reliable reference information for preparating the insulation material of high-voltage cable exceed 500 kV.  相似文献   

2.
The breakdown of oxygen in a dc electric field is studied. A high concentration of oxygen molecules in the a 1Δg excited state is obtained in a purely chemical reactor. A decrease in the breakdown voltage at degrees of excitation exceeding 50% is observed. The theoretical decrement in the breakdown voltage obtained by solving the Boltzmann equation is in good agreement with the experimental data.  相似文献   

3.
Vladimir A. Shuvalov 《BBA》2007,1767(6):422-433
It has been shown [V.A. Shuvalov, Quantum dynamics of electrons in many-electron atoms of biologically important compounds, Biochemistry (Mosc.) 68 (2003) 1333-1354; V.A. Shuvalov, Quantum dynamics of electrons in atoms of biologically important molecules, Uspekhi biologicheskoi khimii, (Pushchino) 44 (2004) 79-108] that the orbit angular momentum L of each electron in many-electron atoms is L = mVr = n? and similar to L for one-electron atom suggested by N. Bohr. It has been found that for an atom with N electrons the total electron energy equation E = (Zeff)2e4m/(2n2?2N) is more appropriate for energy calculation than standard quantum mechanical expressions. It means that the value of L of each electron is independent of the presence of other electrons in an atom and correlates well to the properties of virtual photons emitted by the nucleus and creating a trap for electrons. The energies for elements of the 1st up to the 5th rows and their ions (total amount 240) of Mendeleev' Periodical table were calculated consistent with the experimental data (deviations in average were 5 × 10− 3). The obtained equations can be used for electron dynamics calculations in molecules. For H2 and H2+ the interference of electron-photon orbits between the atoms determines the distances between the nuclei which are in agreement with the experimental values. The formation of resonance electron-photon orbit in molecules with the conjugated bonds, including chlorophyll-like molecules, appears to form a resonance trap for an electron with E values close to experimental data. Two mechanisms were suggested for non-barrier primary charge separation in reaction centers (RCs) of photosynthetic bacteria and green plants by using the idea of electron-photon orbit interference between the two molecules. Both mechanisms are connected to formation of the exciplexes of chlorophyll-like molecules. The first one includes some nuclear motion before exciplex formation, the second one is related to the optical transition to a charge transfer state.  相似文献   

4.
The mechanism for the formation of the inverse electron distribution function is proposed and realized experimentally in a nitrogen plasma of a hollow-cathode glow discharge. It is shown theoretically and experimentally that, for a broad range of the parameters of an N2 discharge, it is possible to form a significant dip in the profile of the electron distribution function in the energy range ε=2–4 eV and, accordingly, to produce the inverse distribution with df(ε)/d?>0. The formation of a dip is associated with both the vibrational excitation of N2 molecules and the characteristic features of a hollow-cathode glow discharge. In such a discharge, the applied voltage drops preferentially across a narrow cathode sheath. In the main discharge region, the electric field E is weak (E<0.1 V/cm at a pressure of about p~0.1 torr) and does not heat the discharge plasma. The gas is ionized and the ionization-produced electrons are heated by a beam of fast electrons (with an energy of about 400 eV) emitted from the cathode. A high-energy electron beam plays an important role in the formation of a dip in the profile of the electron distribution function in the energy range in which the cross section for the vibrational excitation of nitrogen molecules is maximum. A plasma with an inverted electron distribution function can be used to create a population inversion in which more impurity molecules and atoms will exist in electronically excited states.  相似文献   

