首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear pore complexes (NPCs) prepared from Xenopus laevis oocyte nuclear envelopes were studied in "intact" form (i.e., unexposed to detergent) and after detergent treatment by a combination of conventional transmission electron microscopy (CTEM) and quantitative scanning transmission electron microscopy (STEM). In correlation-averaged CTEM pictures of negatively stained intact NPCs and of distinct NPC components (i.e., "rings," "spoke" complexes, and "plug-spoke" complexes), several fine structural features arranged with octagonal symmetry about a central axis could reproducibly be identified. STEM micrographs of unstained/freeze-dried intact NPCs as well as of their components yielded comparable but less distinct features. Mass determination by STEM revealed the following molecular masses: intact NPC with plug, 124 +/- 11 MD; intact NPC without plug, 112 +/- 11 MD; heavy ring, 32 +/- 5 MD; light ring, 21 +/- 4 MD; plug-spoke complex, 66 +/- 8 MD; and spoke complex, 52 +/- 3 MD. Based on these combined CTEM and STEM data, a three-dimensional model of the NPC exhibiting eightfold centrosymmetry about an axis perpendicular to the plane of the nuclear envelope but asymmetric along this axis is proposed. This structural polarity of the NPC across the nuclear envelope is in accord with its well-documented functional polarity facilitating mediated nucleocytoplasmic exchange of molecules and particles.  相似文献   

2.
Fractions enriched for nuclear pore complexes (NPCs) have been isolated from Saccharomyces cerevisiae. The sequential extraction of nuclei with detergent, nucleases, and salt reveals an organization of the yeast NPC similar to other eukaryotes. Yeast NPCs contain a 30-nm “ring” structure not previously described in other organisms. This structure appears to organize 10-nm filaments into an assembly which exhibits an eight-fold rotational symmetry. Some proteins in the NPC fraction are capable of forming intermediate-sized filaments. These studies suggest that some component of the nuclear pore complex organizes an interaction between nuclear and cytoplasmic networks of intermediate filaments.  相似文献   

3.
The nuclear pore complex spans the nuclear envelope and functions as a macromolecular transporter in the ATP-dependent process of nucleocytoplasmic transport. In this report, we present three dimensional (3D) structures for both membrane-associated and detergent- extracted Xenopus NPCs, imaged in frozen buffers by cryo-electron microscopy. A comparison of the differing configurations present in the 3D maps suggests that the spokes may possess an intrinsic conformational flexibility. When combined with recent data from a 3D map of negatively stained NPCs (Hinshaw, J. E., B. O. Carragher, and R. A. Milligan. 1992. Cell. 69:1133-1141), these observations suggest a minimal domain model for the spoke-ring complex which may account for the observed plasticity of this assembly. Moreover, lumenal domains in adjacent spokes are interconnected by radial arm dimers, forming a lumenal ring that may be responsible for anchoring the NPC within the nuclear envelope pore. Importantly, the NPC transporter is visualized as a centrally tapered cylinder that spans the entire width of the NPC, in a direction normal to the nuclear envelope. The central positioning, tripartite structure, and hollow nature of the transporter suggests that it may form a macromolecular transport channel, with a globular gating domain at each end. Finally, the packing of the transporter within the spokes creates a set of eight internal channels that may be responsible, in part, for the diffusion of ions and small molecules across the nuclear envelope.  相似文献   

4.
Toward a more complete 3-D structure of the nuclear pore complex   总被引:20,自引:0,他引:20  
The nuclear pore complex (NPC) is a large supramolecular assembly embedded in the double-membraned nuclear envelope (NE) that plays a pivotal role in the exchange of macromolecules and particles between the nucleus and the cytoplasm. Applying various methods of sample preparation to Xenopus laevis whole nuclei and isolated NEs in combination with conventional transmission electron microscopy and digital image processing, we have characterized several distinct components of the NPC, including massive cytoplasmic and more tenuous nuclear rings, NPCs devoid of their cytoplasmic or both rings, and prominent "knobs" that protrude from the periphery of the NPC proper into the lumen of the NE. Moreover, by quick freezing/freeze drying/rotary metal shadowing isolated NEs, we have visualized two distinct types of NPC-associated filaments: (1) eight short, highly twisted filaments that project from the cytoplasmic ring and sometimes collapse into short cylinders; and (2) eight long, thin filaments that protrude from the nuclear ring and whose ends join to form a distal ring centered above the NPC such that the assembly resembles a "fishtrap." These nuclear fishtraps are sensitive to divalent cations: removal unfolds them and addition reforms them. The significance of these various structural components in terms of current NPC models is discussed, and the emerging asymmetry of the NPC relative to its nuclear and cytoplasmic face is stressed.  相似文献   

