首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased ammonia accumulation in the brain due to liver dysfunction is a major contributor to the pathogenesis of hepatic encephalopathy (HE). Fatal outcome of rapidly progressing (acute) HE is mainly related to cytotoxic brain edema associated with astrocytic swelling. An increase of brain ammonia in experimental animals or treatment of cultured astrocytes with ammonia generates reactive oxygen and nitrogen species in the target tissues, leading to oxidative/nitrosative stress (ONS). In cultured astrocytes, ammonia-induced ONS is invariably associated with the increase of the astrocytic cell volume. Interrelated mechanisms underlying this response include increased nitric oxide (NO) synthesis which is partly coupled to the activation of NMDA receptors and increased generation of reactive oxygen species by NADPH oxidase. ONS and astrocytic swelling are further augmented by excessive synthesis of glutamine (Gln) which impairs mitochondrial function following its accumulation in there and degradation back to ammonia (“the Trojan horse” hypothesis). Ammonia also induces ONS in other cell types of the CNS: neurons, microglia and the brain capillary endothelial cells (BCEC). ONS in microglia contributes to the central inflammatory response, while its metabolic and pathophysiological consequences in the BCEC evolve to the vasogenic brain edema associated with HE. Ammonia-induced ONS results in the oxidation of mRNA and nitration/nitrosylation of proteins which impact intracellular metabolism and potentiate the neurotoxic effects. Simultaneously, ammonia facilitates the antioxidant response of the brain, by activating astrocytic transport and export of glutathione, in this way increasing the availability of precursors of neuronal glutathione synthesis.  相似文献   

2.
Glutamine (Gln) plays an important role in brain energy metabolism and as a precursor for the synthesis of neurotransmitter glutamate and GABA. Previous studies have shown that astrocytic Gln transport is impaired following manganese (Mn) exposure. The present studies were performed to identify the transport routes and the respective Gln transporters contributing to the impairment. Rat neonatal cortical primary astrocytes treated with Mn displayed a significant decrease in Gln uptake mediated by the principle Gln transporting systems, N and ASC. Moreover, systems N, ASC and L were less efficient in Gln export after Mn treatment. Mn treatment caused a significant reduction of both in mRNA expression and protein levels of SNAT3 (system N), SNAT2 (system A) and LAT2 (system L), and lowered the protein but not mRNA expression of ASCT2 (system ASC). Mn exposure did not affect the expression of the less abundant systems N transporter SNAT5 and the system L transporter LAT1, at either the mRNA or protein level. Hence, Mn-induced decrease of inward and outward Gln transport can be largely ascribed to the loss of the specific Gln transporters. Consequently, deregulation of glutamate homeostasis and its diminished availability to neurons may lead to impairment in glutamatergic neurotransmission, a phenomenon characteristic of Mn-induced neurotoxicity.  相似文献   

3.
The "glutamate-glutamine" cycle appears to have an important, albeit not exclusive role, in the recycling of glutamate (Glu) between neurons and astrocytes. Recent studies show that the efflux of glutamine (Gln) from astrocytes is mediated by SNAT3 (formerly SN1), a system N amino acid transporter localized to perisynaptic astrocytes, whereas its influx into neurons is thought to be mediated by transporters of the system A family, specifically SNAT1 and SNAT2. However, the results of our confocal and electron microscopy immunocytochemical studies of the localization of these transporters in the cerebral cortex show that SNAT1 and SNAT2 are robustly expressed in the somatodendritic domain of cortical neurons, but rarely to axon terminals. To rule out a possible influence of fixation and procedural variables on detection of SNAT1 and SNAT2 immunoreactivity in axon terminals, we used non-conventional immunocytochemical methods, which, in certain cases, improve antigen detection. Though evidencing a slightly increased percentage of axon terminals expressing the two transporters, these techniques demonstrated that SNAT1 and SNAT2 are indeed rarely localized to axon terminals. Our data thus suggest that neither SNAT1 nor SNAT2 meet the criteria for their postulated role in the "glutamate-glutamine" cycle, and indicate that other Gln transporters (either orphan or yet to be identified) must be expressed at axon terminals and sustain the Glu (and gamma-aminobutyric acid) neurotransmitter pool (s).  相似文献   

