首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the involvement of pigment-protein complexes of photosystems (PS) in the development and spatial arrangement of thylakoids in chloroplasts of pea (Pisum sativum L.) leaves. The initial line (cv. Torsdag) and its mutants, chlorotica 2004 displaying primary disturbances in the PSI reaction centers and chlorotica 2014 containing only 50% of chlorophyll and, as a sequence, the reduced amount of all pigment-protein complexes. A proportional decrease in the content of PSI and PSII complexes in the chlorotica 2014 mutant resulted in a partial reduction of the whole chloroplast membrane system, whereas grana and stroma thylakoid regions were well developed. In contrast, a loss of only 20% of chlorophyll and destruction of PSI complexes in the chlorotica 2004 mutant by 50% resulted in the destruction of stroma thylakoid regions and disturbed longitudinal thylakoid and grana orientation. It was concluded that protein-protein interactions in pigment-protein complexes played a key role in the structure of thylakoid membranes and their longitudinal orientation.  相似文献   

2.
Pisum sativum cv. Guido grown under controlled environment conditions was exposed to either low or high UV-B radiation (2·2 or 9·9 kJ m–2 d–1 plant-weighted UV-B, respectively). Low or high UV-B was maintained throughout growth (LL and HH treatments, respectively) or plants were transferred between treatments when 22 d old (giving LH and HL treatments). High UV-B significantly reduced plant dry weight and significantly altered plant morphology. The growth and morphology of plants transferred from low to high UV-B were little affected, when compared with those of LL plants. By contrast, plants moved from high to low UV-B showed marked increases in growth when compared with HH plants. This contrast between HL and LH appeared to be related to the effect of UV-B on plant development. Exposure to high UV-B throughout development consistently reduced leaf areas. In fully expanded leaves there was no significant UV-B effect on cell area and reduced leaf area could be attributed to reduced cell number, suggesting effects on leaf primordia. Further reductions in the leaf area of younger leaves were the result of the slower development rate of plants grown at high UV-B, which also resulted in significant reductions in leaf number.  相似文献   

3.
Pisum sativum (pea) mutants of the wild type cv. Frisson and six supernodulating Medicago truncatula mutants of the wild-type cv. Jemalong line J5 for their ability to form endomycorrhizas. The six mutants of M. truncatula were shown to be allelic mutants of the same gene Mtsym12, whereas distinct genes (sym28 and sym29) are known to determine the supernodulation character of the P64 and P88 pea mutants, respectively. Mutant P88 of pea and the majority of the M. truncatula mutants were significantly more colonized by the mycorrhizal fungus Glomus mosseae than their corresponding wild types, 4 weeks and 30 days after inoculation, respectively. These differences were expressed essentially in transversal intensity rather than in length intensity of root colonization and appeared to correspond to an increase in arbuscule formation. Results are discussed in relation to the mutated genes and, in particular, whether the observed effects are due indirectly to plant physiological modifications or are a direct result of possible common factors of regulation of nodulation and mycorrhizal development. Accepted: 9 February 2000  相似文献   

4.
毛学文   《广西植物》1998,18(4):335-336
本文通过不同浓度的甲基磺酸乙脂(EMS)对豌豆根尖细胞微核的诱导,结果表明,豌豆根尖用作检测诱变剂是可行的。  相似文献   

5.
The effects of reduced osmotic potential on photosynthesis and respiration were studied in mesophyll protoplasts of pea (Pisum sativum). Osmotic stress was induced by increasing the sorbitol concentration in the medium from 0·4 kmol m−3 (-1·3 MPa) to 1·0 kmol m−3 (-3·1 MPa). Protoplasts lost up to 35% of the maximum capacity of photo-synthetic carbon assimilation (but not PS II mediated activity) soon after exposure to 1·0 kmol m−3 sorbitol. The response of protoplast respiration to osmotic stress was intriguing. Respiration was stimulated if stress was induced at 25°C, but was inhibited when protoplasts were subjected to osmotic stress at 0°C. Photosynthesis was also much more sensitive to osmotic stress at 0°C than at 25°C. The inhibitory effects of osmotic stress on photosynthesis as well as respiration were amplified by not only chilling but also photoinhibitory light. The photosynthetic or respiratory activities of protoplasts recovered remarkably when they were transferred from hyperosmotic (1·0 kmol m−3 sorbitol) back to iso-osmotic medium (0·4 kmol m−3 sorbitol), demonstrating the reversibility of osmotic-stress-induced changes in protoplasts. Respiration was more resistant to osmotic stress and was quicker to recover than photosynthesis. We suggest that the experimental system of protoplasts can be useful in studying the effects of osmotic stress on plant tissues.  相似文献   

