首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of the carboxylating enzymes ribulose-1,5-biphosphate (RuBP) carboxylase and phosphoenolpyruvate (PEP) carboxylase in leaves of three-week old Zea mays plants grown under phytotron conditions were found to vary according to leaf position. In the lower leaves the activity of PEP carboxylase was lower than that of RuBP carboxylase, while the upper leaves exhibited high levels of PEP carboxylase. Carbon dioxide compensation points and net photosynthetic rates also differed in the lower and upper leaves. Differences in the fine structure of the lowermost and uppermost leaves are shown. The existence of both the C3 and C4 photosynthetic pathways in the same plant, in this and other species, is discussed.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-biphosphate  相似文献   

2.
Richard C. Leegood 《Planta》1985,164(2):163-171
Sap extracted from attached leaves of two-to three-week-old maize plants witt the aid of a roller device was almost devoid of bundle-sheath contamination as judged by the distribution of mesophyll and bundle-sheath markers. The extraction could be done very rapidly (less than 1 s) and the extract immediately quenched in HClO4 or reserved for enzyme assay. Comparison of the contents of metabolites in intact leaves and in the leaf extract allowed estimation of the distribution of metabolites between the bundle-sheath and the mesophyll compartments. Substantial amounts of metabolites such as malate and amino acids were present in the non-photosynthetic cells of the midrib. In the illuminated leaf, triose phosphate was predominantly located outside the bundle-sheath while the major part of the 3-phosphoglycerate was in the bundle sheath. The results indicate the existence of concentration gradients of triose phosphate and 3-phosphoglycerate in the leaf which are capable of maintaining carbon flow between the mesophyll and bundle-sheath cells during photosynthesis. There was no evidence for the existence of a gradient of pyruvate between the bundle-sheath and the mesophyll cells.  相似文献   

3.
The activities of several enzymes, including ribulose-1,5-diphosphate (RuDP) carboxylase (EC 4.1.1.39) and phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured as a function of leaf age in Z. mays. Mature leaf tissue had a RuDP-carboxylase activity of 296.7 mol CO2 g-1 fresh weight h-1 and a PEP-carboxylase activity of 660.6 mol CO2 g-1 fresh weight h-1. In young corn leaves the activity of the two enzymes was 11 and 29%, respectively, of the mature leaves. In senescent leaf tissue, RuDP carboxylase activity declined more rapidly than that of any of the other enzymes assayed. On a relative basis the activities of NADP malic enzyme (EC 1.1.1.40), aspartate (EC 2.6.1.1) and alanine aminotransferase (EC 2.6.1.2), and NAD malate dehydrogenase (EC 1.1.1.37) exceeded those of both PEP and RuDP carboxylase in young and senescent leaf tissue. Pulse-chase labeling experiments with mature and senescent leaf tissue show that the predominant C4 acid differs between the two leaf ages. Labeling of alanine in senescent tissue never exceeded 4% of the total 14C remaining during the chase period, while in mature leaf tissue alanine accounted for 20% of the total after 60 s in 12CO2. The activity of RuDP carboxylase during leaf ontogeny in Z. mays parallels the development of the activity of this enzyme in C3 plants.Abbreviations RuDP ribulose-1,5-diphosphate - PEP phosphoenol pyruvate - PGA 3-phosphoglycerate  相似文献   

4.
The aim of this work was to investigate the mechanism of formation of triose phosphates and 3-phosphoglycerate during photosynthetic induction in leaves of Zea mays. Simultaneous measurements of gas exchange, chlorophyll a fluorescence and metabolite contents of maize leaves were made. Leaves illuminated in the absence of CO2 showed a build-up of triose phosphates during the first 2 min of illumination which was comparable to the build-up observed in the presence of CO2. Isolated mesophyll protoplasts, which lack the Calvin cycle, also showed a build-up of triose phosphates upon illumination. Leaves contained amounts of phosphoglycerate mutase and enolase adequate to account for the formation of triose phosphates and 3-phosphoglycerate from intermediates of the C4 cycle and their precursors.  相似文献   