5.
1. It has been shown in previous publications that when solutions of different concentrations of salts are separated by collodion-gelatin membranes from water, electrical forces participate in addition to osmotic forces in the transport of water from the side of the water to that of the solution. When the hydrogen ion concentration of the salt solution and of the water on the other side of the membrane is the same and if both are on the acid side of the isoelectric point of gelatin (e.g. pH 3.0), the electrical transport of water increases with the valency of the cation and inversely with the valency of the anion of the salt in solution. Moreover, the electrical transport of water increases at first with increasing concentration of the solution until a maximum is reached at a concentration of about M/32, when upon further increase of the concentration of the salt solution the transport diminishes until a concentration of about M/4 is reached, when a second rise begins, which is exclusively or preeminently the expression of osmotic forces and therefore needs no further discussion. 2. It is shown that the increase in the height of the transport curves with increase in the valency of the cation and inversely with the increase in the valency of the anion is due to the influence of the salt on the P.D. (E) across the membrane, the positive charge of the solution increasing in the same way with the valency of the ions mentioned. This effect on the P.D. increases with increasing concentration of the solution and is partly, if not essentially, the result of diffusion potentials. 3. The drop in the transport curves is, however, due to the influence of the salts on the P.D. (ε) between the liquid inside the pores of the gelatin membrane and the gelatin walls of the pores. According to the Donnan equilibrium the liquid inside the pores must be negatively charged at pH 3.0 and this charge is diminished the higher the concentration of the salt. Since the electrical transport is in proportion to the product of E x ε and since the augmenting action of the salt on E begins at lower concentrations than the depressing action on ε, it follows that the electrical transport of water must at first rise with increasing concentration of the salt and then drop. 4. If the Donnan equilibrium is the sole cause for the P.D. (ε) between solid gelatin and watery solution the transport of water through collodion-gelatin membranes from water to salt solution should be determined purely by osmotic forces when water, gelatin, and salt solution have the hydrogen ion concentration of the isoelectric point of gelatin (pH = 4.7). It is shown that this is practically the case when solutions of LiCl, NaCl, KCl, MgCl2, CaCl2, BaCl2, Na2SO4, MgSO4 are separated by collodion-gelatin membranes from water; that, however, when the salt has a trivalent (or tetravalent?) cation or a tetravalent anion a P.D. between solid isoelectric gelatin and water is produced in which the wall assumes the sign of charge of the polyvalent ion. 5. It is suggested that the salts with trivalent cation, e.g. Ce(NO3)3, form loose compounds with isoelectric gelatin which dissociate electrolytically into positively charged complex gelatin-Ce ions and negatively charged NO3 ions, and that the salts of Na4Fe(CN)6 form loose compounds with isoelectric gelatin which dissociate electrolytically into negatively charged complex gelatin-Fe(CN)6 ions and positively charged Na ions. The Donnan equilibrium resulting from this ionization would in that case be the cause of the charge of the membrane.  相似文献   

6.
Odours (OUE) and volatile organic compounds (VOC) emission during biological process used to treat MSW were studied under standardized conditions in order to detect potential risk for workers and population. Results obtained indicated that odours and VOCs emitted depend on the biological stability of waste measured by the dynamic respiration index (DRI) and a very good correlation were found between these parameters (OUE vs. DRI, r = 0.96, p < 0.001, = 6; VOC vs. DRI, r = 0.97, p < 0.001, = 6).GC-MS study of the VOCs indicated the presence of a group of molecules that were degraded during the process. On the other hand, a second group of molecules, i.e. aromatic and halogenated compounds, and furan persisted in the waste sample, although molecule concentrations were always lower than Threshold Limit Value-Time Weighted Average (TLV-TWA).  相似文献   

7.
Quantitative imaging methods based on Förster resonance energy transfer (FRET) rely on the determination of an apparent FRET efficiency (Eapp), as well as donor and acceptor concentrations, to uncover the identity and relative abundance of the supramolecular (or quaternary) structures of associating macromolecules. Theoretical work has provided “structure-based” relationships between Eapp distributions and the quaternary structure models that underlie them. By contrast, the body of work that predicates the “signal-based” dependence of Eapp on directly measurable quantities (i.e., fluorescence emission of donors and acceptors) relies largely on plausibility arguments, one of which is the seemingly obvious assumption that the fraction of fluorescent molecules in the ground state pretty nearly equals the total concentration of molecules. In this work, we use the kinetic models of fluorescence in the presence and absence of FRET to rigorously derive useful relationships between Eapp and measurable fluorescence signals. Analysis of these relationships reveals a few anticipated results and some unexpected explanations for known experimental FRET puzzles, and it provides theoretical foundations for optimizing measurement strategies.  相似文献   

