首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article analyzes the substitution effects on cooperativity between fluorin-centered halogen bonds in NCF?·?·?·?NCF?·?·?·?NCX and CNF?·?·?·?CNF?·?·?·?CNX complexes, where X?=?H, F, Cl, CN, OH, and NH2. These effects are investigated theoretically in terms of geometric and energetic features of the complexes, which are computed by ab initio methods. The topological analysis, based on the quantum theory of atoms in molecules (QTAIM), is used to characterize the interactions and analyze their enhancement with varying electron density at bond critical points. It is found that the complexes with electron-donating groups exhibit a strong cooperativity, while a much weaker cooperativity occurs in the NCF?·?·?·?NCF?·?·?·?NCCN and CNF?·?·?·?CNF?·?·?·?CNCN trimers. An excellent correlation is found between the cooperative energy in the ternary complexes and the calculated three-body interaction energies. The energy decomposition analysis (EDA) indicates that the electrostatic and dispersion effects play a main role in the cooperativity of fluorine-centered halogen bonding.
Figure
Structure of NCF···NCF···NCX and CNF···CNF···CNX complexes  相似文献   

2.
Quantum chemical calculations have been per-formed for the complexes of formamidine (FA) and hypohalous acid (HOX, X = F, Cl, Br, I) to study their structures, properties, and competition of hydrogen bonds with halogen bonds. Two types of complexes are formed mainly through a hydrogen bond and a halogen bond, respectively, and the cyclic structure is more stable. For the F, Cl, and Br complexes, the hydrogen-bonded one is more stable than the halogen-bonded one, while the halogen-bonded structure is favorable for the I complexes. The associated H-O and X-O bonds are elongated and exhibit a red shift, whereas the distant ones are contracted and display a blue shift. The strength of hydrogen and halogen bonds is affected by F and Li substitutents and it was found that the latter tends to smooth differences in the strength of both types of interactions. The structures, properties, and interaction nature in these complexes have been understood with natural bond orbital (NBO) and atoms in molecules (AIM) theories.  相似文献   

3.
O-H…X and O-H…O H-bonds as well as C-X…X dihalogen and C-X…O halogen bonds have been investigated in halomethanol dimers (bromomethanol dimer, iodomethanol dimer, difluorobromomethanol…bromomethanol complex and difluoroiodomethanol…iodomethanol complex). Structures of all complexes were optimized at the counterpoise-corrected MP2/cc-pVTZ level and single-point energies were calculated at the CCSD(T)/aug-cc-pVTZ level. Energy decomposition for the bromomethanol dimer complex was performed using the DFT-SAPT method based on the aug-cc-pVTZ basis set. OH…O and OH…X H-bonds are systematically the strongest in all complexes investigated, with the former being the strongest bond. Halogen and dihalogen bonds, being of comparable strength, are weaker than both H-bonds but are still significant. The strongest bonds were found in the difluoroiodomethanol…iodomethanol complex, where the O-H…O H-bond exceeds 7 kcal mol-1, and the halogen and dihalogen bonds exceed 2.5 and 2.3 kcal mol-1, respectively. Electrostatic energy is dominant for H-bonded structures, in halogen bonded structures electrostatic and dispersion energies are comparable, and, finally, for dihalogen structures the dispersion energy is clearly dominant.
Figure
Competition of hydrogen, halogen, and dihalogen bonding in the bromomethanol dimer are investigated  相似文献   

4.
In a previous study we investigated the effects of aromatic fluorine substitution on the strengths of the halogen bonds in halobenzene…acetone complexes (halo?=?chloro, bromo, and iodo). In this work, we have examined the origins of these halogen bonds (excluding the iodo systems), more specifically, the relative contributions of electrostatic and dispersion forces in these interactions and how these contributions change when halogen σ-holes are modified. These studies have been carried out using density functional symmetry adapted perturbation theory (DFT-SAPT) and through analyses of intermolecular correlation energies and molecular electrostatic potentials. It is found that electrostatic and dispersion contributions to attraction in halogen bonds vary from complex to complex, but are generally quite similar in magnitude. Not surprisingly, increasing the size and positive nature of a halogen’s σ-hole dramatically enhances the strength of the electrostatic component of the halogen bonding interaction. Not so obviously, halogens with larger, more positive σ-holes tend to exhibit weaker dispersion interactions, which is attributable to the lower local polarizabilities of the larger σ-holes.
Figure
In this work we investigate the roles played by electrostatic and dispersion forces in stabilizing halogen bonding interactions.  相似文献   

