首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O-H…X and O-H…O H-bonds as well as C-X…X dihalogen and C-X…O halogen bonds have been investigated in halomethanol dimers (bromomethanol dimer, iodomethanol dimer, difluorobromomethanol…bromomethanol complex and difluoroiodomethanol…iodomethanol complex). Structures of all complexes were optimized at the counterpoise-corrected MP2/cc-pVTZ level and single-point energies were calculated at the CCSD(T)/aug-cc-pVTZ level. Energy decomposition for the bromomethanol dimer complex was performed using the DFT-SAPT method based on the aug-cc-pVTZ basis set. OH…O and OH…X H-bonds are systematically the strongest in all complexes investigated, with the former being the strongest bond. Halogen and dihalogen bonds, being of comparable strength, are weaker than both H-bonds but are still significant. The strongest bonds were found in the difluoroiodomethanol…iodomethanol complex, where the O-H…O H-bond exceeds 7 kcal mol-1, and the halogen and dihalogen bonds exceed 2.5 and 2.3 kcal mol-1, respectively. Electrostatic energy is dominant for H-bonded structures, in halogen bonded structures electrostatic and dispersion energies are comparable, and, finally, for dihalogen structures the dispersion energy is clearly dominant.
Figure
Competition of hydrogen, halogen, and dihalogen bonding in the bromomethanol dimer are investigated  相似文献   

2.
The influence of hydrophilic and hydrophobic properties of the uracil elementary nucleic acid bases on its solubility and structure in aqueous solution was studied. Complexes of uracil with water molecules (from 1 to 14) were then calculated. The geometrical parameters of the hydrogen bridge of uracil and the changes in the frequency of valence vibrations of the bonds participating directly in hydrogen bond formation were calculated. It is shown that for the hydrogen bonds Ow?HN1 and Ow?HN3 the hydrogen atom can tear off, it may lead to tautomeric transformation of uracil. The results obtained having calculated the structure of uracil dimers, formed with the hydrogen bonds, in an isolated state and water solution, energy, dipole moments and the hydrogen bridge parameters made it possible to explain low solubility of uracil in water at room temperature. It is shown that water molecules with increase in their number are located mainly at one side of the plane of a pyrimidine uracil ring, that leads to the formation of stacking. Of two possible variants of stacking formation, the most profitable grouping is when a dipole moment of the formed dimer is equal to zero (anti-parallel stacking).  相似文献   

3.
2-[(2,5-dichloro-4-nitro-phenylamino)-methoxy-methyl]-8-hydroxy-quinoline 1 and 2-methyl-quinoline-5,8-dione-5-oxime 2 were obtained as potential HIV-1 integrase inhibitors and analyzed by X-ray crystallography. Semiempirical theoretical calculations of energy preferred conformations were also carried out. The crystal structures of both compounds are stabilized via hydrogen bonds and pi-pi stacking interactions. The planarity of compound 1 is caused by intramolecular hydrogen bonds.  相似文献   

4.
Stacking interaction is known to play an important role in protein folding, enzyme-substrate and ligand-receptor complex formation. It has been shown to make a contribution into the aromatic antagonists binding with glutamate ionotropic receptors (iGluRs), in particular, the complex of NMDA receptor NR1 subunit with the kynurenic acid (KYNA) derivatives. The specificity of KYNA binding to the glutamate receptors subtypes might partially result from the differences in stacking interaction. We have calculated the optimal geometry and binding energy of KYNA dimers with the four types of aromatic amino acid residues in Rattus and Drosophila ionotropic iGluR subunits. All ab initio quantum chemical calculations were performed taking into account electron correlations at MP2 and MP4 perturbation theory levels. We have also investigated the potential energy surfaces (PES) of stacking and hydrogen bonds (HBs) within the receptor binding site and calculated the free energy of the ligand-receptor complex formation. The energy of stacking interaction depends both on the size of aromatic moieties and the electrostatic effects. The distribution of charges was shown to determine the geometry of polar aromatic ring dimers. Presumably, stacking interaction is important at the first stage of ligand binding when HBs are weak. The freedom of ligand movements and rotation within receptor site provides the precise tuning of the HBs pattern, while the incorrect stacking binding prohibits the ligand-receptor complex formation.  相似文献   