8.
The antenna proteins in photosystem II (PSII) not only promote energy transfer to the photosynthetic reaction center (RC) but provide also an efficient cation sink to re-reduce chlorophyll a if the electron transfer (ET) from the Mn-cluster is inhibited. Using the newest PSII dimer crystal structure (3.0 Å resolution), in which 11 β-carotene molecules (Car) and 14 lipids are visible in the PSII monomer, we calculated the redox potentials (Em) of one-electron oxidation for all Car (Em(Car)) by solving the Poisson-Boltzmann equation. In each PSII monomer, the D1 protein harbors a previously unlocated Car (CarD1) in van der Waals contact with the chlorin ring of ChlZ(D1). Each CarD1 in the PSII dimer complex is located in the interface between the D1 and CP47 subunits, together with another four Car of the other PSII monomer and several lipid molecules. The proximity of Car bridging between CarD1 and plastoquinone/QA may imply a direct charge recombination of Car+QA. The calculated Em(CarD1) and Em(ChlZ(D1)) are, respectively, 83 and 126 mV higher than Em(CarD2) and Em(ChlZ(D2)), which could explain why CarD2+ and ChlZ(D2)+ are observed rather than the corresponding CarD1+ and ChlZ(D1)+.  相似文献   

9.
The nitroxide spin label Tempone (2,2,6,6-tetramethylpiperidone-N-oxyl) can be reduced with ascorbic acid to give a nonparamagnetic species. Single crystals of reduced Tempone serve as a suitable host matrix to orient trace quantities of Tempone for ESR analysis. In these crystals the majority of the Tempone molecules are well-oriented, but a smaller fraction of the molecules tumble freely to give an isotropic electron spin resonance (ESR) spectrum. ESR transitions for the oriented molecules are saturated at much lower microwave power levels than for the tumbling molecules. For the oriented molecules, an analysis of the anisotropy of the spectroscopic splitting factor (g) gives principal values of g1 = 2.0094, g2 = 2.0061, g3 = 2.0021. The hyperfine coupling tensor is nearly axially symmetric, with principal values (in gauss) of A1 = 6.5, A2 = 6.7, A3 = 33.0. Within experimental error, the principal axis systems for the g tensor and the hyperfine tensor are identical. Comparison of the average values of g and A with the isotropic values of these parameters for Tempone in solvents of different polarity suggests a method for choosing the most appropriate tensor elements to be used for spin label experiments in various solvent systems.  相似文献   

10.
An ortho-metalated rhenium (V) polyhydride complex has been prepared through the reaction of ReH7(PPh3)2 with 2-phenylpyridine. Additionally, a small series of neutral rhenium (V) pentahydride complexes, each of which is stabilized by an aromatic amine ligand, has been prepared. E and Z rotational isomers of the ReH5(PPh3)2(aromatic amine) complexes have been observed at low temperatures by NMR spectroscopy. The E and Z rotational isomers arise from a combination of the lack of a mirror plane symmetry element orthogonal to the aromatic ring in the aromatic amine ligands and the restricted rotation about the Re-N bond in such complexes. Restricted rotation about the Re-N bond in the related complex, ReH5(PPh3)2(Py) has previously been observed by Crabtree et al. The restricted rotation about the Re-N bond seems to result from π-donation of the lone electron pair on the rhenium (V) center to the π∗ system of the aromatic amine ligands. Different populations of the E and Z rotational isomers arise from interactions of substituents on the aromatic ring with the other ligands bound to rhenium. The values of ΔG for the restricted rotation about the Re-N bonds, for the complexes containing 4-phenylpyrimidine, 2-aminopyrimidine, or 2-aminopyridine, range from 9.9 to 11.3 kcal/mole. One of the new compounds reported herein, ReH5(PPh3)2[1-(2-NH2Pyr)] is the first rhenium (V) polyhydride complex to display hydride-hydride coupling in its 1H NMR spectrum.  相似文献   

