首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of gamma-, 14 MeV neutron- and fission neutron irradiation was investigated on the growth rate and degrading enzyme activities of pea seedlings. Both dormant pea seeds and 4-day-old growing seedlings were used for the experiments. Depending on the gamma dose between 15 and 300 Gy the height of pea seedlings was found shorter, and parallel with this the endogenous RNase and peroxidase activities were higher than in the unirradiated controls. Seedlings proved to be more sensitive by about one order of magnitude than seeds. Irradiation of seeds between 5 and 10 Gy slightly enhanced the growth rate of seedlings (10 per cent) and parallel with this, the RNase activity measured was lower than that in the controls. On irradiation of seedlings with 14 MeV neutrons the growth inhibition and RNase activity enhancement was only 1.3 times more effective than in the case of irradiation of seeds. The following RBE values were obtained after irradiation of seeds, related to the biological effect of gamma rays: in growth inhibition, 6 for 14 MeV neutrons and 12 for fission neutrons, and the enhancement of two enzyme activities was 15-30 for 14 MeV neutrons and 45-58 for fission neutrons. In the case of seedling irradiation with 14 MeV neutrons the RBE was 1.0 for growth inhibition and between 3 and 6 for enhancement of enzyme activity. The isoenzyme pattern of RNase also changed: two isoenzymes became predominant after the gamma irradiation of seeds, characterized by molecular weights of 21,000 and 30,000, respectively. As a result of enhanced RNase activity, the degradation of longer polysomes to monomeric ribosomes occurred. Thus after ionizing irradiation of pea seeds and seedlings an inverse correlation was found between the growth rate of pea seedlings and the activities of degrading enzymes.  相似文献   

2.
The catalytic activity of E. coli RNase P, an enzyme essential for tRNA biosynthesis in vivo, resides in the RNA subunit of the enzyme. This RNA, which has all the properties of a classical enzyme, can cleave precursor tRNAs in vitro in the total absence of proteins.  相似文献   

3.
4.
Chromatin conformation changes in the normal human fibroblasts VH-10 were studied by the method of anomalous viscosity time dependence (AVTD). Gamma-irradiation of cells in a dose range of 0.1–3 Gy caused an increase in maximal viscosity of cell lysates. Conversely, irradiation of cells with low doses of 0.5 or 2 cGy resulted in a decrease in the AVTD peaks with a maximum effect approximately 40 min after irradiation. The same exposure conditions were used to study a possible adaptive effect of low doses, measured by changes in cell survival. A primary dose of 2 cGy caused significant modification of cell response to a challenge dose. Approximately 20% protection to challenge doses of 0.5 Gy (p < 0.003), 2 Gy (p < 0.02) and 2.5 Gy (p < 0.002) was observed. However, the direction of this effect (adaptation or synergism) was found to be dependent on a challenge dose. The combined effect of 2 cGy and 1 Gy was significantly synergistic, while no modification was observed for 1.5 Gy and 3 Gy. A partial correlation was found between the AVTD changes and cell survival when the combined effect of a primary dose of 2 cGy and challenge dose was examined. The dose of 2 cGy alone increased survival by 16% (p < 0.0003). These results suggest that the low-dose induced effects on survival may be related to chromatin reorganization.  相似文献   

5.
Acid azo dyes, most of them naphtholdisulfonic acid derivatives, were given intraperitoneally to rats and their effect on "alkaline" ribonuclease activity was studied in total homogenates of kidney cortex and liver. Acid treatment was used to release bound enzyme activity. Several of the dyes, including trypan blue, increased RNase activity in both organs 3 days after administration of single doses, while others, like Evans blue, were inactive. Activity was apparently bound to the sulfonic substitution in the 3, 6 positions in the naphthalene rings, substitutions in the benzidine rings being not critical. All of the active and most of the inactive compounds were taken up by tubule cells of kidney cortex and by reticular and parenchymal cells of liver. While the effect on both liver and kidney was obtained 1 day after trypan blue administration, RNase remained increased for only about 3 days in the first organ, and for at least a month in the second. However, repeated trypan blue doses increased liver enzyme activity for at least 9 days. Serum RNase activity was decreased after trypan blue administration. Ethionine administration together with trypan blue markedly blocked the effect of the dye on liver RNase activity; simultaneously given methionine partially reversed the action of the antimetabolite. This suggests that de novo synthesis of RNase is induced in liver by trypan blue. The action of ethionine on the kidney RNase response to trypan blue was less marked although significant; in view of the possible kidney uptake of the plasma enzyme, interpretation of this finding must be postponed. Results are discussed with reference to the mechanism of the structural specificity of the compounds used, cytological localization of the dyes and their mechanism of action on liver and kidney RNase.  相似文献   