6.
When N 6 [8–14C] furfuryladenine was applied to the intact root system of Pisum sativum L. cv. Meteor seedlings it was almost completely metabolised to other compounds within 24 h. Of the total activity recovered from the plants 94.5% was retained in the root system itself. 14C was recovered in a number of ethanol-soluble compounds and in ribonucleic acid, deoxyribonucleic acid and protein fractions of roots, stems, leaves and axillary buds. In rapidly growing axillary buds released from apical dominance by removal of the shoot apex the combined nucleic acid fractions accounted for 63.3% of the total 14C recovered from these organs. Xylem exudate collected from decapitated plants 0 to 12 h after supplying N 5[8–14C]furfuryladenine to the roots consistently contained a single major 14C-labelled compound which, in three different solvent systems, had the same Rf values as a major endogenous cytokinin isolated from the xylem of unlabelled plants. The content of N 6 [8–14C] furfuryladenine itself in the xylem exudate was always low and in some experiments it could not be detected.
It is suggested that part of the label from N 6 [8- 14CJfurfuryladenine taken up by the intact root system may have become incorporated in an endogenous cylokinin before export to the shoot.  相似文献   

7.
Rooting ability was studied for cuttings derived from pea plants ( Pisum sativum , L. cv. Alaska) grown in controlled environment rooms. When the cuttings were rooted at 70 μmol m−2 s, 1 (photosynthetic photon flux density) or more, a stock plant irradiance at 100 μmol m−2 s−1 decreased rooting ability in cuttings compared to 5 μmol m−2, s−1, However, cuttings rooted at 160 μmol m−2 s−1 formed more roots compared to 5 (μmol m−2 s−1. Although a high irradiance increased the number of roots formed, it could not overcome a decreased potential for root formation in stock plants grown at high irradiance. Light compensation point and dark respiration of cuttings decreased by 70% during the rooting period, and the final levels were strongly influenced by the irradiance to the cuttings. Respiratory O2 uptake decreased in the apex and the base of the cutting from day 2 onwards, whereas a constant level was found in the leaves. Only the content of extractable fructose, glucose, sucrose and starch varied during the early part of the rooting period. We conclude that the observed changes in the cuttings are initiated by excision of the root system, and are not involved in the initiation of adventitious roots.  相似文献   

8.
Abstract The catabolism of indole-3-acetic acid was investigated in chloroplast preparations and a crude enzyme fraction derived from chloroplasts of Pisum sativum seedlings. Data obtained with both systems indicate that indole-3-acetic acid undergoes decarboxylative oxidation in pea chloroplast preparations. An enhanced rate of decarboxylation of [1′-1C]indole-3-acetic acid was obtained when chloroplast preparations were incubated in the light rather than in darkness. Results from control experiments discounted the possibility of this being due to light-induced breakdown of indole-3-acetic acid. High performance liquid chromatography analysis of [2′-14C]indole-3-acetic acid-fed incubates showed that indole-3-methanol was the major catabolite in both the chloroplast and the crude enzyme preparations. The identification of this reaction product was confirmed by gas chromatography-mass spectrometry when [2H5]indole-3-methanol was detected in a purified extract derived from the incubation of an enzyme preparation with 32H5]indole-3-acetic acid.  相似文献   