11.
The aim of this work was to describe the temperature dependence of microbial inactivation for several storage conditions and protective systems (lactose, trehalose and dextran) in relation to the physical state of the sample, i.e. the glassy or non-glassy state. The resulting inactivation rates k were described by applying two models, Arrhenius and Williams–Landel–Ferry (WLF), in order to evaluate the relevance of diffusional limitation as a protective mechanism. The application of the Arrhenius model revealed a significant decrease in activation energy Ea for storage conditions close to Tg. This finding is an indication that the protective effect of a surrounding glassy matrix can, at least, partly be ascribed to its inherent restricted diffusion and mobility. The application of the WLF model revealed that the temperature dependence of microbial inactivation above Tg is significantly weaker than predicted by the universal coefficients. Thus, it can be concluded that microbial inactivation is not directly linked with the mechanical relaxation behavior of the surrounding matrix as it was reported for viscosity and crystallization phenomena in case of disaccharide systems.  相似文献   

12.
《Cryobiology》2013,66(3):308-318
The aim of this work was to describe the temperature dependence of microbial inactivation for several storage conditions and protective systems (lactose, trehalose and dextran) in relation to the physical state of the sample, i.e. the glassy or non-glassy state. The resulting inactivation rates k were described by applying two models, Arrhenius and Williams–Landel–Ferry (WLF), in order to evaluate the relevance of diffusional limitation as a protective mechanism. The application of the Arrhenius model revealed a significant decrease in activation energy Ea for storage conditions close to Tg. This finding is an indication that the protective effect of a surrounding glassy matrix can, at least, partly be ascribed to its inherent restricted diffusion and mobility. The application of the WLF model revealed that the temperature dependence of microbial inactivation above Tg is significantly weaker than predicted by the universal coefficients. Thus, it can be concluded that microbial inactivation is not directly linked with the mechanical relaxation behavior of the surrounding matrix as it was reported for viscosity and crystallization phenomena in case of disaccharide systems.  相似文献   

13.
A novel series of quinoxalin-2-carboxamides were designed based on the ligand-based approach, employing a three-point pharmacophore model; it consists of an aromatic residue and a linking carbonyl group and a basic nitrogen. The target new chemical entities were synthesized from the key intermediate, quinoxalin-2-carboxylic acid, by coupling it with various amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) and 1-hydroxybenzotriazole (HOBt). The obtained compounds’ structures were confirmed by spectral data. The target new chemical entities were evaluated for their 5-HT3 receptor antagonisms in longitudinal muscle myenteric plexus preparation from guinea pig ileum against 5-HT3 agonist, 2-methyl-5-HT, which was expressed in the form of pA2 value. All the synthesized compounds showed antagonism towards 5-HT3 receptor; based on this result, a structure–activity relationship was derived, which reveals that the aromatic residue in 5-HT3 receptor antagonists may have hydrophobic interaction with 5-HT3 receptor. Regardless of their antagonistic potentials, all the synthesized molecules were screened for their anti-depressant potentials by using forced swim test in mice model; interestingly none of the tested compounds affect the locomotion of mice in the tested dose levels. Compounds with significant pA2 values exhibited good anti-depressant-like activity as compared to the vehicle-treated group.  相似文献   

14.
Molecular Mechanics-Generalized Born-Solvent Accessibility free energy calculations were used to analyse DNA binding affinity of 1-substituted carbazolyl-3,4-dihydro-β-carboline molecules. In this study, DNA structure with sequence of d(CGATCG)2 was used for simulations. 15 ns molecular dynamics simulations of the studied complexes were performed. The calculated free energy was compared with experimental antitumor activity (IC50). The predicted free energies decreased with the increase of IC50 values. It was shown that molecules 1–6 bind to DNA via intercalation mode, while molecules 7–9 bind through groove binding mode. Also, it was found that the vdW energy term (ΔEvdW) and the non-polar desolvation energy (ΔGSA) are the favorable terms for binding energy, whereas net electrostatic energies (ΔEele + ΔGGB) and conformational entropy energy (TΔS) are unfavorable ones.  相似文献   