5.
The relationship between the gas-exchange characteristics of attached leaves of Zea mays L. and the contents of photosynthetic intermediates was examined at different intercellular partial pressure of CO2 and at different irradiances at a constant intercellular partial pressure of CO2. (i) The behaviour of the pools of the C4-cycle intermediates, phosphoenolpyruvate and pyruvate, provides evidence for light regulation of their consumption. However, light regulation of phosphoenolpyruvate carboxylase does not influence the assimilation rate at limiting intercellular partial pressures of CO2. (ii) A close correlation between the pools of phosphoenolpyruvate and glycerate-3-phosphate exists under many different flux conditions, consistent with the notion that the pools of C4 and C3 cycles are connected via the interconversion of glycerate-3-phosphate and phosphoenolpyruvate. (iii) The ratio of triose-phosphate to glycerate-3-phosphate is used as an indicator of the availability of ATP and NADPH. Changes of this ratio with CO2 and with irradiance are compared with results obtained in C3 leaves and indicate that the mechanism of regulation of carbon assimilation by light in leaves of C4 plants may differ from that in C3 plants. (iv) The behaviour of the ribulose-1,5-bisphosphate pool with CO2 and irradiance is contrasted with the behaviour of these pools measured in leaves of C3 plants.Abbreviations P i intercellular CO2 pressure - RuBP ribulose-1,5-bisphosphate - PEP phosphoenolpyruvate - triose-P triose phosphates - PGA glycerate-3-phosphate  相似文献   

6.
The assimilation of nitrate under dark-N2 and dark-O2 conditions in Zea mays leaf tissue was investigated using colourimetric and 15N techniques for the determination of organic and inorganic nitrogen. Studies using 15N indicated that nitrate was assimilated under dark conditions. However, the rate of nitrate assimilation in the dark was only 28% of the rate under non-saturating light conditions. No nitrite accumulated under dark aerobiosis, even though nitrate reduction occurred under these conditions. The pattern of nitrite accumulation in leaf tissue in response to dark-N2 conditions consisted of three phases: an initial lag phase, followed by a period of rapid nitrite accumulation and finally a phase during which the rate of nitrite accumulation declined. After a 1-h period of dark-anaerobiosis, both nitrate reduction and nitrite accumulation declined considerably. However, when O2 was supplied, nitrate reduction was stimulated and the accumulated nitrite was rapidly reduced. Anaerobic conditions stimulated nitrate reduction in leaf tissue after a period of dark-aerobic pretreatment.  相似文献   

7.
8.
The rate of in-vivo nitrate reduction by leaf segments of Zea mays L. was found to decline during the second hour of dark anaerobic treatment. On transfer to oxygen the capacity to reduce nitrate under dark conditions was restored. These observations led to the proposal that nitrate reductase is a regulatory enzyme with ADP acting as a negative effector. The effect of ADP on the invitro activity of nitrate reductase and the changes in the in-vivo adenylate pool under dark-N2 and dark-O2 were investigated. It was found that ADP inhibited the activity of partially purified nitrate reductase. Similarly, the in-vivo anaerobic inhibition of nitrate reduction was associated with a build-up of ADP in the leaf tissue. Under anaerobic conditions nitrite accumulated and on transfer to oxygen the accumulated nitrite was reduced. To explain this phenomenon the following hypothesis was proposed and tested. Under anaerobic conditions the supply of reducing equivalents for nitrite reduction in the plastid becomes restricted and nitrite accumulates as a consequence. On transfer to oxygen this restriction is removed and nitrite disappears. This capacity to reduce accumulated nitrite was found to be dependent on the carbohydrate status of the leaf tissue.  相似文献   

9.
In order to study the location of enzymes of photorespiration in leaves of the C3–C4 intermediate species Moricandia arvensis (L.). DC, protoplast fractions enriched in mesophyll or bundlesheath cells have been prepared by a combination of mechanical and enzymic techniques. The activities of the mitochondrial enzymes fumarase (EC 4.2.1.2) and glycine decarboxylase (EC 2.1.2.10) were enriched by 3.0- and 7.5-fold, respectively, in the bundle-sheath relative to the mesophyll fraction. Enrichment of fumarase is consistent with the larger number of mitochondria in bundle-sheath cells relative to mesophyll cells. The greater enrichment of glycine decarboxylase indicates that the activity is considerably higher on a mitochondrial basis in bundle-sheath than in mesophyll cells. Serine hydroxymethyltransferase (EC 2.1.2.1) activity was enriched by 5.3-fold and glutamate-dependent glyoxylate-aminotransferase (EC 2.6.1.4) activity by 2.6-fold in the bundle-sheath relative to the mesophyll fraction. Activities of serine- and alanine-dependent glyoxylate aminotransferase (EC 2.6.1.45 and EC 2.6.1.4), glycollate oxidase (EC 1.1.3.1), hydroxypyruvate reductase (EC 1.1.1.81), glutamine synthetase (EC 6.3.1.2) and phosphoribulokinase (EC 2.7.1.19) were not significantly different in the two fractions. These data provide further independent evidence to complement earlier immunocytochemical studies of the distribution of photorespiratory enzymes in the leaves of this species, and indicate that while mesophyll cells of M. arvensis have the capacity to synthesize glycine during photorespiration, they have only a low capacity to metabolize it. We suggest that glycine produced by photorespiratory metabolism in the mesophyll is decarboxylated predominantly by the mitochondria in the bundle sheath.Abbreviation RuBP ribulose 1,5-bisphosphate  相似文献   