6.
通过实验生态学和生物化学的方法,研究了UV-B辐射对三角褐指藻和小角毛藻的生长、叶绿素a、类胡萝卜素、丙二醛、可溶性蛋白含量和抗氧化物酶活性的影响。结果表明:(1) UV-B辐射增强抑制了2种微藻的生长,低剂量(0.75J/m2)UV-B辐射对三角褐指藻的生长具有一定刺激作用。(2) 三角褐指藻的叶绿素a含量随辐射剂量的增加先上升后下降,小角毛藻chl-a含量缓慢下降。2种微藻MDA含量随UV-B辐射剂量的增加而升高。(3) 随着辐射剂量的增加,三角褐指藻可溶性蛋白含量先稍有升高后较快下降。小角毛藻可溶性蛋白含量始终呈下降趋势。(4) UV-B辐射增强使2种微藻的SOD 、POD和CAT活性先升高后下降,小角毛藻的酶活性变化相对稳定。  相似文献   

7.
The loss of protection by human recombinant (hr) Cu,Zn-superoxide dismutase (SOD) at higher doses reported previously may have been due to the weak peroxidase activity of this enzyme. To test this possibility we studied the dose-response relationship of hrMn-SOD, which lacks peroxidase activity. Isolated, buffer perfused rabbit hearts were subjected to 1 h of global ischemia followed by 1 h of reperfusion, and the percent recovery of developed tension (relative to preischemic) was measured via a left ventricular balloon connected through a pressure transducer to a polygraph recorder. The coronary effluent was assayed for lactate dehydrogenase (LDH) release. While hrMn-SOD almost completely protected against loss of function and LDH release at 2 and 5 mg/L (p < 0.01), it exacerbated the damage at 50 mg/L concentration (p < 0.05 against controls), thus giving an even sharper bell-shaped curve than seen with the hrCu,Zn-SOD. Therefore we conclude that, first, while the hrMn-SOD protects the reperfused heart at lower doses, it may exacerbate the damage at higher doses. Second, that the lack of protection seen at higher doses of hr-Cu,Zn-SOD is unlikely to be due only to its peroxidase activity.  相似文献   

8.
The red color of nuclei produced in formol-fixed paraffin sections stained with toluidine blue has been investigated by using deoxyribonuclease (DNase), ribonuclease (RNase) and 0.1 M Tris buffer. The action of DNase on formol-fixed material is not fully reliable, but clear-cut when positive. Nuclear basophilia and metachromasia is removed, nucleolar and cytoplasmic RNA is preserved. The picture produced by RNase depends to some extent on the concentration and acidity of the toluidine blue used for subsequent staining. Cytoplasmic RNA is always removed, while the red stain in nuclei usually remains intact. With 0.1% toluidine blue in 1% acetic acid, a nuclear color change from red to pale green is observed. Using this same staining solution, it can be shown that 0.1 M Tris buffer (overnight extraction at 37° C) will remove cytoplasmic RNA but leave intact the nuclear material that stains red. A red to green shift can subsequently be produced by RNase. From this it is deduced that there is a chromatin-associated nuclear RNA fraction which can be removed by the enzyme, but is stable to the buffer solution.  相似文献   

9.
Localized irradiation to the heads of adult male rats with 450 R increased pineal gland HIOMT activity while the same amount of irradiation restricted to the body diminished the activity of the enzyme. Anesthesia had no effect on this enzyme. Extremely high doses of irradiation were required (3,870 R) to inhibit HIOMT activity of bovine enzyme preparations in vitro. Localized irradaition of the head of rats with 450 R increased melatonin biosynthesis from tryptophan-3-14C, but irradiation of the body only had no such an effect. Injections of histamine-PO4 into rats or the addition of it to the incubation media of bovine enzyme preparations inhibited melatonin synthesis and bovine HIOMT activity, respectively.  相似文献   

10.
Sexual (MAT a/) and sexual (MAT a/a) strains of the yeast Saccharomyces cerevisiae, which are completely isogenic except at the MAT locus, were compared in their response to ultraviolet radiation. The effects of UV on survival, mitotic intragenic recombination, photoreactivation, and transformation efficiency with UV-irradiated plasmid DNA were examined. The sexual strain had enhanced survival and higher rates of mitotic intragenic recombination compared with the asexual strain. Exposure to visible light subsequent to irradiation increased the survival of both sexual and asexual strains, and decreased their rates of mitotic intragenic recombination. Similar results were obtained by Haladus and Zuk (1980) in their examination of sexual strains homozygous for rad6-1, and wild-type sexuals.

Our sexual strain was also consistently more proficient at transforming plasmid DNA, whether that DNA had been irradiated or not. When pre-irradiated with 25 J/m2 of UV, MAT a/ cells transformed more efficiently than MAT a/a cells. When subsequently exposed to light, the ability of these pre-irradiated cells to transform decreased for both strains with increasing irradiation of the plasmid. A smaller decrease in transformation efficiency occurred when cells of both strains were kept in the dark.