4.
The system N glutamine (Gln) transporter SN1(SNAT3) is overexpressed in human malignant glioma cells in situ as compared to the adjacent brain tissue or metastases from different organs [Sidoryk, M., Matyja, E., Dybel, A., Zielińska, M., Bogucki, J., Jaskólski, D.J., Liberski, P.P., Kowalczyk, P., Albrecht, J., 2004]. Increased expression of a glutamine transporter SNAT3 is a marker of malignant gliomas. NeuroReport 15, 575-578], but its role in tumor growth as compared to the other Gln transporters is unknown. One of the profound, growth-promoting effects of glial tumor in situ is acidification of the extracellular space. In the kidney SN1(SNAT3) mRNA participates in the adaptation to acidosis. In this study therefore, expression of mRNAs coding for SN1(SNAT3) and other Gln transporters was measured in human (T98G) and rat (C6) glioma cells incubated for 4h in an acidic medium (AI) (pH 6.5). MTT assay revealed no cell loss in AI cells, and intracellular pH (pHi) as measured by a fluorescent probe (BCECF-AM) was slightly alkaline in C6 and T98G cells, indicating that the cells have adapted to AI. AI significantly decreased the SN1(SNAT3) mRNA expression in C6 (a 60% decrease) and T98G cells (a 50% decrease). The decrease retreated in C6 cells 4h after transferring them back to the neutral medium. The expression of ASCT2 mRNA (system ASC), ATA1 mRNA (system A) and SN2(SNAT5) mRNA (system N) were not affected by AI in either of the cell lines. [(3)H]Gln uptake in C6 or T98G cells grown in neutral medium was mainly mediated by system ASCT2: system N contributed to only approximately 7% of the uptake. AI did not affect the total Gln uptake, and only slightly decreased the system N-mediated component of the uptake. Hence, SN1(SNAT3) does not seem to be involved in the adaptation of cultured glioma cells to acidic millieu.  相似文献   

5.
Acute liver failure (ALF) is characterized neuropathologically by cytotoxic brain edema and biochemically by increased brain ammonia and its detoxification product, glutamine. The osmotic actions of increased glutamine synthesis in astrocytes are considered to be causally related to brain edema and its complications (intracranial hypertension, brain herniation) in ALF. However studies using multinuclear (1)H- and (13)C-NMR spectroscopy demonstrate that neither brain glutamine concentrations per se nor brain glutamine synthesis rates correlate with encephalopathy grade or the presence of brain edema in ALF. An alternative mechanism is now proposed whereby the newly synthesized glutamine is trapped within the astrocyte as a consequence of down-regulation of its high affinity glutamine transporter SNAT5 in ALF. Restricted transfer out of the cell rather than increased synthesis within the cell could potentially explain the cell swelling/brain edema in ALF. Moreover, the restricted transfer of glutamine from the astrocyte to the adjacent glutamatergic nerve terminal (where glutamine serves as immediate precursor for the releasable/transmitter pool of glutamate) could result in decreased excitatory transmission and excessive neuroinhibition that is characteristic of encephalopathy in ALF. Paradoxically, in spite of renewed interest in arterial ammonia as a predictor of raised intracranial pressure and brain herniation in ALF, ammonia-lowering agents aimed at reduction of ammonia production in the gut have so far been shown to be of limited value in the prevention of these cerebral consequences. Mild hypothermia, shown to prevent brain edema and intracranial hypertension in both experimental and human ALF, does so independent of effects on brain glutamine synthesis; whether or not hypothermia restores expression levels of SNAT5 in ALF awaits further studies. While inhibitors of brain glutamine synthesis such as methionine sulfoximine, have been proposed for the prevention of brain edema in ALF, potential adverse effects have so far limited their applicability.  相似文献   

6.
Transfer of glutamine between astrocytes and neurons   总被引:6,自引:0,他引:6  
The export of glutamine from astrocytes, and the uptake of glutamine by neurons, are integral steps in the glutamate-glutamine cycle, a major pathway for the replenishment of neuronal glutamate. We review here the functional and molecular identification of the transporters that mediate this transfer. The emerging picture of glutamine transfer in adult brain is of a dominant pathway mediated by system N transport (SN1) in astrocytes and system A transport (SAT/ATA) in neurons. The participating glutamine transporters are functionally and structurally related, sharing the following properties: (a) unlike many neutral amino acid transporters which have proven to be obligate exchangers, these glutamine transporters mediate net substrate transfer energized by coupling to ionic gradients; (b) they are sensitive to small pH changes in the physiological range; (c) they are susceptible to adaptive and humoral regulation; (d) they are related structurally to the AAAP (amino acid and auxin permeases) family of transporters. A key difference between SN1 and the SAT/ATA transporters is the ready reversibility of glutamine fluxes via SN1 under physiological conditions, which allows SN1 both to sustain a glutamine concentration gradient in astrocytes and to mediate the net outward flux of glutamine. It is likely that the ASCT2 transporter, an obligate exchanger of neutral amino acids, displaces the SN1 transporter as the main carrier of glutamine export in proliferating astrocytes.  相似文献   

