首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uterine fibroids (UFs) affect 77 % of women by menopause and account for $9.4 billion in yearly healthcare costs. We recently replicated findings from the first UF genome-wide association study (GWAS), conducted in the Japanese. Here we tested these GWAS-discovered SNPs for association with UF characteristics to further assess whether risk varies by sub-phenotypes of UFs. Women were enrolled in Right from the Start (RFTS) and the BioVU DNA repository (BioVU). UF status was determined by pelvic imaging. We tested the top GWAS-associated SNPs for association with UF characteristics (RFTS: type, number, volume; BioVU: type) using covariate adjusted logistic and linear regression. We also combined association results of UF type using meta-analysis. 456 European American (EA) cases and 1,549 controls were examined. Trinucleotide repeat containing 6B (TNRC6B) rs12484776 associated with volume in RFTS (β = 0.40, 95 % CI 0.05–0.75, p = 0.024). RFTS analyses evaluating stratified quartiles of volume showed the strongest OR at rs12484776 for the largest volume (16.6–179.1 cc, odds ratio (OR) = 2.19, 95 % confidence interval (CI) 1.07–4.46, p = 0.031). Meta-analysis showed a strong association at blocked early in transport 1 homolog (BET1L) rs2280543 for intramural UFs (meta-OR = 0.51, standard error (SE) = 0.14, Q = 0.590, I = 0, p = 2.48 × 10?6), which is stronger than the overall association with UF risk. This study is the first to evaluate these SNPs for association with UF characteristics and suggests these genes associate with increasing UF volume and protection from intramural UF in EAs.  相似文献   

2.
Maximum number of alcoholic drinks consumed in a 24-h period (maxdrinks) is a heritable (>50 %) trait and is strongly correlated with vulnerability to excessive alcohol consumption and subsequent alcohol dependence (AD). Several genome-wide association studies (GWAS) have studied alcohol dependence, but few have concentrated on excessive alcohol consumption. We performed two GWAS using maxdrinks as an excessive alcohol consumption phenotype: one in 118 extended families (N = 2,322) selected from the Collaborative Study on the Genetics of Alcoholism (COGA), and the other in a case–control sample (N = 2,593) derived from the Study of Addiction: Genes and Environment (SAGE). The strongest association in the COGA families was detected with rs9523562 (p = 2.1 × 10?6) located in an intergenic region on chromosome 13q31.1; the strongest association in the SAGE dataset was with rs67666182 (p = 7.1 × 10?7), located in an intergenic region on chromosome 8. We also performed a meta-analysis with these two GWAS and demonstrated evidence of association in both datasets for the LMO1 (p = 7.2 × 10?7) and PLCL1 genes (p = 4.1 × 10?6) with maxdrinks. A variant in AUTS2 and variants in INADL, C15orf32 and HIP1 that were associated with measures of alcohol consumption in a meta-analysis of GWAS studies and a GWAS of alcohol consumption factor score also showed nominal association in the current meta-analysis. The present study has identified several loci that warrant further examination in independent samples. Among the top SNPs in each of the dataset (p ≤ 10?4) far more showed the same direction of effect in the other dataset than would be expected by chance (p = 2 × 10?3, 3 × 10?6), suggesting that there are true signals among these top SNPs, even though no SNP reached genome-wide levels of significance.  相似文献   

3.
Genome-wide association (GWA) studies have identified many candidate genes that are associated with blood lipid and lipoprotein concentrations. In this study, we want to know whether the results from European for lipid-related single-nucleotide polymorphisms (SNPs) are generalizable to Chinese children. We genotyped seven SNPs in Chinese school-age children (n = 3,503) and assessed the associations of these SNPs with lipids profiles and dyslipidemia. After false discovery rate correction, of the seven SNPs, six (rs2144300, p ~ 9.30 × 10?3; rs1260333, p ~ 6.20 × 10?11; rs1260326, p ~ 8.73 × 10?11; rs10105606, p ~ 0.010; rs1748195, p ~ 0.016 and rs964184, p ~ 2.33 × 10?13) showed strong association with triglycerides. Three SNPs (rs1260333, p ~ 3.30 × 10?3; rs1260326, p ~ 4.39 × 10?3 and rs2954029, p ~ 6.36 × 10?4) showed strong association with total cholesterol. Two SNPs (rs10105606, p ~ 6.66 × 10?4 and rs1748195, p ~ 2.55 × 10?3) showed strong association with high density lipoprotein cholesterol. Four SNPs (rs1260333, p ~ 0.017; rs1260326, p ~ 0.013; rs2954029, p ~ 1.09 × 10?3 and rs964184, p ~ 5.51 × 10?3) showed strong association with low density lipoprotein cholesterol. There were significant associations between rs1260333 (OR is 0.82, 95 % CI 0.74–0.92, p ~ 3.96 × 10?4), rs1260326 (OR is 0.82, 95 % CI 0.74–0.92, p ~ 5.31 × 10?4), and rs964184 (OR is 1.36, 95 % CI 1.20–1.55, p ~ 1.89 × 10?6) and dyslipidemia. These SNPs generated strong combined effects on lipid profiles and dyslipidemia. Our study demonstrates that SNPs associated with lipids from European GWA studies also play roles in Chinese children, which broadened the understanding of lipids metabolism.  相似文献   

