首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyhydroxyalkanoates (PHAs) are highly reduced bacterial storage compounds that increase fitness in changing environments. We have previously shown that phaRBAC genes from the Antarctic bacterium Pseudomonas sp. 14-3 are located in a genomic island containing other genes probably related with its adaptability to cold environments. In this paper, Pseudomonas sp. 14-3 and its PHA synthase-minus mutant (phaC) were used to asses the effect of PHA accumulation on the adaptability to cold conditions. The phaC mutant was unable to grow at 10°C and was more susceptible to freezing than its parent strain. PHA was necessary for the development of the oxidative stress response induced by cold treatment. Addition of reduced compounds cystine and gluthathione suppressed the cold sensitive phenotype of the phaC mutant. Cold shock produced very rapid degradation of PHA in the wild type strain. The NADH/NAD ratio and NADPH content, estimated by diamide sensitivity, decreased strongly in the mutant after cold shock while only minor changes were observed in the wild type. Accordingly, the level of lipid peroxidation in the mutant strain was 25-fold higher after temperature downshift. We propose that PHA metabolism modulates the availability of reducing equivalents, contributing to alleviate the oxidative stress produced by low temperature.  相似文献   

2.
Aeromonas hydrophila CGMCC 0911 possessing type I polyhydroxyalkanoate (PHA) synthase (PhaC) produced only PHBHHx from lauric acid but not from glucose. Medium-chain-length (mcl) PHA was produced from lauric acid or glucose only when PhaC of A. hydrophila was inactivated, indicating the existence of another PHA synthase in the wild type. Using PCR cloning strategy, the potential PHA synthase gene (phaC mcl) was obtained from genomic DNA of the wild type and exhibited strong homology to type II PHA synthase genes of Pseudomonas strains. The phaC mcl gene was PCR subcloned into plasmid pBBR1MCS2 and expressed in a PHA-negative mutant of Pseudomonas putida. Recombinant P. putida synthesized mcl PHA from gluconate or octanoate. This result proved that wild type A. hydrophila possessed another type II PHA synthase, which was responsible for the synthesis of mcl PHA, besides type I PHA synthase.  相似文献   

3.
A bacterial strain that produces amylase and polyhydroxyalkanoate (PHA) was isolated, identified, and classified under the Bacillus cereus group based on 16S rRNA gene sequences and specific reaction in poly-myxin egg yolk Mannitol bromothymol blue agar (PEMBA) medium and in combination with microbiological and biochemical tests. The complete ORF of phaC gene was cloned by PCR technique and nucleotide sequences were determined. Results indicated that the phaC gene had 99% homology with phaC of B. cereus (AE016877.1), 98% with B. thuringiensis (AY331151.1), and 94% with several strains of B. anthracis and B. cereus group including Bacillus sp. INT005. However, only 90% sequence homology with phaC of B. megaterium (AF109909.2) was observed. The PHA production using different fermentable sugars was tested and it was found that the CFR06 was able to accumulate 36–60% of PHA in cell dry weight (CDW). Zymogram of amylase indicated that native strain produces an extracellular enzyme of ∼80 kDa. The potency of the organism to hydrolyze starch due to the intrinsic amylase activity was considered, and starch was used as the sole carbon source for growth and PHA production. GC, FTIR, and 1H NMR analysis of the polymer indicated that the strain was a potent polyhydroxybutyrate (PHB) producer. The bacterium accumulated about 48% PHA in CDW in a starch containing medium.  相似文献   

4.
Pseudomonas aureofaciens grown on octanoate or gluconate synthesized medium-chain-length polyhydroxyalkanoates (mcl-PHAs). To clone the PHA synthase gene(s) (phaC), the genomic library of P. aureofaciens was constructed using a cosmid vector. The recombinant cosmids that clone phaC were detected by the complementation with a PHA-negative mutant, P. putida GPp104. The resulting recombinant cosmid, named pVK6, contained a 13-kbp DNA insert. Genetic analysis of the pha locus in pVK6 revealed the presence of six ORFs, genes encoding two PHA synthases, 1 and 2 (phaC1 and phaC2), PHA depolymerase (phaZ), two PHA granule-associated proteins (phaF and phaI), and an unknown protein (phaD). The heterologous expression of pha genes from P. aureofaciens was confirmed. P. putida GPp104 regained the ability to accumulate PHA on introduction of pVK6. Wild-type strains P. oleovorans and P. fluorescens, which were unable to accumulate PHA when grown on gluconate, acquired the ability to accumulate PHA from gluconate when they possessed pVK6. Received: 10 January 2001 / Accepted: 7 June 2001  相似文献   