7.
The pathogenesis of hepatic encephalopathy (HE) is associated with hyperammonemia (HA) and subsequent exposure of the brain to excess of ammonia. Alterations of the NO/cGMP pathway and increased glutamine (Gln) content are collectively responsible for many HE symptoms, but how the two events influence each other is not clear. Previously we had shown that Gln administered intracerebrally inhibited the NO/cGMP pathway in control rats and even more so in rats with HA, and we speculated that this effect is due to inhibition by Gln of arginine (Arg) transport (Hilgier et al., 2009). In this study we demonstrate that a 3-day HA in the ammonium acetate model increases the expression in the brain of y(+)LAT2, the heteromeric transporter which preferentially stimulates Arg efflux from the cells in exchange for Gln. The expression of the basic amino acid transporter CAT1, transporting Arg but not Gln remained unaffected by HA. Multiple parameters of Arg or Gln uptake and/or efflux and their mutual dependence were altered in the cerebral cortical slices obtained from HA rats, in a manner indicating enhanced y(+)LAT2-mediated transport. HA elevated Gln content and decreased cGMP content as measured both in the cerebral cortical tissue and microdialysates. Intracortical administration of 6-diazo-5-oxo-L-norleucine (DON), which inhibits Gln fluxes between different cells of the CNS, attenuated the HA-induced decrease of cGMP in the microdialysates of HA rats, but not of control rats. The results suggest that, reduced delivery of Arg due to enhanced y(+)LAT2-mediated exchange of extracellular Gln for intracellular Arg may contribute to the decrease of NO/cGMP pathway activity evoked in the brain by HA.  相似文献   

8.
Glutamate transporters in hyperammonemia   总被引:2,自引:0,他引:2  
Evidence suggests that increases in brain ammonia due to congenital urea cycle disorders, Reye Syndrome or liver failure have deleterious effects on the glutamate neurotransmitter system. In particular, ammonia exposure of the brain in vivo or in vitro preparations leads to alterations of glutamate transport. Exposure of cultured astrocytes to ammonia results in reduced high affinity uptake sites for glutamate due to a reduction in expression of the astrocytic glutamate transporter GLAST. On the other hand, acute liver failure leads to decreased expression of a second astrocytic glutamate transporter GLT-1 and a consequent reduction in glutamate transport sites in brain. Effects of the chronic exposure of brain to ammonia on cellular glutamate transport are less clear. The loss of glutamate transporter activity in brain in acute liver failure and hyperammonemia is associated with increased extracellular brain glutamate concentrations which may be responsible for the hyperexcitability and cerebral edema observed in hyperammonemic disorders.  相似文献   

9.
Hepatic encephalopathy (HE) is the major neurological disorder associated with liver disease. It presents in chronic and acute forms, and astrocytes are the major neural cells involved. While the principal etiological factor in the pathogenesis of HE is increased levels of blood and brain ammonia, glutamine, a byproduct of ammonia metabolism, has also been implicated in its pathogenesis. This article reviews the current status of glutamine in the pathogenesis of HE, particularly its involvement in some of the events triggered by ammonia, including mitochondrial dysfunction, generation of oxidative stress, and alterations in signaling mechanisms, including activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB). Mechanisms by which glutamine contributes to astrocyte swelling/brain edema associated with acute liver failure (ALF) will also be described.  相似文献   

10.
Brain edema is a severe clinical complication in a number of pathologies and is a major cause of increased morbidity and death. The swelling of astrocytes caused by a disruption of water and ion homeostasis, is the primary event contributing to the cytotoxic form of brain edema. Astrocyte cytotoxic swelling ultimately leads to transcapillary fluxes of ions and water into the brain parenchyma. This review focuses on the implication of transporters and channels in cytotoxic astrocyte swelling in hyponatremia, ischemia, trauma and hepatic encephalopathy. Emphasis is put on some salient features of the astrocyte physiology, all related to cell swelling, i.e. predominance of aquaporins, control of K+ homeostasis and ammonia accumulation during the brain ammonia-detoxifying process.  相似文献   