5.
6.
The sole gateway for molecular exchange between the cytoplasm and the nucleus is the nuclear pore complex (NPC). This large supramolecular assembly mediates transport of cargo into and out of the nucleus and fuse the inner and outer nuclear membranes to form an aqueous translocation channel. The NPC is composed of eight proteinaceous asymmetric units forming a pseudo-8-fold symmetric passage. Due to its shear size, complexity, and plastic nature, dissecting the high-resolution three-dimensional structure of the NPC in its hydrated state is a formidable challenge. Toward this goal, we applied cryo-electron tomography to spread nuclear envelopes from Xenopus oocytes. To compensate for perturbations of the 8-fold symmetry of individual NPCs, we performed symmetry-independent asymmetric unit averaging of three-dimensional tomographic NPC volumes to eventually yield a refined model at 6.4 nm resolution. This approach revealed novel structural features, particularly in the spoke-ring complex and luminal domains. Fused concentric ring architecture of the spoke-ring complex was found along the translocation channel. Additionally, a comparison of the refined Xenopus model to that of its Dictyostelium homologue yielded similar pore diameters at the level of the three canonical rings, although the Xenopus NPC was found to be 30% taller than the Dictyostelium pore. This discrepancy is attributed primarily to the relatively low homology and different organization of some nucleoporins in the Dictyostelium genome as compared to that of vertebrates. Nevertheless, the experimental conditions impose a preferred axial orientation of the NPCs within spread Xenopus oocyte nuclear envelopes. This may at least in part explain the increased height of the reconstructed vertebrate NPCs compared to those obtained from tomographic reconstruction of intact Dictyostelium nuclei.  相似文献   

7.
The nuclear envelope (NE) of amphibian oocytes can be readily isolated in relatively structurally intact and pure form and has been used extensively for structural studies. Using high resolution scanning electron microscopy (HRSEM), both surfaces of the NE can be visualized in detail. Here, we demonstrate the use of HRSEM to obtain high resolution information of NE structure, confirming previous data and providing some new information. NEs, manually isolated from Triturus cristatus oocytes, have been mounted on conductive silicon chips, fixed, critical point dried and coated with a thin, continuous film of chromium or tantalum and viewed at relatively high accelerating voltage in a field emission scanning electron microscope with the sample within the objective lens. Both nucleoplasmic and cytoplasmic surfaces of the nuclear pore complexes (NPC) have been visualized, revealing the cytoplasmic coaxial ring, associated particles, central plug/transporter and spokes. The nucleoplasmic face is dominated by the previously described basketlike structure attached to the nucleoplasmic coaxial ring. In Triturus, a novel, highly regular flat sheet of fibers, termed the NE lattice (NEL) has been observed attached to the distal ring of the NPC basket. The NEL appears to be distinct from the nuclear lamina. Evidence for the NEL is also presented in thin TEM sections from Triturus oocytes and GVs and in spread NEs from Xenopus. A model is presented for NEL structure and its interaction with the NPCs is discussed.  相似文献   