5.
6.
Integrins are transmembrane receptors involved in crucial cellular biological functions such as migration, adhesion, and spreading. Upon the modulation of integrin affinity toward their extracellular ligands by cytoplasmic proteins (inside-out signaling) these receptors bind to their ligands and cluster into nascent adhesions. This clustering results in the increase in the mechanical linkage among the cell and substratum, cytoskeleton rearrangements, and further outside-in signaling. Based on experimental observations of the distribution of focal adhesions in cells attached to micropatterned surfaces, we introduce a physical model relying on experimental numerical constants determined in the literature. In this model, allosteric integrin activation works in synergy with the stress build by adhesion and the membrane rigidity to allow the clustering to nascent adhesions independently of actin but dependent on the integrin diffusion onto adhesive surfaces. The initial clustering could provide a template to the mature adhesive structures. Predictions of our model for the organization of focal adhesions are discussed in comparison with experiments using adhesive protein microarrays.  相似文献   

7.
Quantum chemical calculations have been performed for the complexes Li3OCCX–Y (X?=?Cl, Br, H; Y?=?NH3, H2O, H2S) and Li3OCN–X′Y′ (X′Y′?=?ClF, BrCl, BrF, HF) to study the role of superalkalis in hydrogen and halogen bonds. The results show that the presence of an Li3O cluster in a Lewis acid weakens its acidity, while its presence in a Lewis base enhances its basicity. Furthermore, the latter effect is more prominent than the former one, and the presence of an Na3O cluster causes an even greater effect than Li3O. The strengths of hydrogen and halogen bonds were analyzed using molecular electrostatic potentials. The contributions of superalkalis to the strength of hydrogen and halogen bonds were elucidated by analyzing differences in electron density.  相似文献   

8.
9.
The behavior in solution and in the solid state of 3(5)-phenyl-1H-pyrazole (7), 3(5)-phenyl-4-chloro-1H-pyrazole (6), 3(5)-phenyl-4-bromo-1H-pyrazole (1), and 3(5)-p-chlorophenyl-4-bromo-1H-pyrazole (8) is discussed in relation to their 3-phenyl (a)/5-phenyl (b) annular tautomerism. Two new X-ray structures are reported: a new polymorph of 1 and the structure of 6. The new polymorph is a 3-phenyl-1H-pyrazole 1a′ trimer while the new structure is a 5-phenyl-1H-pyrazole 6b trimer. The combined use of NMR at low temperature and DFT calculations allows to discuss the tautomerism of the first three pyrazoles and to predict that the fourth one should be a tetramer formed by both tautomers, 8a and 8b.  相似文献   

10.
The principal protein component of the elastic fiber found in elastic tissues is elastin, an amorphous, cross-linked biopolymer that is assembled from a high molecular weight monomer. The hydrophobic and cross-linking domains of elastin have been considered separate and independent, such that changes to one region are not thought to affect the other. However, results from these solid-state 13C NMR experiments demonstrate that cooperativity in protein folding exists between the two domain types. The sequence of the EP20-24-24 polypeptide has three hydrophobic sequences from exons 20 and 24 of the soluble monomer tropoelastin, interspersed with cross-linking domains constructed from exons 21 and 23. In the middle of each cross-linking domain is a "hinge" sequence. When this pentapeptide is replaced with alanines, as in EP20-24-24[23U], its properties are changed. In addition to the expected increase in alpha-helical content and the resulting increase in rigidity of the cross-linking domains, changes to the organization of the hydrophobic regions are also observed. Using one-dimensional CPMAS (cross-polarization with magic angle spinning) techniques, including spectral editing and relaxation measurements, evidence for a change in dynamics to both domain types is observed. Furthermore, it is likely that the methyl groups of the leucines of the hydrophobic domains are also affected by the substitution to the hinge region of the cross-linking sequences. This cooperativity between the two domain types brings new questions to the phenomenon of coacervation in elastin polypeptides and strongly suggests that functional models for the protein must include a role for the cross-linking regions.  相似文献   