10.
The in-situ inter- and intracellular localization patterns of phosphoenolpyruvate (PEP) and ribulose 1,5-bisphosphate (RuBP) carboxylases in green leaves of severalPanicum species were investigated using an indirect immunofluorescence technique. Four species were examined and compared:P. miliaceum (C4),P. bisulcatum (C3), andP. decipiens andP. milioides (C3–C4 intermediates which have Kranz-like leaf anatomy and reduced photorespiration). In the C4 Panicum, PEP carboxylase was located in the cytosol of the mesophyll cells and RuBP carboxylase was restricted to the bundle-sheath chloroplasts. In contrast, in the C3 Panicum species, PEP carboxylase was found throughout the leaf chlorenchyma, in both the cytosol and chloroplasts, and RuBP carboxylase was located in the chloroplasts. For the C3–C4 intermediate plants, the patterns depended on the species examined. ForP. decipiens, the in-situ localization of both carboxylases was similar to that described forP. bisulcatum and other C3 plants. However, inP. milioides, PEP carboxylase was found exclusively in the cytosol of the mesophyll cells, as inP. miliaceum and other C4 species, whereas RuBP carboxylase was distributed in both the mesophyll and bundle-sheath chloroplasts.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose 1,5-bisphosphate  相似文献   

11.
C. A. Adams  F. Leung  S. S. M. Sun 《Planta》1986,167(2):218-225
Phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) from Flaveria trinervia Mohr (C4), F. floridana Johnston (C3–C4), and F. cronquistii Powell (C3) leaves were compared by electrotransfer blotting/enzyme-linked immunoassay (Western-blot analysis), mobility of the native enzyme in polyacrylamide gels and in isoelectric focusing (IEF) gels, peptide mapping, and in-vitro translation of RNA isolated from each plant. The PEPCases from the C3 and C3–C4 plants were very similar to each other in terms of electrophoretic mobilities on gels and isoenzyme patterns on IEF gels, and identical in peptide mapping. Quantitative differences were noted, however, in that the C3–C4 intermediate plant contained more PEPCase overall and that the relative activity of individual isoenzymes shifted between the C3 and C3–C4 intermediate PEPCases. The PEPCase from the C4 plant had a different isoenzyme pattern, a different peptide map, and was far more abundant than the other two enzymes. Western blot analysis demonstrated the cross-reactivity of PEPCases from all three Flaveria species with antibody raised against maize PEPCase. The results provide evidence, at the molecular level, that supports the view of C3–C4 intermediate species as C3-like plants with some C4-like photosynthetic characteristics, but there are differences from the C3 plant in the quantity and properties of the PEPCase from the C3–C4 intermediate plant.Abbreviations IEF isoelectric focusing - kDa kilodalton - PEPCase phosphoenolpyruvate carboxylase - Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