5.
The free energy of the stacking-unstacking process of deoxyribodinucleoside monophosphates in aqueous solution has been investigated by potential of mean force calculations along a reaction coordinate, defined by the distance between the glycosidic nitrogen atoms of the bases. The stacking-unstacking process of a ribodinucleoside monophosphate was observed to be well characterized by this coordinate, which has the advantage that it allows for a dynamical backbone and flexible bases. All 16 naturally occurring DNA dimers composed of the adenine, cytosine, guanine, or thymine bases in both the 5' and the 3' positions were studied. From the free-energy profiles we observed the deepest minima for the stacked states of the purine-purine dimers, but good stacking was also observed for the purine-pyrimidine and pyrimidine-purine dimers. Substantial stacking ability was found for the dimers composed of a thymine base and a purine base and also for the deoxythymidylyl-3',5'-deoxythymidine dimer. Very poor stacking was observed for the dCpdC dimer. Conformational properties and solvent accessibility are discussed for the stacked and unstacked dimers. The potential of mean force profiles of the stacking-unstacking process for the DNA dimers are compared with the RNA dimers.  相似文献   

6.
Edge-to-face interactions between two pyridine molecules and the influence of simultaneous hydrogen bonding of one or both of the pyridines to water on those interactions were studied by analyzing data from ab initio calculations. The results show that the edge-to-face interactions of pyridine dimers that are hydrogen bonded to water are generally stronger than those of non-H-bonded pyridine dimers, especially when the donor pyridine forms a hydrogen bond. The binding energy of the most stable edge-to-face interacting H-bonded pyridine dimer is ?5.05 kcal/mol, while that for the most stable edge-to-face interacting non-H-bonded pyridine dimer is ?3.64 kcal/mol. The interaction energy data obtained in this study cannot be explained solely by the differences in electrostatic potential between pyridine and the pyridine–water dimer. However, the calculated cooperative effect can be predicted using electrostatic potential maps.  相似文献   

7.
The physisorption of bisphenol A (BPA) on pristine and oxidized graphene was studied theoretically via calculations performed at the PBE-D3 level (including dispersion force corrections). Three stable conformations of BPA on graphene were found. A lying-down configuration was energetically favored because the presence of π–π stacking and dispersion forces increased interactions. In addition, the adsorption of BPA on the edges of graphene oxide was enhanced when adsorption occurred on carboxyl and carbonyl groups, whereas the adsorption strength decreased when adsorption occurred on hydroxyl groups. The highest physisorption strength was obtained on the surface of graphene oxide due to the presence of π–π stacking and dispersion forces (which provided the greatest contribution to the adsorption energy) as well as hydrogen bonds (which provided a smaller contribution), indicating that oxidized graphene is a better candidate than pristine graphene for BPA removal. On the other hand, an increase in electrophilicity was observed after the physisorption of BPA in all systems (with respect to graphene and BPA in their isolated forms), with the adsorbent acting as the electron acceptor. Finally, molecular dynamics simulations performed using the PM6 Hamiltonian showed that the adsorption of BPA on graphene is stable.  相似文献   