8.
The nuclear pore complex (NPC) is a large proteinaceous structure through which bidirectional transport of macromolecules across the nuclear envelope (NE) takes place. Nup153 is a peripheral NPC component that has been implicated in protein and RNP transport and in the interaction of NPCs with the nuclear lamina. Here, Nup153 is localized by immunogold electron microscopy to a position on the nuclear ring of the NPC. Nuclear reconstitution is used to investigate the role of Nup153 in nucleo- cytoplasmic transport and NPC architecture. NPCs assembled in the absence of Nup153 lacked several nuclear basket components, were unevenly distributed in the NE and, unlike wild-type NPCs, were mobile within the NE. Importin alpha/beta-mediated protein import into the nucleus was strongly reduced in the absence of Nup153, while transportin-mediated import was unaffected. This was due to a reduction in import complex translocation rather than to defective receptor recycling. Our results therefore reveal functions for Nup153 in NPC assembly, in anchoring NPCs within the NE and in mediating specific nuclear import events.  相似文献   

9.
We provide indirect evidence that six axonemal proteins here referred to as "dynein regulatory complex" (drc) are located in close proximity with the inner dynein arms I2 and I3. Subsets of drc subunits are missing from five second-site suppressors, pf2, pf3, suppf3, suppf4, and suppf5, that restore flagellar motility but not radial spoke structure of radial spoke mutants. The absence of drc components is correlated with a deficiency of all four heavy chains of inner arms I2 and I3 from axonemes of suppressors pf2, pf3, suppf3, and suppf5. Similarly, inner arm subunits actin, p28, and caltractin/centrin, or subsets of them, are deficient in pf2, pf3, and suppf5. Recombinant strains carrying one of the mutations pf2, pf3, or suppf5 and the inner arm mutation ida4 are more defective for I2 inner arm heavy chains than the parent strains. This evidence indicates that at least one subunit of the drc affects the assembly of and interacts with the inner arms I2.  相似文献   

10.
The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA.  相似文献   

11.
核孔复合体(Nuclear pore complexes, NPCs)镶嵌在核膜上,是细胞核与细胞质之间的唯一通道。冷冻电子X射线断层扫描将环状NPCs分为三个环,分别称为胞质环、内环和核质环,胞质环上附有胞质纤丝,核质环上附有核篮。由于物种不同,NPCs由30~50多种不同的核孔蛋白(nucleoporins, Nups)组成,但结构和功能高度保守。根据其结构、氨基酸序列,NPCs定位和功能,Nups被分为跨膜Nups、屏障Nups、骨架Nups、胞质纤丝Nups和核篮Nups。相互间作用稳定、紧密连接的数个Nups可组成亚复合体。为了应对不同生理需要,NPCs处于高度动态变化中,间期和有丝分裂期均可通过组装和去组装改变核孔数量和功能。NPCs的主要功能是调控核质转运,小分子物质可自由扩散,大分子物质则需在核转位信号和转运载体的介导下以主动运输的方式进行转运。除了核质转运这一主要功能外,Nups还能以一个独立于转运的方式影响基因组功能。通过影响染色质结构和影响转录调控元件对靶基因的访问,Nups促进或抑制转录。在酵母,Nups介导的基因调控主要由位于NPCs中的Nups执行;在多细胞生物,不仅NPCs中的Nups,核质内游离的Nups也具有基因调控功能。此外,Nups还能通过参与形成染色质边界和形成转录记忆对基因进行调控。在增殖细胞, Nups通过与DNA修复机器相互作用,参与DNA损伤修复,保护基因组完整性。有丝分裂时,Nups协助核膜解体和中心体迁移,并通过作用于着丝粒来控制有丝分裂组件的空间定位与活性,稳定它们与微管之间的相互作用,保证纺锤体正常组装和染色体准确分离。总之,NPCs与生物分子的核质转运、基因表达和细胞周期密切相关,它的结构和功能的稳定是真核细胞生长、增殖、分化等生命活动的基本保证。  相似文献   