5.
A cluster of genes encoding polyhydroxybutyrate (PHB) depolymerase (phaZ), PHB synthase (phaC), phasin (phaP), and the regulator protein (phaR) was previously identified in Rhodobacter sphaeroides FJ1 (R. sphaeroides FJ1). In this study, we investigated the role of the PhaR protein on the expression of the pha genes. Immunoblot analysis revealed that the expressions of phaP, phaZ and phaR genes in wild-type cells of R. sphaeroides FJ1 are repressed during the active growth phase, with the exception of phaC. A phaR deletion mutant of R. sphaeroides FJ1 was constructed, and the basal level of phaP and phaZ expression in this mutant was markedly increased. Electrophoretic mobility shift assays demonstrated that PhaR binds to the promoter region of phaP as well as those of phaR and phaZ. These results suggest that the PhaR protein is a repressor of phaP, phaR, and phaZ genes in R. sphaeroides FJ1.  相似文献   

6.
A polyhydroxyalkanoate (PHA) synthase gene phaC2 Ps from Pseudomonas stutzeri strain 1317 was introduced into a PHA synthase gene phbC Re negative mutant, Ralstonia eutropha PHB4. It conferred on the host strain the ability to synthesize PHA, the monomer compositions of which varied widely when grown on different carbon sources. During cultivation on gluconate, the presence of phaC2 Ps in R. eutropha PHB4 led to the accumulation of polyhydroxybutyrate (PHB) homopolymer in an amount of 40.9 wt% in dry cells. With fatty acids, the recombinant successfully produced PHA copolyesters containing both short-chain-length and medium-chain-length 3-hydroxyalkanoate (3HA) of 4–12 carbon atoms in length. When cultivated on a mixture of gluconate and fatty acid, the monomer composition of accumulated PHA was greatly affected and the monomer content was easily regulated by the addition of fatty acids in the cultivation medium. After the (R)-3-hydroxydecanol-ACP:CoA transacylase gene phaG Pp from Pseudomonas putida was introduced into phaC2 Ps-containing R. eutropha PHB4, poly(3HB-co-3HA) copolyester with a very high 3-hydroxybutyrate (3HB) fraction (97.3 mol%) was produced from gluconate and the monomer compositions of PHA synthesized from fatty acids were also altered. This study clearly demonstrated that PhaC2Ps cloned from P. stutzeri 1317 has extraordinarily low substrate specificity in vivo, though it has only 54% identity in comparison to a previously described low-substrate-specificity PHA synthase PhaC1Ps from Pseudomonas sp. 61–3. This study also indicated that the monomer composition and content of the synthesized PHA can be effectively modulated by controlling the addition of carbon sources or by modifying metabolic pathways in the hosts.  相似文献   

7.
Polyhydroxyalkanoates (PHAs) are biologically produced polyesters that have potential application as biodegradable plastics. Especially important are the short-chain-length-medium-chain-length (SCL-MCL) PHA copolymers, which have properties ranging from thermoplastic to elastomeric, depending on the ratio of SCL to MCL monomers incorporated into the copolymer. Because of the potential wide range of applications for SCL-MCL PHA copolymers, it is important to develop and characterize metabolic pathways for SCL-MCL PHA production. In previous studies, coexpression of PHA synthase genes and the 3-ketoacyl-acyl carrier protein reductase gene (fabG) in recombinant Escherichia coli has been shown to enhance PHA production from related carbon sources such as fatty acids. In this study, a new fabG gene from Pseudomonas sp. 61-3 was cloned and its gene product characterized. Results indicate that the Pseudomonas sp. 61-3 and E. coli FabG proteins have different substrate specificities in vitro. The current study also presents the first evidence that coexpression of fabG genes from either E. coli or Pseudomonas sp. 61-3 with fabH(F87T) and PHA synthase genes can enhance the production of SCL-MCL PHA copolymers from nonrelated carbon sources. Differences in the substrate specificities of the FabG proteins were reflected in the monomer composition of the polymers produced by recombinant E. coli. SCL-MCL PHA copolymer isolated from a recombinant E. coli strain had improved physical properties compared to the SCL homopolymer poly-3-hydroxybutyrate. This study defines a pathway to produce SCL-MCL PHA copolymer from the fatty acid biosynthesis that may impact on PHA production in recombinant organisms.  相似文献   