12.
R. Edwards  W. J. Owen 《Planta》1988,175(1):99-106
An antiserum to glutathione S-transferase (EC 2.5.1.18) from maize (Zea mays L.) responsible for herbicide detoxification has been raised in rabbit. The antiserum was specific to the Mr 26000 subunit of the enzyme from maize seedlings and suspension-cultured cells, and recognized the isoenzymes active toward both atrazine and metolachlor. When plants were treated for 24 h with the herbicide antidote N,N-diallyl-2-2-dich-loroacetamide (DDCA), enzyme activities toward metolachlor were doubled in the roots and this was associated with a 70% increase in immunodetectable protein. Translation of polysomal RNA in vitro showed that the increase in the transferase in root tissue was brought about by a ninefold increase in mRNA activity encoding the enzyme. Treatment of suspension-cultured cells with cinnamic acid, metolachlor and DDCA raised enzyme activities but did not increase synthesis of glutathione S-transferase. In cultured maize cells, enzyme synthesis was maximal in mid-logarithmic phase, coinciding with the highest levels of enzyme activity. When callus cultures were established from the shoots of a maize line known to conjugate chloro-s-triazines, enzyme activity towards atrazine was lost during primary dedifferentiation. However, levels of total immunodetectable enzyme and activity toward metolachlor were increased in cultured cells compared with the parent shoot tissue.  相似文献   

13.
Carbon-isotope ratios were examined as 13C values in several C3, C4, and C3–C4 Flaveria species, and compared to predicted 13C, values generated from theoretical models. The measured 13C values were within 4 of those predicted from the models. The models were used to identify factors that contribute to C3-like 13C values in C3–C4 species that exhibit considerable C4-cycle activity. Two of the factors contributing to C3-like 13C values are high CO2 leakiness from the C4 pathway and pi/pa values that were higher than C4 congeners. A marked break occurred in the relationship between the percentage of atmospheric CO2 assimilated through the C4 cycle and the 13C value. Below 50% C4-cycle assimialtion there was no significant relationship between the variables, but above 50% the 13C values became less negative. These results demonstrate that the level of C4-cycle expression can increase from, 0 to 50% with little integration of carbon transfer from the C4 to the C3 cycle. As expression increaces above 50%, however, increased integration of C3- and C4-cycle co-function occurs.Abbreviations and symbols RuBP carboxylase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - PEP carboxylase phosphoenolpyruvate carboxylase (EC 4.1.1.31) - pa atmospheric CO2 partial pressure - pi intercellular CO2 partial pressure - isotope ratio - quantum yield for CO2 uptake  相似文献   

14.
Osamu Ueno 《Planta》1996,199(3):394-403
Eleocharis vivipara link, an amphibious leafless sedge, develops traits of C4 photosynthesis and Kranz anatomy in the terrestrial form but develops C3-like traits with non-Kranz anatomy when submerged. The cellular localization of C3 and C4 enzymes in the photosynthetic cells of the two forms was investigated by immunogold labeling and electron microscopy. The terrestrial form has mesophyll cells and three kinds of bundle sheath cell, namely, parenchyma sheath cells, non-chlorophyllous mestome sheath cells, and Kranz cells. Phosphoenol-pyruvate carboxylase (PEPCase) was present in the cytosol of both the mesophyll cells and the parenchyma sheath cells, with higher-density labeling in the latter, but not in the Kranz cells. Pyruvate, Pi dikinase (PPDK) was found at high levels in the chloroplasts of both the mesophyll cells and the parenchyma sheath cells with some-what stronger labeling in the latter. This enzyme was also absent from the Kranz cells. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was found in the chloroplasts of all types of photosynthetic cell, but labeling was significantly less intense in the parenchyma sheath cells than in other types of cell. The submerged form also has three types of photosynthetic cell, as well as non-chlorophyllous mestome sheath cells, but it lacks the traits of Kranz anatomy as a consequence of modification of the cells. Rubisco was densely distributed in the chloroplasts of all the photosynthetic cells. However, PEPCase and PPDK were found in both the mesophyll cells and the parenchyma sheath cells but at lower levels than in the terrestrial form. These data reveal that the terrestrial form has a unique pattern of cellular localization of C3 and C4 enzymes, and they suggest that this pattern and the changes in the extent of accumulation of the various enzymes are the main factors responsible for the difference in photosynthetic traits between the two forms.Abbreviations CAM crassulacean acid metabolism - MC meso phyll cell - PSC parenchyma sheath cell - KC Kranz cell - PEP-Case phosphoenolpyruvate carboxylase - PPDK pyruvate, Pi dikinase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - LS large subunit - RuBP ribulose-1,5-bisphosphate This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology). The author is grateful to Drs M. Matsuoka and S. Muto for providing the antisera and Dr. M. Samejima for his advice at the early stages of this study.  相似文献   