When pre-irradiated with 100 J/m2, the MAT a/ cells showed a 2-fold increase in their transformation efficiency of both irradiated and unirradiated plasmids by up to 2-fold, a phenomenon not seen in the MAT a/a cells even when pre-irradiated with much higher doses of UV. This increase in transformation efficiency was not, however, seen in the MAT a/ cells when they were exposed to visible light after UV irradiation. These results suggest that cells with the MAT a genotype have a UV-inducible system that increases the efficiency of transformation in the absence of visible light. This increase in transformation is not an induced increase in the repair of plasmid DNA, but rather an increase in the ability of pre-irradiated MAT a/ cells to take up exogenous DNA. MAT a/a cells do not appear to have a similarity inducible system. To the best of our knowledge, this phenomenon has not been previously reported.  相似文献   


11.
UVB irradiation of human skin is known to induce pathophysiological processes as oxidative stress and inflammation. HaCaT keratinocytes represent a well-established in vitro model system to investigate the influence of UVB irradiation on cell cultures. It was the aim of these investigations to study the effects of moderate UVB doses on cellular and mitochondrial integrity of HaCaT keratinocytes, biomarkers of oxidative stress and antioxidant protection by superoxide dismutases. F2-isoprostane concentrations were UVB dose-dependently enhanced reaching a plateau at 50 mJ/cm2. Cell viability was reduced and apoptosis was enhanced with increasing UVB doses. The activities of the respiratory chain complexes were practically not altered at lower UVB doses, up to 50 mJ/cm2, whereas remarkable decreases, also for the levels of cardiolipin species, were seen at 100 mJ/cm2. As an adaptive response to the enhanced oxidative stress, protein levels of MnSOD increased about 3-fold at 50 mJ/cm2 and decreased at higher doses. From the data it can be concluded that keratinocytes are sufficiently protected at low UVB doses, whereas higher doses lead to irreversible cell damage.  相似文献   

12.
13.
14.
For elucidation of thyroid hormone-induced responsiveness of fish brain, various doses (0.012, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2 and 4 μg/g) of triiodothyronine (T3) were injected in Singi fish, Heteropneustes fossilis (Bloch), for 3 consecutive days and the changes in cytosolic NADP-dependent malic enzyme (ME, EC 1.1.1.40) activity in whole brain tissue were determined. Compared to the control, the ME activity increased with lower doses (0.012, 0.025 and 0.05 μg/g) and decreased with higher doses (1, 2 and 4 μg/g) of T3, showing a biphasic nature of thyroid hormone action. The enzyme activity remained unaltered with 0.1, 0.25 and 0.5 μg of T3/g in comparison to the control. Immersion of the fishes in cycloheximide-containing medium (0.5 mg/l) inhibited the T3 (0.025 μg/g)-induced rise in ME activity. On the other hand, the NAD-dependent cytosolic malate dehydrogenase (EC 1.1.1.37) activity and the total protein content of brain cytosol remained unaltered with all doses of T3 used. The thyroid hormone specificity of cytosolic NADP-dependent malic enzyme in fish brain is thus documented.  相似文献   