9.
A new modulated lamp system is described. This system has successfully provided an ultraviolet-B (UV-B) supplement in proportion to ambient UV-B. The modulated system was used to simulate the UV-B environment resulting from an annual mean reduction of 15% in the stratospheric ozone under UK field conditions, but taking account of seasonal variation in depletion. The effects of this enhanced level of UV-B on the growth, physiology and yield of four cultivars of pea were assessed. Enhanced UV-B resulted in small reductions in the number of stems and total stem length per plant (respectively 4.7 and 8.7%). There were also significant decreases in the dry weight of peas (10.1%), pods (10.3%) and stems (7.8%) per plant. UV-B treatment had no effect on the number of peas per pod or average pea weight, but did significantly reduce (12.1%) the number of pods per plant. This decrease in pod number was partly due to enhanced abscission of pods during the final month of plant growth. UV-B treatment had no significant effect on chlorophyll fluorescence characteristics or CO2assimilation rate per unit leaf area. These results are consistent with previous controlled environment experiments, and suggest that reduction in yield may be due to direct effects of UV-B on plant growth rather than a decrease in photosynthetic capacity per unit leaf area.  相似文献   

10.
A sequential indole-3-acetic acid (IAA)-zeatin treatment was applied to Pisum sativum hypocotyl explants, resulting in shoot formation from 50% of the explants. Shoots were easily rooted and transplantable plants could be obtained in 3 months. The method has been applicable to the 5 cultivars tested. Histological examination of explants suggests the shoots to be of de novo origin, which would make the system suitable for transformation experiments.  相似文献   

11.
Proietti  P. 《Photosynthetica》1998,35(4):579-587
From the beginning of olive leaf yellowing to leaf fall (1÷3 months), there was a general trend from anabolism to catabolism. Rates of net photosynthesis (PN) and respiration, areal dry mass, and contents of pigments, particularly of chlorophyll (Chl) a, starch, and above all nitrogen (N) decreased. The detachment force decreased dramatically only in completely chlorotic leaves. Chl a : b ratio only declined in the last 10-20 d of senescence, when the total Chl contents diminished by about 70 %, after which the N content, PN, and efficiency of the photochemical energy conversion of the remaining Chl and N dramatically declined. Consequently, for most of the natural course of senescence PN remained relatively high. The reduction in PN was associated with the decreases in transpiration rate (E) and stomatal conductance (gs), but these probably did not cause the decline of PN. The recycling of saccharide compounds was low, while 50 % of the total N on a leaf area basis was relocated back before leaf abscission, changing the leaf from a carbon source to a mineral source. Therefore, considering that senescing leaves in olive trees contribute to carbon gain and allow the recycling of resources, it is essential to prevent the premature leaf abscission by avoiding deficits of water and mineral nutrients and by using pruning and training systems that allow good irradiation of all leaves in the crown.  相似文献   

12.
Abstract The roots of pea (Pisum sativum L. ev. Feltham First) seedlings contained haemagglutinating activity and a protein which reacted with antibodies directed against pea seed lectin. This protein was shown to be present on the surface of root hairs and in the root cortical cells by immunofluorescence. Lectin (haemagglutinin) was purified from pea seedling roots by both immunoaffinity chromatography and affinity chromatography on Sephadex G-100. The pea root lectin was similar to the seed lectin when analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and was antigenically identical: however, the isoelectric focussing band patterns of the proteins differed. The sugar specificity of the root lectin differed from that of the seed lectin, and the haemagglutinating activity of the root lectin was less than the seed lectin. These results are discussed with reference to the hypothesis that lectins mediate in the symbiotic association of legume and Rhizobium through their carbohydrate-binding properties.  相似文献   

13.
14.
15.
16.
rRNA前体剪切是发生在核仁中重要生物学事件。U3 snoRNA作为rRNA的一个剪切因子被认为是rRNA前体剪切第一步,即5′ETS剪切所必需的,鉴定U3能够为确定rRNA前体剪切位点和剪切产物转运提供间接证据。,本文利用原位杂交技术研究了豌豆(Pisum sativum L.)核仁中U3 snoRNA的分布和转运。结果表明,U3 snoRNA分布在致密纤维组分(dense fibrillar component,DFC)和颗粒组分(granular component,GC)中,在纤维中心(fibrillar center,FC)没有分布 ,当用放线菌素D(actinomycin,D,AMD)处理豌豆根端分生细胞时,rDNA转录受到抑制,标记信号减弱,随着AMD处理时间的延长,标记信号逐渐变弱并出现在DFC远轴区域和GC区域。本文结果提示,rRNA前体剪切发生在DFC和GC区域,剪切产物从围绕FC的区域向周边转运。  相似文献   