8.
Accurate quantum-chemical calculations based on the second-order M?ller-Plesset perturbation method (MP2) and density functional theory (DFT) were performed for the first time to investigate the electronic structures of trans-resveratrol and trans-piceatannol, as well as to study the stacking interaction between trans-resveratrol molecules. Ab initio MP2 calculations performed with using standard split-valence Pople basis sets led us to conclude that these compounds have structures that deviate strongly from planarity, whereas the DFT computations for the same basis sets revealed that the equilibrium geometries of these bioactive polyphenols are planar. Furthermore, the results obtained at the MP2(full)/aug-cc-pVTZ and B3LYP/aug-cc-pVTZ levels indicated that the geometries of trans-resveratrol and trans-piceatannol are practically planar at their absolute energy minima. The relative energies of the equilibrium geometries of trans-resveratrol on its potential energy surface were computed at the MP2(full)/aug-cc-pVTZ level. According to the results obtained, a T-shaped (edge-to-phase) conformer of trans-resveratrol dimer is the most stable in vacuum. This T-shaped conformer is mainly stabilized by strong hydrogen bonding and weak C-H...π interactions. Stacked structures with parallel-displaced trans-stilbene skeletons were also found to be energetically stable. The vertical separation and twist angle dependencies of the stacking energy were investigated at the MP2(full)/aug-cc-pVTZ, B3LYP/aug-cc-pVTZ, and HF/aug-cc-pVTZ levels. The standard B3LYP functional and the Hartree-Fock method neglect long-range attractive dispersion interactions. The MP2 computations revealed that the London dispersion energy cannot be neglected at long or short distances. The stacked model considered here may be useful for predicting the quantum nature of the interactions in π-stacked systems of other naturally occurring stilbenoids, and can help to enhance our understanding of the antioxidant and anticancer activities of trans-resveratrol.  相似文献   

9.
We propose a novel Metropolis Monte Carlo procedure for protein modeling and analyze the influence of hydrogen bonding on the distribution of polyalanine conformations. We use an atomistic model of the polyalanine chain with rigid and planar polypeptide bonds, and elastic alpha carbon valence geometry. We adopt a simplified energy function in which only hard-sphere repulsion and hydrogen bonding interactions between the atoms are considered. Our Metropolis Monte Carlo procedure utilizes local crankshaft moves and is combined with parallel tempering to exhaustively sample the conformations of 16-mer polyalanine. We confirm that Flory's isolated-pair hypothesis (the steric independence between the dihedral angles of individual amino acids) does not hold true in long polypeptide chains. In addition to 3(10)- and alpha-helices, we identify a kink stabilized by 2 hydrogen bonds with a shared acceptor as a common structural motif. Varying the strength of hydrogen bonds, we induce the helix-coil transition in the model polypeptide chain. We compare the propensities for various hydrogen bonding patterns and determine the degree of cooperativity of hydrogen bond formation in terms of the Hill coefficient. The observed helix-coil transition is also quantified according to Zimm-Bragg theory.  相似文献   

10.
Diazanaphthalenes (DAPs) are a broad class of N-heteroaromatic compounds with several technological and biological applications. Some of these applications are attributed to the ability of DAP molecules to form associated dimers through non-covalent interactions. A study of the types and strength of the interactions involved is crucial for understanding the preferred geometries and energetics of the dimers. In this study, the dimers of five DAPs are investigated by means of Møller–Plesset second order perturbation theory, hybrid meta-GGA [density functional theory methods (DFT): DFT/MPWB1K, DFT/M05-2X and DFT/M06-2X] and DFT dispersion-corrected (DFT-D/ωB97XD) methods to elucidate their dimers' preferred geometries, relative energies and nature of the interactions between monomer units. The results indicate that the monomer units of the dimers are held by either intermolecular hydrogen bonds or π…π stacking interactions, and that the preferred dimers are those in which the monomer units interact through π…π stacking interactions. A comparison across structures suggests that the position of the N atom in the ring has significant role in determining the relative energy and binding strength of the dimers. A comparison among the different methods utilised for the study indicates that DFT/M06-2X method provides binding energies that are close to those of DFT-CCSD(T) correction scheme and could therefore be considered as the best method for describing the binding properties of DAP dimers.  相似文献   