15.
Species in the Laxa and Grandia groups of the genus Panicum are adapted to low, wet areas of tropical and subtropical America. Panicum milioides is a species with C3 photosynthesis and low apparent photorespiration and has been classified as a C3/C4 intermediate. Other species in the Laxa group are C3 with normal photorespiration. Panicum prionitis is a C4 species in the Grandia group. Since P. milioides has some leaf characteristics intermediate to C3 and C4 species, its photosynthetic response to irradiance and temperature was compared to the closely related C3 species, P. laxum and P. boliviense and to P. prionitis. The response of apparent photosynthesis to irradiance and temperature was similar to that of P. laxum and P. boliviense, with saturation at a photosynthetic photo flux density of about 1 mmol m-2 s-1 at 30°C and temperature optimum near 30°C. In contrast, P. prionitis showed no light saturation up to 2 mmol m-2 s-1 and an optimum temperature near 40°C. P. milioides exhibited low CO2 loss into CO2-free air in the light and this loss was nearly insensitive to temperature. Loss of CO2 in the light in the C3 species, P. laxum and P. boliviense, was several-fold higher than in P. milioides and increased 2- to 5-fold with increases in temperature from 10 to 40°C. The level of dark respiration and its response to temperature were similar in all four Panicum species examined. It is concluded that the low apparent photorespiration in P. milioides does not influence its response of apparent photosynthesis to irradiance and temperature in comparison to closely related C3 Panicum species.Abbreviations AP apparent photosynthesis - I CO2 compensation point - gl leaf conductance; gm, mesophyll conductance - PPFD photosynthetic photon flux density - PR apparent photorespiration rate - RuBPC sibulose bisphosphate carboxylase  相似文献   

16.
Short-term discrimination in assimilation of stable isotopes of carbon was measured for leaves of the C3 speciesPhaseolus vulgaris L. cv. Hawkesbury Wonder andFlaveria pringlei Gandoger, the C4 speciesAmaranthus edulis Speg., and the C3–C4 intermediate speciesPanicum milioides Nees ex. Trin,Flaveria floridana Johnson, andFlaveria anomala B.L. Robinson. Discriminations in the C3 and C4 species were similar to those expected from theoretical considerations. When ambient CO2 pressure was 330 bar the mean discriminations in the C3 species andPanicum milioides were similar, whereas the mean discriminations inF. floridana andF. anomala were less than discrimination in C3 species andPanicum milioides. When ambient CO2 pressure was 100 bar the mean discriminations inPanicum milioides andF. anomala were greater, and that inF. floridana was less, than that inPhaseolus vulgaris. We conclude that the pattern of discrimination inPanicum milioides is consistent with the presence of a glycine shuttle; inF. floridana andF. anomala, discrimination is consistent with the presence of a C4 pathway coupled with the operation of a glycine shuttle.Abbreviations and symbols PEP phosphoenolpyruvate - Rubisco ribulose, 1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) - p a ambient CO2 pressure - p i intercellular CO2 pressure - carbon-isotope discrimination - carbonisotope composition relative to PeeDee Belemnite  相似文献   

17.
Data for the maximum carboxylation velocity of ribulose-1,5-biosphosphate carboxylase, Vm, and the maximum rate of whole-chain electron transport, Jm, were calculated according to a photosynthesis model from the CO2 response and the light response of CO2 uptake measured on ears of wheat (Triticum aestivum L. cv. Arkas), oat (Avena sativa L. cv. Lorenz), and barley (Hordeum vulgare L. cv. Aramir). The ratio Jm/Vm is lower in glumes of oat and awns of barley than it is in the bracts of wheat and in the lemmas and paleae of oat and barley. Light-microscopy studies revealed, in glumes and lemmas of wheat and in the lemmas of oat and barley, a second type of photosynthesizing cell which, in analogy to the Kranz anatomy of C4 plants, can be designated as a bundle-sheath cell. In wheat ears, the CO2-compensation point (in the absence of dissimilative respiration) is between those that are typical for C3 and C4 plants.A model of the CO2 uptake in C3–C4 intermediate plants proposed by Peisker (1986, Plant Cell Environ. 9, 627–635) is applied to recalculate the initial slopes of the A(pc) curves (net photosynthesis rate versus intercellular partial pressure of CO2) under the assumptions that the Jm/Vm ratio for all organs investigated equals the value found in glumes of oat and awns of barley, and that ribulose-1,5-bisphosphate carboxylase is redistributed from mesophyll to bundle-sheath cells. The results closely match the measured values. As a consequence, all bracts of wheat ears and the inner bracts of oat and barley ears are likely to represent a C3–C4 intermediate type, while glumes of oat and awns of barley represent the C3 type.Abbreviations A net photosynthesis rate (mol·m-2·s-1) - Jm maximum rate of whole-chain electron transport (mol·e-·m-2·s-1) - pc (bar) intercellular partial pressure of CO2 - PEP phosphoenolpyruvate - PPFD photosynthetic photon flux density (mol quanta·m-2·s-1) - RuBPCase ribulose bisphosphate carboxylase/oxygenase - RuBP ribulose bisphosphate - Vm maximum carboxylation velocity of RuBPCase (mol·m-2·s-1) - T* CO2 compensation point in the absence of dissimilative respiration (bar)  相似文献   

