首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of penta- and heteropentadienyl [CH2CHCHCHXBe]+, (X?=?CH2, O, NH, S) complexes has been theoretically studied. All calculated complexes show beryllium atoms with two, three, and five coordination numbers. The density functional theory (DFT) was used to determine the electron and structural behavior of those beryllium complexes. The nature of the ligands plays an important role in the form of binding to the beryllium atom. Beryllium structures 14 are able to coordinate only one hydrogen molecule. A molecular orbital analysis for all complexes was performed in order to know more about the nature of their bonding scheme.  相似文献   

2.
The electronic structure of the two most stable isomers of squaric acid and their complexes with BeH2 were investigated at the B3LYP/6-311?+?G(3df,2p)// B3LYP/6-31?+?G(d,p) level of theory. Squaric acid forms rather strong beryllium bonds with BeH2, with binding energies of the order of 60 kJ?mol?1. The preferential sites for BeH2 attachment are the carbonyl oxygen atoms, but the global minima of the potential energy surfaces of both EZ and ZZ isomers are extra-stabilized through the formation of a BeH···HO dihydrogen bond. More importantly, analysis of the electron density of these complexes shows the existence of significant cooperative effects between the beryllium bond and the dihydrogen bond, with both becoming significantly reinforced. The charge transfer involved in the formation of the beryllium bond induces a significant electron density redistribution within the squaric acid subunit, affecting not only the carbonyl group interacting with the BeH2 moiety but significantly increasing the electron delocalization within the four membered ring. Accordingly the intrinsic properties of squaric acid become perturbed, as reflected in its ability to self-associate.
Figure
The ability of squaric acid to self-associate is significantly enhanced when this molecule forms beryllium bonds with BeH2  相似文献   

3.
Quantum chemical calculations were performed for LiNH2–HMgX (X?=?H, F, Cl, Br, CH3, OH, and NH2) complexes to propose a new interaction mechanism between them. This theoretical survey showed that the complexes are stabilized through the combinative interaction of magnesium and lithium bonds. The binding energies are in the range of 63.2–66.5 kcal mol?1, i.e., much larger than that of the lithium bond. Upon complexation, both Mg–H and Li–N bonds are lengthened. Substituents increase Mg-H bond elongation and at the same time decrease Li-N bond elongation. These cyclic complexes were characterized with the presence of a ring critical point and natural population analysis charges.
Figure
A new interaction mechanism has been suggested for the LiNH2-HMgH complex. It was found that the combinative interaction of magnesium and lithium bonds is responsible for the stability of the complex. The effect of subsitutents on its stability has also been investigated  相似文献   

4.
MP2(full)/aug-cc-pVDZ(-PP) computations predict that new triangular bonding complexes (where X? is a halide and H–C refers to a protic solvent molecule) consist of one halogen bond and two hydrogen bonds in the gas phase. Carbon tetrabromide acts as the donor in the halogen bond, while it acts as an acceptor in the hydrogen bond. The halide (which commonly acts as an acceptor) can interact with both carbon tetrabromide and solvent molecule (CH3CN, CH2Cl2, CHCl3) to form a halogen bond and a hydrogen bond, respectively. The strength of the halogen bond obeys the order CBr4???Cl? > CBr4???Br? > CBr4???I?. For the hydrogen bonds formed between various halides and the same solvent molecule, the strength of the hydrogen bond obeys the order C-H???Cl? > C-H???Br? > C-H???I?. For the hydrogen bonds formed between the same halide and various solvent molecules, the interaction strength is proportional to the acidity of the hydrogen in the solvent molecule. The diminutive effect is present between the hydrogen bonds and the halogen bond in chlorine and bromine triangular bonding complexes. Complexes containing iodide ion show weak cooperative effects.
Figure
The triangular bonding complexes consisting of halogen bond and hydrogen bonds were predict in the gas phase by computational quantum chemistry.  相似文献   