11.
12.
We have used molecular dynamics simulations to determine the stability in water of a model beta-sheet formed by two alanine dipeptide molecules with two intermolecular hydrogen bonds in the closely spaced antiparallel arrangement. In this paper we describe our computations of the binding free energy of the model sheet and a portion of the free energy surface as a function of a reaction co-ordinate for sheet formation. We used the free energy surface to identify stable conformations along the reaction co-ordinate. To determine whether or not the model sheet with two hydrogen bonds is more stable than a single amide hydrogen bond in water, we compared the results of the present calculations to results from our earlier study of linear hydrogen bond formation between two formamide molecules (the formamide "dimer"). The free energy surfaces for the sheet and formamide dimer each have two minima corresponding to locally stable hydrogen-bonded and solvent-separated configurations. The binding free energies of the model sheet and the formamide dimer are -5.5 and -0.34 kcal/mol, respectively. Thus, the model sheet with two hydrogen bonds is quite stable while the simple amide hydrogen bond is only marginally stable. To understand the relative stabilities of the model sheet and formamide dimer in terms of solute-solute and solute-water interactions, we decomposed the free energy differences between hydrogen-bonded and solvent-separated conformations into energetic and entropic contributions. The changes in the peptide-peptide energy and the entropy are roughly twice as large for the sheet as they are for the formamide dimer. The magnitude of the peptide-water energy difference for the sheet is less than twice (by about 3.5 kcal/mol) that for the formamide dimer, and this accounts for the stability of the sheet. The presence of the side-chains and/or blocking groups apparently prevents the amide groups in the sheet from being solvated as favorably in the separated arrangement as in the formamide dimer, where the amide groups are completely exposed to the solvent.  相似文献   

13.
Wu C  Lei H  Duan Y 《Biophysical journal》2005,88(4):2897-2906
We observed fast aggregation of partially ordered oligomers in an earlier simulation study of an amyloidogenic hexapeptide NFGAIL. In this work, the nucleation of highly ordered oligomers was further investigated by a combined total of 960 ns molecular dynamics simulations with explicit solvent on NFGAIL and its nonamyloidogenic mutant NAGAIL. In these simulations, four dimer subunits that each was constrained by harmonic forces as a two-strand beta-sheet were used to enhance the rate of formation. It was found that a critical role played by the aromatic residue Phe was to direct the stacking of beta-sheets to form ordered multilayer aggregates. We also found that many molecular arrangements of the peptide satisfied the "cross-beta-structure", a hallmark of amyloid fibrils. The tendency for the peptide to form either parallel or antiparallel beta-sheet was comparable, as was the tendency for the beta-sheets to stack either in parallel or antiparallel orientation. Overall, approximately 85% of the native hexapeptide formed octamers. The fact that only 8% of the octamers were well-ordered species suggests that the dissociation of the disordered oligomers be the rate-limiting step in the formation of highly ordered oligomers. Among the well-ordered subunit pairs, about half was formed by the beta-sheet extension along the main-chain hydrogen-bond direction, whereas the other half was formed by the beta-sheet stacking. Hence, a delicate balance between intersheet and intrasheet interactions appeared to be crucial in the formation of a highly ordered nucleus of amyloid fibrils. The disordered oligomers were mainly stabilized by nonspecific hydrophobic interactions, whereas the well-ordered oligomers were further stabilized by cross-strand hydrogen bonds and favorable side-chain stacking.  相似文献   

14.
Aromatic bonds of amino acid radicals play an important role in arrangement of protein primary structure. Previously, the existence of a number of preferable conformations of aromatic dimers was shown theoretically and experimentally, the best known of which are parallel-displaced and perpendicular T conformations. To reveal principles that define preference of various conformations for His-His and Phe-His dimers, non-empirical quantum-chemical calculations of diimidazole and benzene-imidazole were carried out. Calculations were performed using the 6-31G** basis with account for electronic correlations in frames of MP2 and MP4 methods of perturbation theory. Comparative analysis of energetic and geometric parameters of the systems points to the preference of stacking contact or classical hydrogen bond in diimidazole. On the contrary, T conformation is maximally advantageous for benzene-imidazole.  相似文献   

15.
This work shows that indigo's high stability can be attributed both to the large π conjugation inside the molecule and to intra- and intermolecular hydrogen bonds. The theoretical investigation of indigo's electronic structure has been performed using high-level methods. To understand the interactions in solid state, calculations of the dimer system with both molecules in the same plane was carried out. In the monomer, two intramolecular hydrogen bridges between amino and carbonyl groups occupy positions that would otherwise be the most reactive ones for nucleophilic and electrophilic attacks. In the dimer, amino and carbonyl groups on different monomers form intermolecular multicentred non-linear hydrogen bonds in six-member rings, protecting again the same reactive centres and explaining the limited solubility of indigo. The addition of the free radical OH breaks the central C = C double bond, the conjugation and the hydrogen bridges as a first step. The Gibbs energy calculation favours the addition of OH radical over C1.  相似文献   