18.
Immunogold labelling has been used to determine the cellular distribution of glycine decarboxylase in leaves of C3, C3–C4 intermediate and C4 species in the genera Moricandia, Panicum, Flaveria and Mollugo. In the C3 species Moricandia foleyi and Panicum laxum, glycine decarboxylase was present in the mitochondria of both mesophyll and bundle-sheath cells. However, in all the C3–C4 intermediate (M. arvensis var. garamatum, M. nitens, M. sinaica, M. spinosa, M. suffruticosa, P. milioides, Flaveria floridana, F. linearis, Mollugo verticillata) and C4 (P. prionitis, F. trinervia) species studied glycine decarboxylase was present in the mitochondria of only the bundle-sheath cells. The bundle-sheath cells of all the C3–C4 intermediate species have on their centripetal faces numerous mitochondria which are larger in profile area than those in mesophyll cells and are in close association with chloroplasts and peroxisomes. Confinement of glycine decarboxylase to the bundle-sheath cells is likely to improve the potential for recapture of photorespired CO2 via the Calvin cycle and could account for the low rate of photorespiration in all C3–C4 intermediate species.Abbreviation and symbol kDa kilodaltons - CO2 compensation point  相似文献   

19.
R. Edwards  W. J. Owen 《Planta》1986,169(2):208-215
The metabolism of the s-triazine herbicide atrazine has been compared in Zea mays seedlings and cell suspension cultures. The rapid detoxification observed in the shoots of whole plants was not seen in the cultured cells. This difference in metabolism could be accounted for by the varying substrate specificities of the isoenzymes of glutathione S-transferase (EC 2.5.1.18) present in the plant and the cells. A single form of the enzyme isolated from leaf tissue conjugated both atrazine and the chloracetanilide herbicide metolachlor. However, the two isoenzymes present in suspension-cultured cells although active against metolachlor, showed no activity toward atrazine. Following purification, the major form of transferase present in the cells was physically similar to the enzyme isolated from leaf (Mr=55000). Both proteins were dimers of subunit Mr=26300, and with isoelectric points in the range pH 4.3-4.9. The minor form of the enzyme present in culture showed a greater specificity for metolachlor than the major species. In addition the overall activity and ratio of the two isoenzymes varied over the culture growth cycle. These findings illustrate the need for characterizing enzymes involved in herbicide detoxification in plant cell cultures.Abbreviations CDNB 1-chloro-2,4-dinitrobenzene - DEAE diethylaminoethyl - GSH glutathione (reduced) - GST glutathione S-transferase - HPLC high-pressure liquid chromatography - Mr molecular weight - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

20.
S. K. Hillman  M. B. Wilkins 《Planta》1982,155(3):267-271
Time-lapse photography and light microscopy were used to determine whether or not sedimentation of the newly developed amyloplasts in the apex of Zea mays L. roots occurred at the time when geotropic responsiveness reappears following removal of the cap. All decapped roots exhibiting a geotropic response had some amyloplast sedimentation in the apical cortical cells. Exposing decapped roots to a centrifugal acceleration of 25 g for 4 h showed that amyloplasts of a similar size and development were not displaced within the cytoplasm when this treatment began 12 h after decapping, whereas displacement did occur when the treatment began 24 h after decapping. This finding indicates the occurrence of a change in the physical characteristics of the cytoplasm between 12 h and 24 h after removing of the cap, which allows amyloplast movement and thus restores gravity perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号