4.
Aspirin-exacerbated respiratory disease (AERD) is a nonallergic clinical syndrome characterized by a severe decline in forced expiratory volume in one second (FEV1) following the ingestion of non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin. The effects of genetic variants have not fully explained all of the observed individual differences to an aspirin challenge despite previous attempts to identify AERD-related genes. In the present study, we performed genome-wide association study (GWAS) and targeted association study in Korean asthmatics to identify new genetic factors associated with AERD. A total of 685 asthmatic patients without AERD and 117 subjects with AERD were used for the GWAS of the first stage, and 996 asthmatics without AERD and 142 subjects with AERD were used for a follow-up study. A total of 702 SNPs were genotyped using the GoldenGate assay with the VeraCode microbead. GWAS revealed the top-ranked variants in 3′ regions of the HLA-DPB1 gene. To investigate the detailed genetic effects of an associated region with the risk of AERD, a follow-up targeted association study with the 702 single nucleotide polymorphisms (SNPs) of 14 genes was performed on 802 Korean subjects. In a case–control analysis, HLA-DPB1 rs1042151 (Met105Val) shows the most significant association with the susceptibility of AERD (p = 5.11 × 10?7; OR = 2.40). Moreover, rs1042151 also shows a gene dose for the percent decline of FEV1 after an aspirin challenge (p = 2.82 × 10?7). Our findings show that the HLA-DPB1 gene polymorphism may be the most susceptible genetic factor for the risk of AERD in Korean asthmatics and confirm the importance of HLA-DPB1 in the genetic etiology of AERD.  相似文献   

5.
The BACH2 gene regulates B cell differentiation and function and has been reported to be a shared susceptibility gene for several autoimmune diseases. Our previous genome-wide association study (GWAS) indicated that several single nucleotide polymorphisms (SNPs) in the BACH2 gene are associated with Graves’ disease (GD) in the Chinese Han population; however, the association did not achieve genome-wide significance levels. Recently, this association of BACH2 with GD was confirmed in Caucasians in the UK population, but fine mapping in this region has not yet been reported. Here, we provide a refined analysis of a 331-kb region in the BACH2 gene, which harbors 359 SNPs, using GWAS data from 1,442 GD patients and 1,468 controls. The SNPs rs2474619 and rs9344996 were implied as the independent variants associated with GD by forward and two-locus logistic regression analysis. We genotyped eight out of 10 tagSNPs with P < 1 × 10?3 in 3,508 GD patients and 3,209 controls, the results also showed that rs2474619 was independently associated with GD in the combined population from GWAS and the second stage (P = 1.81 × 10?5). The rs2474619 and rs9344996 were further genotyped in the third stage cohorts, and rs2474619 showed evidence of association with GD at genome-wide significance levels in the combined population (P = 3.28 × 10?8, odds ratio = 1.13). The association of rs9344996 with GD can be explained by its linkage to rs2474619 in the combined population. Our study clearly demonstrated that BACH2 is a susceptibility gene for GD in the Chinese Han population and further supported rs2474619, in intron 2 of BACH2, is the best association signal with GD. However, the mechanism by which BACH2 confers increased risk of GD requires further study.  相似文献   

6.
Bone and muscle, two major tissue types of musculoskeletal system, have strong genetic determination. Abnormality in bone and/or muscle may cause musculoskeletal diseases such as osteoporosis and sarcopenia. Bone size phenotypes (BSPs), such as hip bone size (HBS), appendicular bone size (ABS), are genetically correlated with body lean mass (mainly muscle mass). However, the specific genes shared by these phenotypes are largely unknown. In this study, we aimed to identify the specific genes with pleiotropic effects on BSPs and appendicular lean mass (ALM). We performed a bivariate genome-wide association study (GWAS) by analyzing ~690,000 SNPs in 1,627 unrelated Han Chinese adults (802 males and 825 females) followed by a replication study in 2,286 unrelated US Caucasians (558 males and 1,728 females). We identified 14 interesting single nucleotide polymorphisms (SNPs) that may contribute to variation of both BSPs and ALM, with p values <10?6 in discovery stage. Among them, the association of three SNPs (rs2507838, rs7116722, and rs11826261) in/near GLYAT (glycine-N-acyltransferase) gene was replicated in US Caucasians, with p values ranging from 1.89 × 10?3 to 3.71 × 10?4 for ALM–ABS, from 5.14 × 10?3 to 1.11 × 10?2 for ALM–HBS, respectively. Meta-analyses yielded stronger association signals for rs2507838, rs7116722, and rs11826261, with pooled p values of 1.68 × 10?8, 7.94 × 10?8, 6.80 × 10?8 for ALB–ABS and 1.22 × 10?4, 9.85 × 10?5, 3.96 × 10?4 for ALM–HBS, respectively. Haplotype allele ATA based on these three SNPs was also associated with ALM–HBS and ALM–ABS in both discovery and replication samples. Interestingly, GLYAT was previously found to be essential to glucose metabolism and energy metabolism, suggesting the gene’s dual role in both bone development and muscle growth. Our findings, together with the prior biological evidence, suggest the importance of GLYAT gene in co-regulation of bone phenotypes and body lean mass.  相似文献   