15.
The volatile composition of white Agudelo, Blanco lexitimo, Godello and red Serradelo cultivars (NW Spain) harvested at two different stages of ripening have been evaluated. C6-compounds, alcohols, volatile fatty acids, monoterpenes, C13-norisoprenoids, volatile phenols and carbonyl compounds were identified and quantified in free and glycosidically bound forms by gas chromatography–mass spectrometry (GC–MS). The total volatile concentration showed a significant increase between the two ripening stages studied for all cultivars. The free volatile composition increased during maturity for Godello and Serradelo cultivars; however the glycosidically bound concentration increases for all cultivars with exception of B. lexitimo. Free C6-compounds ((E)-2-hexanal, 1-hexanol and (E)-2-hexen-1-ol) and bound alcohols (benzyl alcohol and 2-phenylethanol) showed the highest concentrations of volatile compounds for all grape cultivars in the two dates studied. Godello cultivar showed the highest change of volatile concentration between two ripening dates because of the high value of free C6-compounds. B. lexitimo was the most terpene-rich cultivar at the last ripening stage due to linalool; however C13-norisoprenoids in free form were detected in low concentrations for all cultivars but not in Godello and B. lexitimo cultivars at the last ripening stage. Free hexanoic acid increased during ripening in all cultivars. The evolution of volatiles during ripening of grape juice from the cultivars studied was not proportional to the changes in sugar content, which shows that the technological and aromatic maturities did not occur at the same time in these cultivars. The results also showed the cultivar * ripening date interaction for all, free and bound, groups of compounds.  相似文献   

16.
The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures—the hot resonance component and the cold nonresonance component—were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T e of the main (cold) electron component on the energy fraction β lost for radiation was obtained.  相似文献   

17.
《BBA》2020,1861(4):148078
We describe a molecular mechanism tuning the functional properties of chlorophyll a (Chl-a) molecules in photosynthetic antenna proteins. Light-harvesting complexes from photosystem II in higher plants – specifically LHCII purified with α- or β-dodecyl-maltoside, along with CP29 – were probed by low-temperature absorption and resonance Raman spectroscopies. We show that hydrogen bonding to the conjugated keto carbonyl group of protein-bound Chl-a tunes the energy of its Soret and Qy absorption transitions, inducing red-shifts that are proportional to the strength of the hydrogen bond involved. Chls-a with non-H-bonded keto C131 groups exhibit the blue-most absorption bands, while both transitions are progressively red-shifted with increasing hydrogen-bonding strength – by up 382 & 605 cm−1 in the Qy and Soret band, respectively. These hydrogen bonds thus tune the site energy of Chl-a in light-harvesting proteins, determining (at least in part) the cascade of energy transfer events in these complexes.  相似文献   

18.
Tomoko Ohnishi 《BBA》1975,387(3):475-490
Several iron-sulfur centers in the NADH-ubiquinone segment of the respiratory chain in pigeon heart mitochondria and in submitochondrial particles were analyzed by the combined application of cryogenic EPR (between 30 and 4.2 °K) and potentiometric titration.Center N-1 (iron-sulfur centers associated with NADH dehydrogenase are designated with the prefix “N”) resolves into two single electron titrations with Em 7.2 values of ?380±20 mV and ?240±20 mV (Centers N-1a and N-1b, respectively). Center N-1a exhibits an EPR spectrum of nearly axial symmetry with g// = 2.03, g = 1.94, while that of Center N-1b shows more apparent rhombic symmetry with gz = 2.03, gy = 1.94 and gx = 1.91. Center N-2 also reveals EPR signals of axial symmetry at g// = 2.05 and g = 1.93 and its principal signal overlaps with those of Centers N-1a and N-1b. Center N-2 can be easily resolved from N-1a and N-1b because of its high Em 7.2 value (?20±20 mV).Resolution of Centers N-3 and N-4 was achieved potentiometrically in submitochondrial particles. The component with Em 7.2 = ? 240±20 mV is defined as Center N-3 (gz = 2.10, (gy = 1.93?), gx = 1.87); the ?405±20 mV component as Center N-4 (gz = 2.11, (gy = 1.93?), gx = 1.88). At temperatures close to 4.2 °K, EPR signals at g = 2.11, 2.06, 2.03, 1.93, 1.90 and 1.88 titrate with Em 7.2 = ?260±20 mV. The multiplicity of peaks suggests the presence of at least two different ironsulfur centers having similar Em 7.2 values (?260±20 mV); hence, tentatively assigned as N-5 and N-6.Consistent with the individual Em 7.2 values obtained, addition of succinate results in the partial reduction of Center N-2, but does not reduce any other centers in the NADH-ubiquinone segment of the respiratory chain. Centers N-2, N-1b, N-3, N-5 and N-6 become almost completely reduced in the presence of NADH, while Centers N-1a and N-4 are only slightly reduced in pigeon heart submitochondrial particles. In pigeon heart mitochondria, the Em 7.2 of Center N-4 lies much closer to that of Center N-3, so that resolution of the Center N-3 and N-4 spectra is not feasible in mitochondrial preparations. Em 7.2 values and EPR lineshapes for the other ironsulfur centers of the NADH-ubiquinone segment in the respiratory chain of intact mitochondria are similar to those obtained in submitochondrial particle preparations. Thus, it can be concluded that, in intact pigeon heart mitochondria, at least five iron-sulfur centers show Em 7.2 values around -250 mV; Center N-2 exhibits a high Em 7.2 (?20±20 mV), while Center N-1a shows a very low Em 7.2 (?380±20 mV).  相似文献   