12.
The inner dynein arm regulates axonemal bending motion in eukaryotes. We used cryo-electron tomography to reconstruct the three-dimensional structure of inner dynein arms from Chlamydomonas reinhardtii. All the eight different heavy chains were identified in one 96-nm periodic repeat, as expected from previous biochemical studies. Based on mutants, we identified the positions of the AAA rings and the N-terminal tails of all the eight heavy chains. The dynein f dimer is located close to the surface of the A-microtubule, whereas the other six heavy chain rings are roughly colinear at a larger distance to form three dyads. Each dyad consists of two heavy chains and has a corresponding radial spoke or a similar feature. In each of the six heavy chains (dynein a, b, c, d, e, and g), the N-terminal tail extends from the distal side of the ring. To interact with the B-microtubule through stalks, the inner-arm dyneins must have either different handedness or, more probably, the opposite orientation of the AAA rings compared with the outer-arm dyneins.  相似文献   

13.
Nuclear pore complexes are rotationally symmetric structures that span the nuclear envelope and provide channels for nucleocytoplasmic traffic. These large complexes normally consist of eight spokes arranged around a central channel, although, occasionally, 9- and 10-fold nuclear pore complexes are found in preparations of Xenopus oocyte macronuclei. Here we examine these unusual nuclear pore complexes by negative stain electron microscopy and image analysis and compare the results with data previously obtained from 8-fold structures. The details in two-dimensional and three-dimensional maps indicate that the substructure of the spoke is the same in 8-, 9- and 10-fold nuclear pore complexes: therefore, the spoke is likely an immutable structural component. In all three variant forms, the spacing between adjacent annular subunits, which surround the central channel, is identical. Distances between spokes at higher radius decrease in the 9- and 10-fold nuclear pore complexes. These data imply that the most important connections holding the nuclear pore complex together are those between adjacent annular subunits and that these interactions may play a predominant role in nuclear pore complex assembly. Circumferential connections mediated by ring subunits and radial arms presumably further stabilize the structure and are flexible enough to accommodate additional spokes.  相似文献   

14.
Exchange between the nucleus and the cytoplasm is controlled by nuclear pore complexes (NPCs). In animals, NPCs are anchored by the nuclear lamina, which ensures their even distribution and proper organization of chromosomes. Fungi do not possess a lamina and how they arrange their chromosomes and NPCs is unknown. Here, we show that motor-driven motility of NPCs organizes the fungal nucleus. In Ustilago maydis, Aspergillus nidulans, and Saccharomyces cerevisiae fluorescently labeled NPCs showed ATP-dependent movements at ~1.0 μm/s. In S. cerevisiae and U. maydis, NPC motility prevented NPCs from clustering. In budding yeast, NPC motility required F-actin, whereas in U. maydis, microtubules, kinesin-1, and dynein drove pore movements. In the latter, pore clustering resulted in chromatin organization defects and led to a significant reduction in both import and export of GFP reporter proteins. This suggests that fungi constantly rearrange their NPCs and corresponding chromosomes to ensure efficient nuclear transport and thereby overcome the need for a structural lamina.  相似文献   

15.
Nuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs form within the closed nuclear envelope during interphase or assemble concomitantly with nuclear envelope reformation in late stages of mitosis. Both interphase and mitotic NPC biogenesis require coordination of protein complex assembly and membrane deformation. During early stages of mitotic NPC assembly, a seed for new NPCs is established on chromatin, yet the factors connecting the NPC seed to the membrane of the forming nuclear envelope are unknown. Here, we report that the reticulon homology domain protein REEP4 not only localizes to high-curvature membrane of the cytoplasmic endoplasmic reticulum but is also recruited to the inner nuclear membrane by the NPC biogenesis factor ELYS. This ELYS-recruited pool of REEP4 promotes NPC assembly and appears to be particularly important for NPC formation during mitosis. These findings suggest a role for REEP4 in coordinating nuclear envelope reformation with mitotic NPC biogenesis.  相似文献   

16.
The nuclear envelope (NE) is a fundamental structure of eukaryotic cells with a dual role: it separates two distinct compartments, and enables communication between them via nuclear pore complexes (NPCs). Little is known about NPCs and NE structural organization in plants. We investigated the structure of NPCs from both sides of the NE in tobacco BY-2 cells. We detected structural differences between the NPCs of dividing and quiescent nuclei. Importantly, we also traced the organizational pattern of the NPCs, and observed non-random NPC distribution over the nuclear surface. Lastly, we observed an organized filamentous protein structure that underlies the inner nuclear membrane, and interconnects NPCs. The results are discussed within the context of the current understanding of NE structure and function in higher eukaryotes.  相似文献   