8.
A bacterial strain able to produce κ-carrageenase, designated WZUC10, was isolated from a live specimen of the red alga Plocamium telfainae collected in the East China Sea. The phylogenetic evidence and phenotypic features indicate that this strain belongs to the genus Pseudoalteromonas. WZUC10 requires NaCl for growth and κ-carrageenan to induce κ-carrageenase synthesis; galactose and lactose do not induce it. The optimal growth temperature is 23∼27°C. The secreted enzyme, which has a molecular mass of 45 kDa, breaks down κ-carrageenan into κ-neocarratetraose sulfate and larger oligosaccharides with a repeating β-D-Galp4S-(1→4)-α-D-AnGalp structure, but cannot degrade κ-neocarratetraose sulfate or κ-neocarrahexaose sulfate into κ-neocarrabiose sulfate. The enzyme retains 90% of its activity after 2 h at 40°C and is completely inactivated after 7.5 min at 70°C. The enzyme’s optimal temperature is 30°C and its optimal pH is 7.5. The enzyme-catalyzed reaction follows Michaelis-Menten kinetics, with the Michaelis constant (K m) and the turnover number (k) being 0.015 mM and 125 s−1, respectively. WZUC10 produces 50 U/mL κ-carrageenase after cultivation at 25°C for 35 h on a medium containing 80 g/L glucose, 5 g/L corn steep liquor, 3 g/L κ-carrageenan, and 15 g/L NaCl. κ-Neocarratetraose sulfate was prepared simply with precipitation by ethanol:water (5:1, v/v).  相似文献   

9.
The polyhydroxyalkanoate biosynthesis gene locus from Bacillus thuringiensis R1 was isolated, cloned and analyzed at the molecular level. We found that a ∼5 kb SacI–ClaI digested fragment of genomic DNA from B. thuringiensis R1 encoding the PHA synthesising genes, conferred PHA producing ability to E. coli. The fragment was sequenced and found to be of 4787 bp with five open reading frames. Sequence alignment with closely related species of Bacillus in the existing database revealed that the ORFs correspond to phaP, phaQ, phaR, phaB and phaC genes. However, E. coli harboring phaP, phaQ, phaR, phaB and phaC locus produced very low PHA. Furthermore, complementation of the locus with phaA from Ralstonia eutropha increased the PHA production in the recombinant E. coli from 3.0% to 24% of cell dry mass. The putative promoter regions and ribosome binding sites were identified for each of the gene. Conserved domains for PHA synthase and aceto-acetyl-coA reductase were also identified. We hence conclude that the PHA operon of Bacillus thuringiensis R1 consists of phaP, phaQ, phaR, phaB, phaC and complementation of the same with phaA is accountable for its high PHA production.  相似文献   

10.
Polyhydroxyalkanoates (PHAs) can be divided into three main types based on the sizes of the monomers incorporated into the polymer. Short-chain-length (SCL) PHAs consist of monomer units of C3 to C5, medium-chain-length (MCL) PHAs consist of monomer units of C6 to C14, and SCL-MCL PHAs consist of monomers ranging in size from C4 to C14. Although previous studies using recombinant Escherichia coli have shown that either SCL or MCL PHA polymers could be produced from glucose, this study presents the first evidence that an SCL-MCL PHA copolymer can be made from glucose in recombinant E. coli. The 3-ketoacyl-acyl carrier protein synthase III gene (fabH) from E. coli was modified by saturation point mutagenesis at the codon encoding amino acid 87 of the FabH protein sequence, and the resulting plasmids were cotransformed with either the pAPAC plasmid, which harbors the Aeromonas caviae PHA synthase gene (phaC), or the pPPAC plasmid, which harbors the Pseudomonas sp. strain 61-3 PHA synthase gene (phaC1), and the abilities of these strains to accumulate PHA from glucose were assessed. It was found that overexpression of several of the mutant fabH genes enabled recombinant E. coli to induce the production of monomers of C4 to C10 and subsequently to produce unusual PHA copolymers containing SCL and MCL units. The results indicate that the composition of PHA copolymers may be controlled by the monomer-supplying enzyme and further reinforce the idea that fatty acid biosynthesis may be used to supply monomers for PHA production.  相似文献   