5.
Quantum chemical calculations are performed to study the interplay between halogen?nitrogen and halogen?carbene interactions in NCX?NCX?CH2 complexes, where X?=?F, Cl, Br and I. Molecular geometries and interaction energies of dyads and triads are investigated at the MP2/aug-cc-pVTZ level of theory. It is found that the X?N and X?Ccarbene interaction energies in the triads are larger than those in the dyads, indicating that both the halogen bonding interactions are enhanced. The estimated values of cooperative energy E coop are all negative with much larger E coop in absolute value for the systems including iodine. The nature of halogen bond interactions of the complexes is analyzed using parameters derived from the quantum theory atoms in molecules methodology and energy decomposition analysis.
Figure
The structure of NCX?NCX?CH2 complexes (X?=?F, Cl, Br and I)  相似文献   

6.
Hyperjovinol A (2-methyl-1-(2,4,6-trihydroxy-3-(3-hydroxy-3,7-dimethyloct-6-enyl)phen yl)propan-1-one) is an acylated phloroglucinol isolated from Hypericum Jovis and exhibiting antioxidant properties comparable with those of the most common antioxidant drugs. The study models the compound’s antioxidant ability through its ability to coordinate a Cu2+ ion and reduce it to Cu+. Complexes with a Cu2+ ion were calculated for all the low energy and for representative high energy conformers of hyperjovinol A, placing the ion in turn near each of the electron-rich binding sites. The most stable complexes are those in which Cu2+ binds simultaneously to the O of the OH in the geranyl-type chain (R′) and the C═C double bond at the end of R′, or to the O of a phenol OH and the O of the OH in R′. The most stable complexes in which Cu2+ binds only to one site are those in which it binds to the C═C double bond at the end of R′ or to the sp2 O of the COCH(CH3)2 acyl group. Cu2+ is reduced to Cu+ in all complexes. Comparisons with corresponding complexes of other molecular structures in which one or more of the structural features of hyperjovinol A are modified attempt to elucidate the role, for the antioxidant ability, of relevant features of hyperjovinol A, like the presence and position of the OH or the C═C double bond in R′. Calculations at the DFT/B3LYP/6–31+G(d,p) level were performed for all the structures considered. Calculations utilizing the LANL2DZ pseudopotential for the Cu2+ ion were also performed for hyperjovinol A.
Figure
A low energy complex of hyperjovinol A in which the Cu ion binds to the sp2 O atom of the acyl chain and to the O atom of the OH in the geranyl-type chain  相似文献   

7.
A comparative theoretical investigation into the change in strength of the trigger-bond upon formation of the Na+, Mg2+ and HF complexes involving the nitro group of RNO2 (R?=? –CH3, –NH2, –OCH3) or the C?=?C bond of (E)-O2N–CH?=?CH–NO2 was carried out using the B3LYP and MP2(full) methods with the 6-311++G**, 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Except for the Mg2+?π system with (E)-O2N–CH?=?CH–NO2 (i.e., C2H2N2O4?Mg2+), the strength of the trigger-bond X–NO2 (X?=?C, N or O) was enhanced upon complex formation. Furthermore, the increment of bond dissociation energy of the X–NO2 bond in the Na+ complex was far greater than that in the corresponding HF system. Thus, the explosive sensitivity in the former might be lower than that in the latter. For C2H2N2O4?Mg2+, the explosive sensitivity might also be reduced. Therefore, it is possible that introducing cations into the structure of explosives might be more efficacious at reducing explosive sensitivity than the formation of an intermolecular hydrogen-bonded complex. AIM, NBO and electron density shifts analyses showed that the electron density shifted toward the X–NO2 bond upon complex formation, leading to a strengthened X–NO2 bond and possibly reduced explosive sensitivity.
Figure
Introducing cations into explosives is more efficacious at reducing sensitivity than H-bond formation  相似文献   