11.
It is increasingly evident that neuroinflammatory mechanisms are implicated in the pathogenesis of the central nervous system (CNS) complications (intracranial hypertension, brain herniation) of acute liver failure (ALF). Neuroinflammation in ALF is characterized by microglial activation and arterio-venous difference studies as well as studies of gene expression confirm local brain production and release of proinflammatory cytokines including TNF-α and the interleukins IL-1β and IL-6. Although the precise nature of the glial cell responsible for brain cytokine synthesis is not yet established, evidence to date supports a role for both astrocytes and microglia. The neuroinflammatory response in ALF progresses in parallel with the progression of hepatic encephalopathy (HE) and with the severity of brain edema (astrocyte swelling). Mechanisms responsible for the relaying of signals from the failing liver to the brain include transduction of systemic proinflammatory signals as well as the effects of increased brain lactate leading to increased release of cytokines from both astrocytes and microglia. There is evidence in support of a synergistic effect of proinflammatory cytokines and ammonia in the pathogenesis of HE and brain edema in ALF. Therapeutic implications of the findings of a neuroinflammatory response in ALF are multiple. Removal of both ammonia and proinflammatory cytokines is possible using antibiotics or albumen dialysis. Mild hypothermia reduces brain ammonia transfer, brain lactate production, microglial activation and proinflammatory cytokine production resulting in reduced brain edema and intracranial pressure in ALF. N-Acetylcysteine acts as both an antioxidant and anti-inflammatory agent at both peripheral and central sites of action independently resulting in slowing of HE progression and prevention of brain edema. Novel treatments that directly target the neuroinflammatory response in ALF include the use of etanercept, a TNF-α neutralizing molecule and minocycline, an agent with potent inhibitory actions on microglial activation that are independent of its antimicrobial properties; both agents have been shown to be effective in reducing neuroinflammation and in preventing the CNS complications of ALF. Translation of these findings to the clinic has the potential to provide rational targeted approaches to the prevention and treatment of these complications in the near future.  相似文献   

12.
There is increasing evidence to suggest that hepatic encephalopathy in acute liver failure is the result of altered glutamatergic function. In particular, the high affinity uptake of glutamate is decreased in brain slices and synaptosomes from rats with acute liver failure as well as by exposure of cultured astrocytes to concentrations of ammonia equivalent to those reported in brain in acute liver failure. Both protein and gene expression of the recently cloned and sequenced astrocytic glutamate transporter GLT-1 are significantly reduced in the brains of rats with acute liver failure. Decreased expression of GLT-1 in brain in acute liver failure results in increased extracellular brain glutamate concentrations which correlates with arterial ammonia concentrations and with the appearance of severe encephalopathy and brain edema in these animals. Ammonia-induced reductions in expression of GLT-1 resulting in increased extracellular glutamate concentrations could explain some of the symptoms (hyperexcitability, cerebral edema) characteristic of hepatic encephalopathy in acute liver failure.  相似文献   

13.
Astrocytes are major glial cells that play a critical role in brain homeostasis. Abnormalities in astrocytic function, such as hepatic encephalopathy (HE) during acute liver failure, can result in brain death following brain edema and the associated astrocyte swelling. Recently, we have identified alpha 1-antichymotripsin (ACT) to be a biomarker candidate for HE. ACT induces astrocyte swelling by upregulating aquaporin 4 (AQP4); however, the causal connection between these proteins is not clear yet. In this study, we utilized a microarray profile to screen the differentially expressed genes (DEGs) in astrocytes treated with ACT. We then performed Gene Ontology, REACTOME, and the comprehensive resource of mammalian protein complexes (CORUM) enrichment analyses of the identified DEGs. The results of these analyses indicated that the DEGs were enriched in pathways activating adenylate cyclase (AC)-coupled G protein-coupled receptors (GPCRs) and therefore were involved in the cyclic adenosine monophosphate (cAMP) signaling. These results indicate that ACT may act as a ligand of Gs-GPCRs and subsequently upregulate cAMP. As cAMP is known to upregulate AQP4 in astrocytes, these results suggest that ACT may upregulate AQP4 by activating AC GPCRs and therefore serve as a therapeutic target for acute HE.  相似文献   