19.
In the last years, there has been a growing interest in the study of transition metal nanoparticles (Nps) due to their potential applications in several fields of science and technology. In particular, their optical properties are governed by the characteristics of the dielectric function of the metal, its size and environment. This work analyses the separated contribution of free and bound electrons on the optical properties of copper Nps. Usually, the contribution of free electrons to the dielectric function is corrected for particle size through the modification of the damping constant, which is changed as usual introducing a term inversely proportional to the particle’s radius to account for the extra collisions with the boundary when the size approaches the electronic mean free path limit (about 10 nm). For bound electron contribution, the interband transitions from the d-band to the conduction band are considered together with the fact that the electronic density of states in the conduction band must be made size-dependent to account for the larger spacing between electronic energy levels as the particle decreases in size below 2 nm. Taking into account these specific modifications of free and bound electron contributions to the dielectric function, it was possible to fit the bulk complex dielectric function, and consequently, determine optical parameters and band energy values such as the coefficient for bound electron contribution Q bulk?=?2?×?1024, gap energy E g?=?1.95 eV, Fermi energy E F?=?2.15 eV, and damping constant for bound electrons γ b?=?1.15?×?1014 Hz. With both size-dependent contributions to the dielectric function, extinction spectra of copper Nps in the subnanometer radius range can be calculated using Mie’s theory and its behaviour with size can be analysed. These studies are applied to fit experimental extinction spectra of very small spherical core–shell Cu–Cu2O Nps generated by ultrafast laser ablation of a solid target in water. Theoretical calculations for subnanometric core radius are in excellent agreement with experimental results obtained from core–shell colloidal Nps. From the fitting, it is possible determining core radius and shell thickness of the Nps, showing that optical extinction spectroscopy is a good complementary technique to standard high-resolution electron microscopy for sizing spherical nanometric-subnanometric Nps.  相似文献   

20.
In this study, theoretical analysis on the geometries and electronic properties of various conjugated oligomers based on thiophene (Th) or bicyclic non-classical Th units is reported. The dihedral angle, bond length, bond-length alternation, bond critical point (BCP) properties, nucleus-independent chemical shift (NICS) and Wiberg bond index (WBIs) are analysed and correlated with conduction properties. The changes of bond length, BCP properties, NICS and WBIs all show that the conjugational degree is increased systematically with main chain extension. As a result, the highest occupied molecular orbital–lowest unoccupied molecular orbital energy separation (E g) is decreased upon chain elongation. The E g of oligomers based on bicyclic non-classical Th unit is much lower than that of Th-based oligomers due to the narrower E g of bicyclic non-classical Ths compared to Th, which indicates that the narrow E g of the bicyclic non-classical Ths can be carried over to their polymers by using them as building blocks for the polymers. The band structures and density of states analysis show that the four polymers all have small band gap ( < 0.9 eV), wide highest occupied bandwidth and relatively small effective mass of hole, which indicate that those proposed polymers may be potential conductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号