8.
The nature of the unusual cation–π interactions between cations (H+, Li+, Na+, Be2+ and Mg2+) and the electron-deficient B=B bond of the triplet state HB=BH ( $ {}^3\Sigma_g^{-} $ ) was investigated using UMP2(full) and UB3LYP methods at 6–311++G(2df,2p) and aug-cc-pVTZ levels, accompanied by a comparison with 1:1 and 2:1 σ-binding complexes between BH and the cations. The binding energies follow the order HB=BH...H+ > HB=BH...Be2+ > HB=BH...Mg2+ ? HB=BH...Li+ > HB=BH...Na+ and HB=BH (1Δg)...M+/M2+ > H2C=CH2...M+/M2+ > HC≡CH...M+/M2+ > HB=BH ( $ {}^3\Sigma_g^{-} $ )...M+/M2+. Furthermore, except for HB...H+, the σ-binding interaction energy of the 1:1 complex HB...M+/M2+ is stronger than the cation–π interaction energy of the C2H2...M+/M2+, C2H4...M+/M2+, B2H2 (1Δg)...M+/M2+ or B2H2 ( $ {}^3\Sigma_g^{-} $ )...M+/M2+ complex, and, for the 2:1 σ-binding complexes, except for HBBe2+...BH, they are less stable than the cation–π complexes of B2H2 (1Δg) or B2H2 ( $ {}^3\Sigma_g^{-} $ ). The atoms in molecules (AIM) theory was also applied to verify covalent interactions in the H+ complexes and confirm that HB=BH ( $ {}^3\Sigma_g^{-} $ ) can be a weaker π-electron donor than HB=BH (1Δg), H2C=CH2 or HC≡CH in the cation–π interaction. Analyses of natural bond orbital (NBO) and electron density shifts revealed that the origin of the cation–π interaction is mainly that many of the lost densities from the π-orbital of B=B and CC multiple bonds are shifted toward the cations.
Figure
The nature of the unusual cation–π interactions between cations (H+, Li+, Na+, Be2+ and Mg2+) and the electron-deficient B=B bond of the triplet state HB=BH ( $ {}^3\Sigma_g^{-} $ ) as investigated using UMP2(full) and UB3LYP methods at 6-311++G(2df,2p) and aug-cc-pVTZ levels  相似文献   

9.
The selectivity of phosphoryl P(O)R3, sulfoxide S(O)R2, and carbonyl C(O)R2 (R?=?NH2, CH3, OH, and F) derivatives with lanthanide cations (La3+, Eu3+, Lu3+) was studied by density functional theory calculations. Theoretical approaches were also used to investigate energy and the nature of metal–ligand interaction in the model complexes. Atoms in molecules and natural bond orbital (NBO) analyses were accomplished to understand the electronic structure of ligands, L, and the related complexes, L–Ln3+. NBO analysis demonstrated that the negative charge on phosphoryl, carbonyl, and sulfoxide oxygen (OP, OC, and OS) has maximum and minimum values when the connected –R groups are –NH2 and –F. The metal–ligand distance declines as, –F?>?–OH?>?–CH3?>?–NH2. Charge density at the bond critical point and on the lanthanide cation in the L–Ln3+ complexes varies in the order –F?<?–OH?<?–CH3?<?–NH2, due to greater ligand to metal charge transfer, which is well explained by energy decomposition analysis. It was also illustrated that E(2) values of Lp(N)?→?σ*(Y–N) vary in the order P=O ? S=O ? C=O and the related values of Lp(N)?→?σ*(Y=O) change as C=O ? S=O ? P=O in (NH2)nYO ligands (Y?=?P, C, and S). Trends in the L–Ln3+ CP–corrected bond energies are in good accordance with the optimized OY?Ln distances. It seems that, comparing the three types of ligands studied, NH2–substituted are the better coordination ligands.
Graphical Abstract Density functional theory (B3LYP) calculations were used to compare structural, electronic and energy aspects of lanthanide (La, Eu, Lu) complexes of phosphine derivatives with those of carbonyls and sulfoxides in which the R– groups connected to the P=O, C=O and S=O are –NH2, –CH3, –OH and –F.
  相似文献   