17.
To investigate nuclear lamina re-assembly in vivo, Drosophila A-type and B-type lamins were artificially expressed in Drosophila lamin Dm0null mutant brain cells. Both exogenous lamin C (A-type) and Dm0 (B-type) formed sub-layers at the nuclear periphery, and efficiently reverted the abnormal clustering of the NPC. Lamin C initially appeared where NPCs were clustered, and subsequently extended along the nuclear periphery accompanied by the recovery of the regular distribution of NPCs. In contrast, lamin Dm0 did not show association with the clustered NPCs during lamina formation and NPC spacing recovered only after completion of a closed lamin Dm0 layer. Further, when lamin Dm0 and C were both expressed, they did not co-polymerize, initiating layer formation in separate regions. Thus, A and B-type lamins reveal differing properties during lamina assembly, with A-type having the primary role in organizing NPC distribution. This previously unknown complexity in the assembly of the nuclear lamina could be the basis for intricate nuclear envelope functions.  相似文献   

18.
To understand the mechanisms that regulate the assembly and activity of flagellar dyneins, we focused on the I1 inner arm dynein (dynein f) and a null allele, bop5-2, defective in the gene encoding the IC138 phosphoprotein subunit. I1 dynein assembles in bop5-2 axonemes but lacks at least four subunits: IC138, IC97, LC7b, and flagellar-associated protein (FAP) 120—defining a new I1 subcomplex. Electron microscopy and image averaging revealed a defect at the base of the I1 dynein, in between radial spoke 1 and the outer dynein arms. Microtubule sliding velocities also are reduced. Transformation with wild-type IC138 restores assembly of the IC138 subcomplex and rescues microtubule sliding. These observations suggest that the IC138 subcomplex is required to coordinate I1 motor activity. To further test this hypothesis, we analyzed microtubule sliding in radial spoke and double mutant strains. The results reveal an essential role for the IC138 subcomplex in the regulation of I1 activity by the radial spoke/phosphorylation pathway.  相似文献   

19.
A lamin-independent pathway for nuclear envelope assembly   总被引:18,自引:11,他引:7       下载免费PDF全文
《The Journal of cell biology》1990,111(6):2247-2259
The nuclear envelope is composed of membranes, nuclear pores, and a nuclear lamina. Using a cell-free nuclear assembly extract derived from Xenopus eggs, we have investigated how these three components interact during nuclear assembly. We find that the Xenopus embryonic lamin protein LIII cannot bind directly to chromatin or membranes when each is present alone, but is readily incorporated into nuclei when both of the components are present together in an assembly extract. We find that depleting lamin LIII from an extract does not prevent formation of an envelope consisting of membranes and nuclear pores. However, these lamin-depleted envelopes are extremely fragile and fail to grow beyond a limited extent. This suggests that lamin assembly is not required during the initial steps of nuclear envelope formation, but is required for later growth and for maintaining the structural integrity of the envelope. We also present results showing that lamins may only be incorporated into nuclei after DNA has been encapsulated within an envelope and nuclear transport has been activated. With respect to nuclear function, our results show that the presence of a nuclear lamina is required for DNA synthesis to occur within assembled nuclei.  相似文献   

20.
Xenopus laevis egg extracts cell-free nuclear assembly system was used as an experimental model to study the process of nuclear lamina assembly in nuclear reconstitution in vitro. The experimental results showed that lamin was involved in the nuclear assembly in vitro. The assembly of nuclear lamina was preceded by the assembly of nuclear matrix, and probably, inner nuclear matrix assembly provided the basis for nuclear lamina assembly. Inhibition of normal assembly of nuclear lamina, by preincubating egg extracts cell-free system with anti-lamin antibodies, resulted in abnormal assembly of nuclear envelope, suggesting that nuclear envelope assembly is closely associated with nuclear lamina assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号