16.
Tautomerism in monomers/dimers and association of 2,5-dihydroxy-1,8-naphthyridine was studied at the DFT level recently recommended for studies of non-covalent interactions. Studied dimers are stabilized by double and triple hydrogen-bonding. In some associates the intermolecular proton transfer may take place. Transition state related to the double proton transfer reactions were calculated and discussed in terms of energetics, changes in atomic charges upon association, aromaticity (HOMA), properties of hydrogen bond critical point (QTAIM methodology) and geometry change during this reaction. It was found that double proton transfer is supported by third hydrogen bond or by weak secondary interaction. Some protons in transition states are shared between two basic atoms, while other are covalently bound only to one of them. The said process leads to replacement of secondary interactions of attractive character to repulsive and vice versa. Overall, results suggest that in subjected compound the triple hydrogen-bonded associate may be in equilibrium with double hydrogen-bonded dimer.  相似文献   

17.
Cation-pi interactions between an aromatic ring and a positive charge located above it have proven to be important in protein structures and biomolecule associations. Here, the role of these interactions at the interface of protein-DNA complexes is investigated, by means of ab initio quantum mechanics energy calculations and X-ray structure analyses. Ab initio energy calculations indicate that Na ions and DNA bases can form stable cation-pi complexes, whose binding strength strongly depends on the type of base, on the position of the Na ion, and whether the base is isolated or included in a double-stranded B-DNA. A survey of protein-DNA complex structures using appropriate geometrical criteria revealed cation-pi interactions in 71% of the complexes. More than half of the cation-pi pairs involve arginine residues, about one-third asparagine or glutamine residues that only carry a partial charge, and one-seventh lysine residues. The most frequently observed pair, which is also the most stable as monitored by ab initio energy calculations, is arginine- guanine. Arginine-adenine interactions are also favorable in general, although to a lesser extent, whereas those with thymine and cytosine are not. Our calculations show that the major contribution to cation-pi interactions with DNA bases is of electrostatic nature. These interactions often occur concomitantly with hydrogen bonds with adjacent bases; their strength is estimated to be from three to four times lower than that of hydrogen bonds. Finally, the role of cation-pi interactions in the stability and specificity of protein-DNA complexes is discussed.  相似文献   

18.
19.
Quantum chemical calculations have been per-formed for the complexes of formamidine (FA) and hypohalous acid (HOX, X = F, Cl, Br, I) to study their structures, properties, and competition of hydrogen bonds with halogen bonds. Two types of complexes are formed mainly through a hydrogen bond and a halogen bond, respectively, and the cyclic structure is more stable. For the F, Cl, and Br complexes, the hydrogen-bonded one is more stable than the halogen-bonded one, while the halogen-bonded structure is favorable for the I complexes. The associated H-O and X-O bonds are elongated and exhibit a red shift, whereas the distant ones are contracted and display a blue shift. The strength of hydrogen and halogen bonds is affected by F and Li substitutents and it was found that the latter tends to smooth differences in the strength of both types of interactions. The structures, properties, and interaction nature in these complexes have been understood with natural bond orbital (NBO) and atoms in molecules (AIM) theories.  相似文献   

20.
Expressions for the various components of the long-range interaction energy of any number of molecules are obtained by the perturbation theory method in atomic dipole approximation. These expressions are used for the study of base interaction nature in coplanar pairs and stacked dimers formed of neighbouring Watson-Crick pairs. Bases wave functions are computed by the CNDO-CI method. The in-plane interactions are shown to give the dominant contribution into the DNA stabilization energy in vacuum. The estimations performed for the solvent effect on intermolecular interaction energy allowed one to draw a conclusion about the decisive role of hydrophobic interactions in a base stacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号