10.
Three complexes of composition [Co2IICo2III(H2hbhpd)2(H4hbhpd)2(H2O)2]Cl2(CH3OH)4 (1), [Co2IICo2III(H2hbhpd)2(H4hbhpd)2(H2O)2](NO3)2(CH3OH)4 (2) and [Ni2(H4hbhpd)2(NO3)](NO3)(CH3OH)1.5 (3) (H5hbhpd = 2-(2-hydroxy-benzylamino)-2-hydroxymethyl-propane-1,3-diol) have been synthesized and their structures have been characterized. Complexes 1 and 2 are mixed-valence cobalt clusters and display face-sharing monovacant dicubane structures. In the complexes 1 and 2, one of the three alkyl hydroxyl groups of H5hbhpd ligand is deprotonated instead of deprotonation of phenyl hydroxyl group; thus monoanionic H4hbhpd ligand displays novel η3, η1, η1, μ3 coordination mode. Complex 3 is binuclear, and the two metal centers of 3 are bridged by two deprotonated phenyl hydroxyl oxygen atoms and iso-orthogonalized by a nitrato group in η1η1-O,O′ coordination fashion. Variable-temperature solid-state dc magnetization studies have been performed in the temperature range 2-300 K for compounds 1 and 3. Antiferromagnetic interactions were determined for 1 and ferromagnetic couplings were found for 3.  相似文献   

11.
Neutral tris(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)3(L)] (Ln = Sc (1), Lu (2)) and cationic bis(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)2(L)(THF)]+[BPh4], (Ln = Sc (3), Lu (4)) that contain bis(2-methoxyethyl)(trimethylsilyl)amine (L = Me3SiN(CH2CH2OMe)2) as a neutral, tridentate ligand were synthesized and characterized by NMR spectroscopy. X-ray structural analysis was performed for the scandium complex 1 and exhibited a distorted octahedral coordination geometry with a facially arranged ligand at the neutral scandium center. NMR spectroscopy corroborated the coordination of the tertiary amine function of the ligand to the metal. Complexes 3 and 4 expand the still limited range of cationic rare-earth metal alkyl complexes with known neutral, multidentate ligands.  相似文献   

12.
We calculate the interactions of two atomic layer deposition (ALD) reactants, trimethylaluminium (TMA) and tetrakis(ethylmethylamino) hafnium (TEMAH) with the hydroxylated Ga-face of GaN clusters when aluminum oxide and hafnium oxide, respectively, are being deposited. The GaN clusters are suitable as testbeds for the actual Ga-face on practical GaN nanocrystals of importance not only in electronics but for several other applications in nanotechnology. We find that TMA spontaneously interacts with hydroxylated GaN; however it does not follow the atomic layer deposition reaction path unless there is an excess in potential energy introduced in the clusters at the beginning of the optimization, for instance, using larger bond lengths of various bonds in the initial structures. TEMAH also does not interact with hydroxylated GaN, unless there is an excess in potential energy. The formation of a Ga—N(CH3)(CH2CH3) bond during the ALD of HfO2 using TEMAH as the reactant without breaking the Hf—N bond could be the key part of the mechanism behind the formation of an interface layer at the HfO2/GaN interface.
Figure
Interactions of TMA and TEMAH with hydroxylated GaN  相似文献   

13.
MP2(full)/6-311++G(3df,3pd) calculations were carried out on complexes linked through various non-covalent Lewis acid – Lewis base interactions. These are: hydrogen bond, dihydrogen bond, hydride bond and halogen bond. The quantum theory of ´atoms in molecules´ (QTAIM) as well as the natural bond orbitals (NBO) method were applied to analyze properties of these interactions. It was found that for the A-H…B hydrogen bond as well as for the A-X…B halogen bond (X designates halogen) the complex formation leads to the increase of s-character in the A-atom hybrid orbital aimed toward the H or X atom. In opposite, for the A…H-B hydride bond, where the H-atom possesses negative charge, the decrease of s-character in the B-atom orbital is observed. All these changes connected with the redistribution of the electron charge being the effect of the complex formation are in line with Bent´s rule. The numerous correlations between energetic, geometrical, NBO and QTAIM parameters were also found.
Figure
QTAIM atomic radii for NH4 +…HMgH and Na+…HBeH  相似文献   