15.
In order to determine the distribution of two human urinary RNase (RNase Us and RNase UL)-like enzymes in human tissues and body fluids, enzyme immunoassay systems were established using rabbit anti-RNase sera. The sensitivity of the assay systems was of similar order to that of radioimmunoassay systems previously reported. In the enzyme immunoassay, the cross reactivities of anti-RNase UL serum towards RNase Us, bovine kidney RNase K2, bovine RNase A, and bovine seminal RNase Vs were less than 1%. The cross reactivity of anti-RNase Us-serum towards RNase UL was less than 0.5% and cross reactivities were minimal for RNase A, RNase K2, and RNase Vs. The RNase levels in human organs and body fluids were measured by enzyme immunoassay. In milk, semen and saliva, only RNase UL-like enzyme was found. Both RNase Us- and RNase UL-like enzymes were found in kidney, stomach, and pancreas and the RNase Us/RNase UL ratios were 0.49, 1.35, and 0.34, respectively. In lung, liver, spleen, and leukocytes, most of the RNase activity was accounted for by RNase Us-like enzyme. The activity of RNase Us-like enzyme was especially high in lung, spleen, and leukocytes. The crude extracts of several tissues and body fluids were separated by phosphocellulose column chromatography and the contents of the two urinary RNase-like enzymes were determined by enzyme immunoassay. In stomach, kidney, pancreas, and serum, both enzymes were present in multiple forms. In spleen and lung, both the major RNase (RNase Us) and minor RNase (RNase UL) existed in two forms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Irradiation stress adversely affects plant growth and development. The radio protective activity by glycinebetaine in plants has not been reported, and its mechanism has not been known. Gamma rays at doses 0.0, 25, 50, 100, and 150 Gray (Gy) when applied pre-sowingly to dry seeds of fenugreek from a cobalt source (60Co) with strength of 500 Ci and the dose rate of 0.54 Gy/min significantly reduced chlorophyll content, total protein, photosynthetic efficiency (14CO2-fixation), total dry weight, the accumulation of reducing, non-reducing and total soluble sugars in comparison with un-irradiated control. It also significantly repressed the activities of hydrolytic enzymes (α-amylase and invertase), the carboxylating enzyme (ribulose-1,5-bisphosphate-carboxylase/oxygenase) in the developed fenugreek plants. Soaking irradiated seeds with glycinebetaine (50 mM) for 24 h partially alleviated the depression effects of irradiation in these parameters. γ-irradiation treatment increased significantly H2O2 content. Presoaking irradiated seeds with GB decreased significantly the H2O2 level. The magnitude of the reversal decreased with increasing the irradiation dose. γ-irradiation induced a significant decrease in the level of nucleic acids (DNA and RNA) accompanied by a corresponding induction of hydrolytic activities of DNase and RNase in the developed plants in comparison with un-irradiated control. Those changes were more significant at higher γ-ray doses. Post-treatment of irradiated seeds with GB partially alleviated the adverse effects of radiation. It significantly increased nucleic acid levels and repressed the activities of DNase and RNase. The protective role played by glycinebetaine was more significant at lower γ-ray doses. Pretreatment of seeds with GB may play an effective role in the radio-repair mechanism.  相似文献   

17.
Glucocorticoids (GC) and mineralocorticoids (MC) have profound regulatory effects upon the central nervous system (CNS). Hormonal regulation affects several molecules essential to CNS function. First, evidences are presented that mRNA expression of the 3 and β1-subunits of the Na,K-ATPase are increased by GC and physiological doses of MC in a region-dependent manner. Instead, high MC doses reduce the β1 isoform and enzyme activity in amygdaloid and hypothalamic nuclei, an effect which may be related to MC control of salt appetite. The 3-subunit mRNA of the Na,K-ATPase is also stimulated by GC in motoneurons of the injured spinal cord, suggesting a role for the enzyme in GC neuroprotection. Second, we provide evidences for hormonal effects on the expression of mRNA for the neuropeptide arginine vasopressin (AVP). Our data show that GC inhibition of AVP mRNA levels in the paraventricular nucleus is sex-hormone dependent. This sexual dimorphism may explain sex differences in the hypothalamic–pituitary–adrenal axis function between female and male rats. Third, steroid effects on the astrocyte marker glial fibrillary acidic protein (GFAP) points to a complex regulatory mechanism. In an animal model of neurodegeneration (the Wobbler mouse) showing pronounced astrogliosis of the spinal cord, in vivo GC treatment down-regulated GFAP immunoreactivity, whereas the membrane-active steroid antioxidant U-74389F up-regulated this protein. It is likely that variations in GFAP protein expression affect spinal cord neurodegeneration in Wobbler mice. Fourth, an interaction between neurotrophins and GC is shown in the injured rat spinal cord. In this model, intensive GC treatment increases immunoreactive low affinity nerve growth factor (NGF) receptor in motoneuron processes. Because GC also increases immunoreactive NGF, this mechanism would support trophism and regeneration in damaged tissues. In conclusion, evidences show that some molecules regulated by adrenal steroids in neurons and glial cells are not only involved in physiological control, but additionally, may play important roles in neuropathology.  相似文献   

18.
19.
Theiler''s virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS) and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler''s virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler''s virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler''s virus.  相似文献   

20.
A new sequence-specific RNase was isolated from human colon carcinoma T84 cells. The enzyme was purified to electrophoretical homogeneity by pH precipitation, HiTrapSP and Superdex 200 FPLC. The molecular weight of the new enzyme, which we have named RNase T84, is 19 kDa. RNase T84 is an endonuclease which generates 5'-phosphate-terminated products. The new RNase selectively cleaved the phosphodiester bonds at AU or GU steps at the 3' side of A or G and the 5' side of U. 5'AU3' or 5'GU3' is the minimal sequence required for T84 RNase activity, but the rate of cleavage depends on the sequence and/or structure context. Synthetic ribohomopolymers such as poly(A), poly(G), poly(U) and poly(C) were very poorly hydrolysed by T84 enzyme. In contrast, poly(I) and heteroribopolymers poly(A,U) and poly(A,G,U) were good substrates for the new RNase. The activity towards poly(I) was stronger in two colon carcinoma cell lines than in three other epithelial cell lines. Our results show that RNase T84 is a new sequence-specific enzyme whose gene is abundantly expressed in human colon carcinoma cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号