11.
Seventeen psychrotrophic bacteria with cold-adaptive amylolytic, lipolytic or proteolytic activity were isolated from deep sea sediment of Prydz Bay, Antarctic. They were affiliated with γ-Proteobacteria (12 strains) and gram-positive bacteria (5 strains) as determined by 16S rDNA sequencing. The amylase-producing strains belonged to genus Pseudomonas, Rhodococcus, and Nocardiopsis. Two Pseudomonas strains, 7193 and 7197, which showed highest amylolytic activity were chosen for further study. The optimal temperatures for their growth and amylase-producing were between 15 and 20°C. Both of the purified amylases showed highest activity at 40°C and pH 9.0, and retained 50% activity at 5°C. The SDS-PAGE and zymogram activity staining showed that the molecular mass of strain 7193 and 7197 amylases were about 60 and 50 kDa respectively. The Pseudomonas sp. 7193 amylase hydrolyzed soluble starch into glucose, maltose, maltotriose, and maltotetraose, indicating that it had both activities of α-amylase and glucoamylase. The product hydrolyzed by Pseudomonas sp. 7197 amylase was meltotetraose.  相似文献   

12.
Biodegradation of pyridine and α-picoline (2-methyl pyridine) by Pseudomonas pseudoalcaligenes-KPN and Nocardia sp. isolated from garden soil were investigated in batch culture experiments. Pyridine and α-picoline (50–200 mg L−1) were used as sole source of carbon and energy in the investigation. The kinetic constants were evaluated for pyridine and α-picoline degradation under optimized nutritional (C, N, P) and environmental (pH, temperature) conditions. The values of bio-kinetic constant obtained in the present investigation indicate the usefulness of both the cultures for treatment of waste containing pyridine and its derivatives.  相似文献   

13.
Eighteen gram-negative thermotolerant poly(3-hydroxybutyrate) (PHB)-degrading bacterial isolates (T max60°C) were obtained from compost. Isolates produced clearing zones on opaque PHB agar, indicating the presence of extracellular PHB depolymerases. Comparison of physiological characteristics and determination of 16S rRNA gene sequences of four selected isolates revealed a close relatedness of three isolates (SA8, SA1, and KA1) to each other and to Schlegelella thermodepolymerans and Caenibacterium thermophilum. The fourth strain, isolate KB1a, showed reduced similarities to the above-mentioned isolates and species and might represent a new species of Schlegelella. Evidence is provided that S. thermodepolymerans and C. thermophilum are only one species. The PHB depolymerase gene, phaZ, of isolate KB1a was cloned and functionally expressed in Escherichia coli. Purified PHB depolymerase was most active around pH 10 and 76°C. The DNA-deduced amino acid sequence of the mature protein (49.4 kDa) shared significant homologies to other extracellular PHB depolymerases with a domain substructure: catalytic domain type 2—linker domain fibronectin type 3—substrate-binding domain type 1. A catalytic triad consisting of S20, D104, and H138 and a pentapeptide sequence (GLS20AG) characteristic for PHB depolymerases (PHB depolymerase box, GLSXG) and for other serine hydrolases (lipase box, GXSXG) were identified.This contribution is dedicated to Hans G. Schlegel in honor of his 80th birthday.Fabian Romen and Simone Reinhardt share first authorship.  相似文献   

14.
Molecular characterization based on 16s rDNA gene sequence analysis of bacterial colonies isolated from endosulfan contaminated soil showed the presence of Ochrobacterum sp, Burkholderia sp, Pseudomonas alcaligenes, Pseudomonas sp and Arthrobacter sp which degraded 57–90% of α-endosulfan and 74–94% of β-endosulfan after 7days. Whole cells of Pseudomonas sp and Pseudomonas alcaligenes showed 94 and 89% uptake of α-isomer and 86 and 89% of β-endosulfan respectively in 120 min. In Pseudomonas sp, endosulfan sulfate was the major metabolite detected during the degradation of α-isomer, with minor amount of endosulfan diol while in Pseudomonas alcaligenes endosulfan diol was the only product during α-endosulfan degradation. Whole cells of Pseudomonas sp also utilized 83% of endosulfan sulfate in 120 min. In situ applications of the defined consortium consisting of Pseudomonas alcaligenes and Pseudomonas sp (1:1) in plots contaminated with endosulfan showed that 80% of α-endosulfan and 65% of β-endosulfan was degraded after 12 weeks of incubation. Endosulfan sulfate formed during endosulfan degradation was subsequently degraded to unknown metabolites. ERIC-PCR analysis indicated 80% survival of introduced population of Pseudomonas alcaligenes and Pseudomonas sp in treated plots.  相似文献   