11.
In this work, the intermolecular distribution of the electronic charge density in the aromatic hydrogen/halogen bonds is studied within the framework of the atoms in molecules (AIM) theory and the molecular electrostatic potentials (MEP) analysis. The study is carried out in nine complexes formed between benzene and simple lineal molecules, where hydrogen, fluorine and chlorine atoms act as bridge atoms. All the results are obtained at MP2 level theory using cc-pVTZ basis set. Attention is focused on topological features observed at the intermolecular region such as bond, ring and cage critical points of the electron density, as well as the bond path, the gradient of the density maps, molecular graphs and interatomic surfaces. The strength of the interaction increases in the following order: F⋅⋅⋅π < Cl⋅⋅⋅π < H⋅⋅⋅π. Our results show that the fluorine atom has the capability to interact with the π−cloud to form an aromatic halogen bond, as long as the donor group is highly electron withdrawing. The Laplacian topology allows us to state that the halogen atoms can act as nucleophiles as well as electrophiles, showing clearly their dual character.  相似文献   

12.
Density functional theory (DFT) calculations are performed to study the hydrogen-bonding in the DMSO-water and DMF-water complexes. Quantitative molecular electrostatic potential (MESP) and atoms-in-molecules (AIM) analysis are applied to quantify the relative complexation of DMSO and DMF with water molecules. The interaction energy of DMSO with water molecules was higher than in DMF-water complexes. The existence of cooperativity effect helps in the strong complex formation. A linear dependence was observed between the hydrogen bond energies EHB, and the total electron densities in the BCP’s of microsolvated complexes which supports the existence of cooperativity effect for the complexation process. Due to the stronger DMSO/DMF and water interaction, the water molecules in the formed complexes have a different structure than the isolated water clusters. NCI analysis shows that the steric area is more pronounced in DMF-water complex than the DMSO-water complex which accounts for the low stability of DMF-water complexes compared to the DMSO-water complex.
Graphical abstract NCI analysis shows that the steric area is more pronounced in DMF-water complex than the DMSO-water complex which accounts for the low stability of DMF-water complexes compared to the DMSO-water complex.
  相似文献   

13.
Yuan Y  Simplaceanu V  Ho NT  Ho C 《Biochemistry》2010,49(50):10606-10615
On the basis of X-ray crystal structures and electron paramagnetic resonance (EPR) measurements, it has been inferred that the O(2) binding to hemoglobin is stabilized by the hydrogen bonds between the oxygen ligands and the distal histidines. Our previous study by multinuclear nuclear magnetic resonance (NMR) spectroscopy has provided the first direct evidence of such H-bonds in human normal adult oxyhemoglobin (HbO(2) A) in solution. Here, the NMR spectra of uniformly (15)N-labeled recombinant human Hb A (rHb A) and five mutant rHbs in the oxy form have been studied under various experimental conditions of pH and temperature and also in the presence of an organic phosphate, inositol hexaphosphate (IHP). We have found significant effects of pH and temperature on the strength of the H-bond markers, i.e., the cross-peaks for the side chains of the two distal histidyl residues, α58His and β63His, which form H-bonds with the O(2) ligands. At lower pH and/or higher temperature, the side chains of the distal histidines appear to be more mobile, and the exchange with water molecules in the distal heme pockets is faster. These changes in the stability of the H-bonds with pH and temperature are consistent with the changes in the O(2) affinity of Hb as a function of pH and temperature and are clearly illustrated by our NMR experiments. Our NMR results have also confirmed that this H-bond in the β-chain is weaker than that in the α-chain and is more sensitive to changes in pH and temperature. IHP has only a minor effect on these H-bond markers compared to the effects of pH and temperature. These H-bonds are sensitive to mutations in the distal heme pockets but not affected directly by the mutations in the quaternary interfaces, i.e., α(1)β(1) and/or α(1)β(2) subunit interface. These findings provide new insights regarding the roles of temperature, hydrogen ion, and organic phosphate in modulating the structure and function of hemoglobin in solution.  相似文献   

14.
The binding of sodium n-dodecyl sulphate to lysozyme has been measured by equilibrium dialysis at 25°C and pH 3.2 over a range of ionic strengts from 0.0119 to 0.2119. Binding isotherms in the region corresponding to ionic binding between the surfactant anions and cationic amino acid residues on the protein have been interpreted in terms of the Hill equation and exhibit positive cooperativity with Hill coefficients in the region of 7–11. The Gibbs energies of binding have been calculated from the Hill binding constants and from the Wyman binding potentials. The stability of the surfactant-protein complexes is discussed in relation to the stability of surfactant micelles. Ionic binding of the surfactant is weakened and hydrophobic binding strengthened by increasing ionic strength.  相似文献   