14.
A quantum chemistry study was carried out to investigate the strength and nature of halogen bond interactions in HXeH···XCCY complexes, where X = Cl, Br and Y = H, F, Cl, Br, CN, NC, C2H, CH3, OH, SH, NH2. Examination of the electrostatic potentials V(r) of the XCCY molecules reveals that the addition of substituents has a significant effect upon the most positive electrostatic potential on the surface of the interacting halogen atom. We found that the magnitude of atomic charges and multipole moments depends upon the halogen atom X and is rather sensitive to the electron-withdrawing/donating power of the remainder of the molecule. An excellent correlation was found between the most positive electrostatic potentials on the halogen atom and the interaction energies. For either HXeH···ClCCY or HXeH···BrCCY complexes, an approximate linear correlation between the interaction energies and halogens multipole moments are established, indicating that the electrostatic and polarization interactions are responsible for the stability of the complexes. According to energy decomposition analysis, it is revealed that the electrostatic interactions are the major source of the attraction in the HXeH···XCCY complexes. Furthermore, the changes in the electrostatic term are mainly responsible for the dependence of interaction energy on the halogen atom.
Graphical abstract
Electrostatic potential mapped on the surface of molecular electron density at the 0.001 electrons Bohr ?3 of HXeH. The color ranges in kcal mol?1 red >8.5, yellow 1.5 to 8.5, green ?5.5 to 1.5, blue <?5.5. Black and blue circles are referred to surface maxima and minima, respectively.  相似文献   

15.
To understand the chemical behavior of uranyl complexes in water, a bis-uranyl [(phen)(UO2)(μ2–F)(F)]2 (A; phen?=?phenanthroline, μ2?=?doubly bridged) and its hydrated form A?·?(H2O)n (n?=?2, 4 and 6) were examined using scalar relativistic density functional theory. The addition of water caused the phen ligands to deviate slightly from the U22–F)2 plane, and red-shifts the U–F-terminal and U?=?O stretching vibrations. Four types of hydrogen bonds are present in the optimized hydrated A?·?(H2O)n complexes; their energies were calculated to fall within the range 4.37–6.77 kcal mol-1, comparable to the typical values of 5.0 kcal mol-1 reported for hydrogen bonds. An aqueous environment simulated by explicit and/or implicit models lowers and re-arranges the orbitals of the bis-uranyl complex.
Figure
A bis(uranyl) complex [(phen)(UO2)(μ2–F)(F)]2 (A) and its solvated form A?·?(H2O)n were examined using scalar relativistic density functional theory. Hydrogen bonds cause the phen ligand to slightly deviate from the equatorial plane of the uranyl ion, resulting in a pronounced red-shift of the U–F-terminal and U?=?O asymmetric stretching vibrations. The calculated energies fall within 4.4?–6.8 kcal/mol. Explicit and/or implicit aqueous solvation re-arranges the molecular orbitals of the complex  相似文献   

16.
A symmetric diimine ligand containing a CH2PhCH2 bridging group (H2XyTs: N,N′-bis(2-tosylaminobenzylidene)-1,4-xylylenediamine) and its neutral CoII and ZnII dinuclear complexes have been prepared. Two different crystal structures of the free ligand, H2XyTs, and that corresponding to [Co2(XyTs)2], have been solved by X-ray diffraction methods. These revealed two different conformations (syn-anti and anti-anti) for H2XyTs and an infrequent rotational isomerism on the xylylene rings of its CoII dinuclear complex, where both ligands are syn-anti conformed. Characterisation of the compounds is completed with FT-IR, ESI-MS and 1H NMR spectroscopic techniques, when possible.  相似文献   

17.
A series of new silver(I) saccharinate (sac) complexes, [Ag2(sac)2(μ-dppm)H2O]·H2O (1), {[Ag2(μ-sac)2(μ-dppe)]·3H2O·CH2Cl2} n (2), [Ag2(μ-sac)2(μ-dppp)] n (3), and [Ag(sac)(μ-dppb)] n (4) [dppm is 1,1-bis(diphenylphosphino)methane, dppe is 1,2-bis(diphenylphosphino)ethane, dppp is 1,3-bis(diphenylphosphino)propane, and dppb is 1,4-bis(diphenylphosphino)butane], have been synthesized and characterized by C, H, N elemental analysis, IR spectroscopy, 1H NMR, 13C NMR, and 31P NMR spectroscopy, electrospray ionization mass spectrometry, and thermogravimetry–differential thermal analysis. Single-crystal X-ray studies show that the diphosphanes act as bridging ligands to yield a dinuclear complex (1) and one-dimensional coordination polymers (2 and 4), whereas the sac ligand adopts a μ2-N/O bridging mode in 2, and is N-coordinated in 1 and 4. The interaction of the silver(I) complexes with fish sperm DNA was investigated using UV–vis spectroscopy, fluorescence spectroscopy, and agarose gel electrophoresis. The binding studies indicate that the silver(I) complexes can interact with fish sperm DNA through intercalation, and complexes 1 and 3 have the highest binding affinity. The gel electrophoresis assay further confirms the binding of the complexes with the pBR322 plasmid DNA. The minimum inhibitory concentrations of the complexes indicate that complex 1 exhibits very high antibacterial activity against standard bacterial strains of Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus, being much higher than those of AgNO3, silver sulfadiazine, ciprofloxacin, and gentamicin. Moreover, complexes 13 exhibit very high cytotoxic activity against A549 and MCF-7 cancer cell lines, compared with AgNO3 and cisplatin. The bacterial and cell growth inhibitions of the silver(I) complexes are closely related to their DNA binding affinities.  相似文献   