14.
It is increasingly evident that neuroinflammatory mechanisms are implicated in the pathogenesis of the central nervous system (CNS) complications (intracranial hypertension, brain herniation) of acute liver failure (ALF). Neuroinflammation in ALF is characterized by microglial activation and arterio-venous difference studies as well as studies of gene expression confirm local brain production and release of proinflammatory cytokines including TNF-α and the interleukins IL-1β and IL-6. Although the precise nature of the glial cell responsible for brain cytokine synthesis is not yet established, evidence to date supports a role for both astrocytes and microglia. The neuroinflammatory response in ALF progresses in parallel with the progression of hepatic encephalopathy (HE) and with the severity of brain edema (astrocyte swelling). Mechanisms responsible for the relaying of signals from the failing liver to the brain include transduction of systemic proinflammatory signals as well as the effects of increased brain lactate leading to increased release of cytokines from both astrocytes and microglia. There is evidence in support of a synergistic effect of proinflammatory cytokines and ammonia in the pathogenesis of HE and brain edema in ALF. Therapeutic implications of the findings of a neuroinflammatory response in ALF are multiple. Removal of both ammonia and proinflammatory cytokines is possible using antibiotics or albumen dialysis. Mild hypothermia reduces brain ammonia transfer, brain lactate production, microglial activation and proinflammatory cytokine production resulting in reduced brain edema and intracranial pressure in ALF. N-Acetylcysteine acts as both an antioxidant and anti-inflammatory agent at both peripheral and central sites of action independently resulting in slowing of HE progression and prevention of brain edema. Novel treatments that directly target the neuroinflammatory response in ALF include the use of etanercept, a TNF-α neutralizing molecule and minocycline, an agent with potent inhibitory actions on microglial activation that are independent of its antimicrobial properties; both agents have been shown to be effective in reducing neuroinflammation and in preventing the CNS complications of ALF. Translation of these findings to the clinic has the potential to provide rational targeted approaches to the prevention and treatment of these complications in the near future.  相似文献   

15.
Increased l-Arg (Arg) uptake to astrocytes and neurons is thought to contribute to enhanced nitric oxide (NO) synthesis and oxidative/nitrosative stress associated with hyperammonemia (HA). Recently we had shown that HA increases the expression in the brain of y(+)LAT2, an isoform of the y(+)L heteromeric transporter which promotes [(3)H]Arg efflux form brain cells in the presence of l-glutamine (Gln) (Zielińska et al., 2011). In this study, we demonstrate that a significant proportion of [(3)H]Arg uptake to cultured cortical astrocytes is likewise mediated by system y(+)L, in addition to the uptake showing characteristics of systems y(+), B(0+) and b(0+). However, stimulation of [(3)H]Arg uptake by treatment with 5mM ammonium chloride ("ammonia") for 48h could be solely ascribed to the y(+)L-mediated component of the uptake. Ammonia treatment increased the expression of the brain specific y(+)L isoform, y(+)LAT2, both at the mRNA and protein level, and silencing of the Slc7a6 gene coding for y(+)LAT2 protein specifically reduced the ammonia-induced [(3)H]Arg uptake. This study suggests an important role of y(+)LAT2 in the modulation of NO synthesis in the ammonia-exposed astrocytes.  相似文献   

16.
Glutamine synthetase in brain: effect of ammonia   总被引:16,自引:0,他引:16  
Glutamine synthetase (GS) in brain is located mainly in astrocytes. One of the primary roles of astrocytes is to protect neurons against excitotoxicity by taking up excess ammonia and glutamate and converting it into glutamine via the enzyme GS. Changes in GS expression may reflect changes in astroglial function, which can affect neuronal functions.Hyperammonemia is an important factor responsible of hepatic encephalopathy (HE) and causes astroglial swelling. Hyperammonemia can be experimentally induced and an adaptive astroglial response to high levels of ammonia and glutamate seems to occur in long-term studies. In hyperammonemic states, astroglial cells can experience morphological changes that may alter different astrocyte functions, such as protein synthesis or neurotransmitters uptake. One of the observed changes is the increase in the GS expression in astrocytes located in glutamatergic areas. The induction of GS expression in these specific areas would balance the increased ammonia and glutamate uptake and protect against neuronal degeneration, whereas, decrease of GS expression in non-glutamatergic areas could disrupt the neuron-glial metabolic interactions as a consequence of hyperammonemia.Induction of GS has been described in astrocytes in response to the action of glutamate on active glutamate receptors. The over-stimulation of glutamate receptors may also favour nitric oxide (NO) formation by activation of NO synthase (NOS), and NO has been implicated in the pathogenesis of several CNS diseases. Hyperammonemia could induce the formation of inducible NOS in astroglial cells, with the consequent NO formation, deactivation of GS and dawn-regulation of glutamate uptake. However, in glutamatergic areas, the distribution of both glial glutamate receptors and glial glutamate transporters parallels the GS location, suggesting a functional coupling between glutamate uptake and degradation by glutamate transporters and GS to attenuate brain injury in these areas.In hyperammonemia, the astroglial cells located in proximity to blood-vessels in glutamatergic areas show increased GS protein content in their perivascular processes. Since ammonia freely crosses the blood-brain barrier (BBB) and astrocytes are responsible for maintaining the BBB, the presence of GS in the perivascular processes could produce a rapid glutamine synthesis to be released into blood. It could, therefore, prevent the entry of high amounts of ammonia from circulation to attenuate neurotoxicity. The changes in the distribution of this critical enzyme suggests that the glutamate-glutamine cycle may be differentially impaired in hyperammonemic states.  相似文献   