15.
16.
17.
A study on the structure-activity profiles of N-thiolated beta-lactams 1 is reported which demonstrates the importance of the N-organothio moiety on antibacterial activity. Our results indicate that elongation of the N-alkylthio residue beyond two carbons, or extensive branching within the organothio substituent, diminishes antibacterial effects. Of the derivatives we examined, the N-sec-butylthio beta-lactam derivative 5g possesses the strongest growth inhibitory activity against methicillin-resistant Staphylococcus aureus strains. Sulfur oxidation state is important, as the N-sulfenyl and N-sulfinyl groups provide for the best antibacterial activity, while lactams bearing the N-sulfonyl or N-sulfonic acid functionalities have much weaker or no anti-MRSA properties. Stereochemistry within the organothio chain does not seem to be a significant factor, although for N-sec-butylthio beta-lactams 15a-d, the 3R,4S-lactams 15c, d are more active than the 3S,4R-stereoisomers 15a, b in agar diffusion experiments. The N-methylthio lactams are the most sensitive to the presence of glutathione, followed by N-ethylthio and N-sec-butylthio lactams, which indicates that bioactivity and perhaps bacterial selectivity of the lactams may be related to the amount of organothiols in the bacterial cell. These results support the empirical model for the mechanism of action of the compounds in which the lactam transverses the bacterial membrane to deliver the organothio moiety to its cellular target.  相似文献   

18.
M Hollosi  A Perczel  G D Fasman 《Biopolymers》1990,29(12-13):1549-1564
The 2,3,4,6-Tetra-O-acetyl-beta-D-gluco-, and beta-D-galactopyranosides, as well as approximately 4:1 anomeric mixtures of alpha- and beta-mannopyranosides of Boc-X-Y-NHCH3 dipeptides (X-Y = Pro-Ser, Pro-D-Ser, Val-Ser, Val-D-Ser, and Gly-Ser) have been synthesized. CD and ir spectroscopic studies were performed to characterize the conformation of the glycosylated peptide backbone and examine the possible formation of intrapeptide and glycopeptide intramolecular H-bonds. It was found that O-glycosylated peptides containing a D-serine residue are likely to adopt a type II beta-turn while those with the Pro-Ser or Val-Ser sequence feature a type I (III) beta-turn in solution. Glycosylation also increases the magnitude of the CD bands, characteristic of the given type of beta-turns, which can be interpreted as an indication of the stabilization of the folded backbone conformation. Infrared data showed that in nonpolar solutions the peracetyl glycopeptides adopt both single- and double H-bonded conformations whose ratio, in some cases, depends on the position at C-2' of the H-bond acceptor acetoxy group. These data suggest that five-, seven-, or ten-membered glyco-turns may play an important role in fixing the steric orientation of the carbohydrate antennae systems in glycoproteins.  相似文献   

19.
A systematic study on the first excited-state proton transfer (ESPT) in 2RAI-H2O (R = OH, OCH3, CN, NO2, CHO) complexes in solution were investigated at the TD-M06-2X/6-31 + G(d, p) level. The double proton transfer occurred in an asynchronous but concerted protolysis fashion no matter which substituent R was used at C2 position in pyrrole ring in the 7AI-H2O complex. The specific vibrational-mode of ESPT in the model systems was confirmed and contributed to promote the reaction rate by shortening the reaction path. The substituent effects of different groups on the ESPT thermodynamics and kinetics were discussed. It was obvious that the geometries, barrier height, asynchrony, and specific vibration-mode of excited-state proton transfer changed with the different substituent groups.
Graphical Abstract The distance between two neighboring heavy atoms such as N1-O11 (R1) and O11-N8 (R2) distances played an important role in the proton transfer reaction. The sum of the N1-O11 and O11-N8 distances in the reactant of 2RAI-H2O (R=H, OH, OCH3; CN, CHO, NO2) complexes is in the range of 5.542 Å~5.692 Å and changes along with the substituent group at C2 position in the pyrrole ring. The ESDPT barrier height and the sum of the N1-O11 and O11-N8 distances have a good correlation.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号