15.
Demineralization (DM) from crab shell (CS) waste was carried out using a lactic acid-producing bacterium, Lactobacillus paracasei subsp. tolerans KCTC-3074 for 7 days at 25, 30, and 35°C. DM rates were 89∼92% and slightly affected by temperature. DM was also performed for four particle-sized shell samples (0.84∼3.35, 3.35∼10, 10∼20, and 20∼35 mm) with 10% inoculum, 5% shell, and 10% glucose at 30°C and 180 rpm for 7 days. It was found out that the shell size had a slight effect on the rate of DM. Negative relationships were found between DM and residual dry weight (r2 = 0.960), and between DM and pH (r2 = 0.906). Conversely, positive relationships were found between DM and medium protein (r2 = 0.696), and between DM and total titratable acidity (r2 = 0.630).  相似文献   

16.
Oily sludge degradation by bacteria from Ankleshwar, India   总被引:7,自引:0,他引:7  
Three bacterial strains, Bacillus sp. SV9, Acinetobacter sp. SV4 and Pseudomonas sp., SV17 from contaminated soil in Ankleshwar, India were tested for their ability to degrade the complex mixture of petroleum hydrocarbons (such as alkanes, aromatics, resins and asphaltenes), sediments, heavy metals and water known as oily sludge. Gravimetric analysis showed that Bacillus sp. SV9 degraded approx. 59% of the oily sludge in 5 days at 30 °C whereas Acinetobacter sp. SV4 and Pseudomonas sp. SV17 degraded 37% and 35%. Capillary gas chromatographic analysis revealed that after 5 days the Bacillus strain was able to degrade oily sludge components of chain length C12–C30 and aromatics more effectively than the other two strains. Maximum drop in surface tension (from 70 to 28.4 mN/m) was accompanied by maximum biosurfactant production (6.7 g l−1) in Bacillus sp. SV9 after 72 h, these results collectively indicating that this bacterial strain has considerable potential for bioremediation of oily sludge.  相似文献   

17.
During cultivation under storage conditions with BG11 medium containing acetate as a carbon source, Synechocystis sp. PCC6803 accumulated poly(3-hydroxybutyrate) up to 10% (w/w) of the cell dry weight. Our analysis of the complete Synechocystis sp. PCC6803 genome sequence, which had recently become available, revealed that not only the open reading frame slr1830 (which was designated as phaC) but also the open reading frame slr1829, which is located colinear and upstream of phaC, most probably represent a polyhydroxyalkanoic acid (PHA) synthase gene. The open reading frame slr1829 was therefore designated as phaE. The phaE and phaC gene products exhibited striking sequence similarities to the corresponding PHA synthase subunits PhaE and PhaC of Thiocystis violacea, Chromatium vinosum, and Thiocapsa pfennigii. The Synechocystis sp. PCC6803 genes were cloned using PCR and were heterologously expressed in Escherichia coli and in Alcaligenes eutrophus. Only coexpression of phaE and phaC partially restored the ability to accumulate poly(3-hydroxybutyrate) in the PHA-negative mutant A. eutrophus PHB4. These results confirmed our hypothesis that coexpression of the two genes is necessary for the synthesis of a functionally active Synechocystis sp. PCC6803 PHA synthase. PHA granules were detected by electron microscopy in these cells, and the PHA-granule-associated proteins were studied. Western blot analysis of Synechocystis sp. PCC6803 crude cellular extracts and of granule-associated proteins employing antibodies raised against the PHA synthases of A. eutrophus (PhaC) and of C. vinosum (PhaE and PhaC) revealed no immunoreaction. Received: 11 March 1998 / Accepted: 2 June 1998  相似文献   