18.
Experimental mass-spectrometry data on thermochemistry of methide transfer reactions (CH3)3M+ + M'(CH3)4 ? M(CH3)4?+?(CH3)3M'+ (M, M'?=?Si, Ge or Sn) and the formation energy of the [(CH3)3Si-CH3-Si(CH3)3]+ complex are used as benchmarks for DFT methods (B3LYP, BMK, M06L, and ωB97XD). G2 and G3 theory methods are also used for the prediction of thermochemical data. BMK, M06L, and ωB97XD methods give the best fit to experimental data (close to chemical accuracy) as well as to G2 and G3 results, while B3LYP demonstrates poor performance. From the first three methods M06L gives the best overall result. Structures and formation energies of intermediate “mixed” [(CH3)3M-CH3- M′(CH3)3] complexes not observed in experiment are predicted. Their structures, better described as M(CH3)4?[M′(CH3)3]+ complexes, explain their fast decompositions.
Figure
Graphical representation of the molecular structureof the intermediates in the methide transfer reactions: (CH3)3M+ + M'(CH3)4 ? M(CH3)4 + (CH3)3M'+ (M,M'=Si, Ge, Sn)  相似文献   

19.
Treatment of tris-cyclopentadienyl-ytterbium in thf with one equivalent of 2,6-di(tert-butyl)phenol, N,N-dimethyl-2-aminoethanol or N,N-diethyl-2-aminoethanol resulted in substitution of one cyclopentadienyl ligand and formation of [YbCp2(O-C6H3tBu-2,6)(thf)] (1), [{YbCp2(μ-OCH2CH2NMe2)}2] (2) or [{YbCp2(μ-OCH2CH2NEt2)}2] · (thf)2 (3), respectively. All compounds were characterised by spectroscopic and X-ray crystallographic techniques, the latter two also being studied by variable temperature 1H NMR spectroscopy. Compound (1) is mononuclear with the Yb centre bound by two η5-cyclopentadienyl ligands one O-bound thf and an O-bound phenoxy ligand. Compounds (2) and (3) are centrosymmetric dimers with the Yb centre bound by two η5-cyclopentadienyl ligands, while the bidentate ligands chelate the metal centre and also bridge to the adjacent Yb through the alkoxy oxygen atom. Variable temperature 1H NMR studies on compounds (2) and (3) show a solution-state equilibrium between the dimeric solid-state structure and one with the nitrogen atoms non-bound to Yb.  相似文献   

20.
The changes of bond dissociation energy (BDE) in the C–NO2 bond and nitro group charge upon the formation of the molecule-cation interaction between Na+ and the nitro group of 14 kinds of nitrotriazoles or methyl derivatives were investigated using the B3LYP and MP2(full) methods with the 6-311++G**, 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. The strength of the C–NO2 bond was enhanced in comparison with that in the isolated nitrotriazole molecule upon the formation of molecule-cation interaction. The increment of the C–NO2 bond dissociation energy (ΔBDE) correlated well with the molecule-cation interaction energy. Electron density shifts analysis showed that the electron density shifted toward the C-NO2 bond upon complex formation, leading to the strengthened C-NO2 bond and the possibly reduced explosive sensitivity.
Figure
C1-N2 bond turns strong upon molecule-cation interaction formation, leading to a possibly reduced explosive sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号