17.
We analysed the changes of the chlorophyll (Chl)a fluorescence rise kinetic (from 50 s to 1 s) that occur when leaves or chloroplasts of pea ( Pisum sativum L.) are incubated under anaerobic conditions in the dark. In control leaves, Chl a fluorescence followed a typical O-J-I-P polyphasic rise [Strasser et al. (1995) Photochem Photobiol 61: 32–42]. Anaerobiosis modified the shape of the transient with the main effect being a time-dependent increase in the fluorescence yield at the J-step (2 ms). Upon prolongation of the anaerobic treatment (> 60 min), the O-J-I-P fluorescence rise was eventually transformed to an O-J (J = P) rise. A similar transformation was observed when pea leaves were treated with DCMU or sodium dithionite. Anaerobiosis resulted in a 10–20% reduction in the maximum quantum yield of the primary photochemistry of Photosystem II, as measured by the ratio of the maximal values of variable and total fluorescence (FV/FM). When the leaves were returned to the air in the dark, the shape of the fluorescence transient showed a time-dependent recovery from the anaerobiosis-induced change. The original O-J-I-P shape could also be restored by illuminating the anaerobically treated samples with far-red light but not with blue or white light. Osmotically broken chloroplasts displayed under anaerobic conditions fluorescence transients similar to those observed in anaerobically treated leaves, but only when they were incubated in a medium comprising reduced pyridine nucleotides (NADPH or NADH). As in intact leaves, illumination of the anaerobically treated chloroplasts by far-red light restored the original O-J-I-P transient, although only in the presence of methyl viologen. The results provide additional evidence for the existence of a chlororespiratory pathway in higher plant cells. Furthermore, they suggest that the J-level of the fluorescence transient is strongly determined by the redox state of the electron carriers at the PS II acceptor side.  相似文献   

18.
In this study 16 cultivars of pea (Pisum sativum L.) were screened in vitro for the formation of somatic embryos which were dependent on the genotype, culture conditions and explant source used. The cultivars Stehgolt, Maro and Progreta showed the highest tendency to form somatic embryos (c. 25%) while Alaska, Rondo and Ascona did not show any embryo production. Using the cultivar Belman, the highest embryo production was achieved by using nodal explants of shoots (10.6%) and a cotyledon-free embryo as explant source (14.1%) in the light (15.8%) compared to using apices as explants (1.8%) and a seedling as the explant source (9.4%) in the dark (3.3%). Media containing picloram (0.75 mg/litre) followed by BA (1 mg/litre) or kinetin (1 mg/litre), each for four weeks gave the highest somatic embryo production. The development of embryos to whole plants was unreliable and some 90% of the embryos induced did not develop any further, died, recallused or formed secondary embryos. The size of the embryo at separation and the timing of the separation from the original callus were important factors determining success for complete development to whole plant. Regeneration of 184 plants was achieved with ensuing flowering, pod formation and viable seed production from the techniques described.  相似文献   

19.
20.
Sodium butyrate at 5 mM in aerated White's medium reduced the mitotic index in root meristems of seedlings of Pisum sativum to < 1% after 12 h. This effect was lessened as the butyrate concentrations were lowered. The fraction of the root meristem nuclei in G2 increased to ~ 70% after 12 h in butyrate. After 12 h exposure to butyrate, seedlings transferred lo medium without butyrate gradually re-established their normal root meristem mitotic pattern, with a burst of mitosis at 10 h after the transfer. Even a brief exposure to butyrate inhibited DNA synthesis, and nuclei released from butyrate exposure were still unable to resume normal DNA synthesis even after 12 h. This information suggests that butyrate halts progression through the cell cycle by arresting meristem nuclei in G2 and inhibiting DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号