17.
18.
Brain edema and the consequent increase in intracranial pressure and brain herniation are major complications of acute liver failure (fulminant hepatic failure) and a major cause of death in this condition. Ammonia has been strongly implicated as an important factor, and astrocyte swelling appears to be primarily responsible for the edema. Ammonia is known to cause cell swelling in cultured astrocytes, although the means by which this occurs has not been fully elucidated. A disturbance in one or more of these systems may result in loss of ion homeostasis and cell swelling. In particular, activation of the Na-K-Cl cotransporter (NKCC1) has been shown to be involved in cell swelling in several neurological disorders. We therefore examined the effect of ammonia on NKCC activity and its potential role in the swelling of astrocytes. Cultured astrocytes were exposed to ammonia (NH(4)Cl; 5 mm), and NKCC activity was measured. Ammonia increased NKCC activity at 24 h. Inhibition of this activity by bumetanide diminished ammonia-induced astrocyte swelling. Ammonia also increased total as well as phosphorylated NKCC1. Treatment with cyclohexamide, a potent inhibitor of protein synthesis, diminished NKCC1 protein expression and NKCC activity. Since ammonia is known to induce oxidative/nitrosative stress, and antioxidants and nitric-oxide synthase inhibition diminish astrocyte swelling, we also examined whether ammonia caused oxidation and/or nitration of NKCC1. Cultures exposed to ammonia increased the state of oxidation and nitration of NKCC1, whereas the antioxidants N-nitro-l-arginine methyl ester and uric acid all significantly diminished NKCC activity. These agents also reduced phosphorylated NKCC1 expression. These results suggest that activation of NKCC1 is an important factor in the mediation of astrocyte swelling by ammonia and that such activation appears to be mediated by NKCC1 abundance as well as by its oxidation/nitration and phosphorylation.  相似文献   

19.
Ammonia-induced astrocyte swelling in primary culture   总被引:4,自引:0,他引:4  
The effect of ammonia on water space of astrocytes in culture was determined as a means of studying the neurotoxicity of ammonia in fulminant hepatic failure (FHF). Treatment of primary astrocyte cultures obtained from neonatal rat cortices with 10 mM NH4Cl for 4 days resulted in a 29% increase in astrocytic water space, as measured by an isotopic method utilizing 3-O-methyl-[3H]-glucose. this effect was time- and dose-dependent. The ammonia-induced swelling was reversible as the water space in cultures treated with 10 mH NH4Cl for 3 days, and then returned to normal culture media for 1 day, was similar to control cultures. These findings suggest that elevated levels of ammonia lead to astrocyte swelling and may contribute to the brain edema in FHF.Special issue dedicated to Dr. Santiago Grisolia  相似文献   

20.
Skeletal muscle serves as the body's major glutamine repository, and releases glutamine at enhanced rates during diabetes, but whether all muscles are equally affected is unknown. System N(m) activity mediates most trans-sarcolemmal glutamine movement, and although two System N (SN) isoforms have been identified (SN1/sodium-coupled neutral amino acid transporter or System N and A transporters [SNAT]-3; and SN2/SNAT5), their expression in skeletal muscle remains controversial. Here, the impact of Type I diabetes on glutamine uptake and System N transporter expression were examined in fast- and slow-twitch skeletal muscle from spontaneously diabetic (BB/Wor-DP) rats. Net glutamine uptake in fast-twitch fibers was decreased 75%-95%, but enhanced more than 2-fold in slow-twitch muscle from diabetic animals relative to nondiabetic controls. Both SNAT3 and SNAT5 mRNA were expressed in both muscle fiber types and their abundance was unaffected by diabetes. This represents the first report of differential fiber-specific effects of diabetes on skeletal muscle glutamine transport and the co-expression of distinct System N transporters in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号