18.
Total sixteen bacterial strains were isolated and purified from the samples collected from sugarcane molasses soil, sewage water and long-chain-hydrocarbon-contaminated area of the Punjab University, Lahore, Pakistan. Tolerance to different antibiotics was studied and strains showed multiple antibiotic resistance. All strains were characterized for Gram stain, biochemical reactions and polyhydroxyalkanoate (PHA) production. Total fourteen strains were Gram negative and two were Gram positive, while biochemically nine PHA producers showed affiliation to Pseudomonas, Enterobacter, Citrobacter, Bacillus and Escherichia. Screening for PHA production was done by Sudan black staining and nine out of sixteen strains exhibited PHA producing ability. PHA production was optimized for different growth parameters, like nitrogen concentration, pH and temperature. PHA extraction was done by solvent extraction method. Bacterial strains US1 and M1 accumulated up to 30% PHA of their cell dry weight on PHA extraction by solvent extraction method. Bacterial strain US1 was identified by 16S rRNA gene analysis as P. aeruginosa (DQ455691). PHA production was confirmed by PCR amplification of 500 bp fragment from PHA polymerase (Pha C) gene; five strains from nine PHA producers gave positive results on PCR. Pha C gene fragment of US1 was sequenced and submitted to Gene Bank under the accession number DQ455690. The amino acid sequence showed homology using the protein BLAST at 129–132 sites with different PHA synthases of the Pseudomonas sp.  相似文献   

19.
[背景] 细菌能通过合成聚羟基脂肪酸酯(Polyhydroxyalknoates,PHA)在细胞内储存物质和能量,提高对环境的适应能力。在红树林中,由于土壤周期性受海水浸没,形成营养物质种类丰富和含量波动大的特殊生境,为细菌进化出特殊的PHA合成途径提供了条件。[目标] 为了增加对红树林产PHA细菌资源的了解,获得产PHA细菌,使用纯培养方法分离和鉴定细菌,并评估菌株的产PHA能力。[方法] 采集红树植物海桑根系和红树滩涂土壤样品,连续5周培养、分离纯化获得细菌菌株;通过16S rRNA基因相似性及系统进化分析鉴定细菌分类地位,利用PHA合成酶基因(phaC)鉴定细菌合成PHA的能力;通过基因组草图测序,分析细菌的phaC基因种类、代谢通路及系统进化关系;通过气相色谱分析细菌产PHA的累积量及组成。[结果] 从红树林土壤样品中分离得到97株细菌,其中13株带有phaC基因,包括坚强芽孢杆菌(Cytobacillus firmus)、弯曲芽孢杆菌(Bacillus flexus)、除烃海杆菌(Marinobacter hydrocarbonoclasticus)和酯香微杆菌(Microbacterium esteraromaticum)。B. flexus MN15-19以丙酮酸盐为碳源,可累积细胞干重11%的PHA,同时具有固碳功能的还原性三羧酸循环通路,有开发成为固碳产PHA工程菌株的潜力。酯香微杆菌可产PHA,但是其phaC基因结构特殊,基因组注释未能识别出任何已知phaC基因。[结论] 研究发现红树林土壤可培养细菌中存在未知的PHA合成途径,说明红树林生态系统中的细菌具有资源挖掘的重要价值。  相似文献   

20.
The class III poly(hydroxyalkanoate) synthase (PHAS) genes (phaC and phaE) of a photosynthetic bacterium, Allochromatium vinosum ATCC 35206, were cloned, sequenced and expressed in a heterologous host. PCR coupled with a chromosomal gene-walking method was used to clone and subsequently sequence the contiguous phaC (1,068 bps) and phaE (1,065 bps) genes of A. vinosum ATCC 35206. BLASTP search of protein databases showed that the gene-products of phaC and phaE are different (<66% identities) from the previously reported class III PHASs such as those of A. vinosum DSM180. Domain analysis revealed the presence of a conserved α/β-hydrolase fold in PhaC, the putative gene-product of phaC. Upon electroporation of a poly(hydroxybutanoate) (PHB)-negative mutant of Ralstonia eutropha PHB4 with a shuttle plasmid pBHR1 containing the newly cloned phaC and phaE genes, the bacteria resumed the synthesis of PHB, albeit at a low level (4–5% of the cell dry wt) due to kanamycin selection pressure. We further showed that the recombinant strain grown in kanamycin-containing culture medium synthesized a blend of PHA that also contains a high content of 3-hydroxyoctanoate and 3-hydroxydecanoate as its repeat-unit monomers. Genomic analysis suggested the existence of two PHA synthase genes in R. eutropha. The results of this study not only make available a phylogenetically diverse type III phaC and phaE genes, but also confirm through kanamycin selection pressure the existence of multiple PHA biosynthesis systems in R. eutropha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号