7.
Genome-wide association studies (GWAS) of obesity measures have identified associations with single nucleotide polymorphisms (SNPs). However, no large-scale evaluation of gene-environment interactions has been performed. We conducted a search of gene-environment (G × E) interactions in post-menopausal African-American and Hispanic women from the Women’s Health Initiative SNP Health Association Resource GWAS study. Single SNP linear regression on body mass index (BMI) and waist-to-hip circumference ratio (WHR) adjusted for multidimensional-scaling-derived axes of ancestry and age was run in race-stratified data with 871,512 SNPs available from African-Americans (N = 8,203) and 786,776 SNPs from Hispanics (N = 3,484). Tests of G × E interaction at all SNPs for recreational physical activity (m h/week), dietary energy intake (kcal/day), alcohol intake (categorical), cigarette smoking years, and cigarette smoking (ever vs. never) were run in African-Americans and Hispanics adjusted for ancestry and age at interview, followed by meta-analysis of G × E interaction terms. The strongest evidence for concordant G × E interactions in African-Americans and Hispanics was for smoking and marker rs10133840 (Q statistic P = 0.70, beta = ?0.01, P = 3.81 × 10?7) with BMI as the outcome. The strongest evidence for G × E interaction within a cohort was in African-Americans with WHR as outcome for dietary energy intake and rs9557704 (SNP × kcal = ?0.04, P = 2.17 × 10?7). No results exceeded the Bonferroni-corrected statistical significance threshold.  相似文献   

8.
A prior linkage scan in Pima Indians identified a putative locus for type two diabetes (T2D) and body mass index (BMI) on chromosome 11q23-25. Association mapping across this region identified single nucleotide polymorphisms (SNPs) in the trehalase gene (TREH) that were associated with T2D. To assess the putative connection between trehalase activity and T2D, we performed a linkage study for trehalase activity in 570 Pima Indians who had measures of trehalase activity. Strong evidence of linkage of plasma trehalase activity (LOD = 7.0) was observed in the TREH locus. Four tag SNPs in TREH were genotyped in these subjects and plasma trehalase activity was highly associated with three SNPs: rs2276064, rs117619140 and rs558907 (p = 2.2 × 10?11–1.4 × 10?23), and the fourth SNP, rs10790256, was associated conditionally on these three (p = 2.9 × 10?7). Together, the four tag SNPs explained 51 % of the variance in plasma trehalase activity and 79 % of the variance attributed to the linked locus. These four tag SNPs were further genotyped in 828 subjects used for association mapping of T2D, and rs558907 was associated with T2D (odds ratio (OR) 1.94, p = 0.002). To assess replication of the T2D association, all four tag SNPs were additionally genotyped in two non-overlapping samples of Native Americans. Rs558907 was reproducibly associated with T2D in 2,942 full-heritage Pima Indians (OR 1.27 p = 0.03) and 3,897 “mixed” heritage Native Americans (OR 1.21, p = 0.03), and the strongest evidence for association came from combining all samples (OR 1.27 p = 1.6 × 10?4, n = 7,667). However, among 320 longitudinally studied subjects, measures of trehalase activity from a non-diabetic exam did not predict those who would eventually develop diabetes versus those who would remain non-diabetic (hazard ratio 0.94 per SD of trehalase activity, p = 0.29). We conclude that variants in TREH control trehalase activity, and although one of these variants is also reproducibly associated with T2D, it is likely that the effect of the SNP on risk of T2D occurs by a mechanism different than affecting trehalase activity. Alternatively, TREH variants may be tagging a nearby T2D locus.  相似文献   

9.
Human height is a complex genetic trait with high heritability but discovery efforts in Asian populations are limited. We carried out a meta-analysis of genome-wide association studies (GWAS) for height in 6,534 subjects with in silico replication of 1,881 subjects in Han Chinese. We identified three novel loci reaching the genome-wide significance threshold (P < 5 × 10?8), which mapped in or near ZNF638 (rs12612930, P = 2.02 × 10?10), MAML2 (rs11021504, P = 7.81 × 10?9), and C18orf12 (rs11082671, P = 1.87 × 10?8). We also confirmed two loci previously reported in European populations including CS (rs3816804, P = 2.63 × 10?9) and CYP19A1 (rs3751599, P = 4.80 × 10?10). In addition, we provided evidence supporting 35 SNPs identified by previous GWAS (P < 0.05). Our study provides new insights into the genetic determination of biological regulation of human height.  相似文献   

10.
Early menarche is associated with adverse health outcomes, including breast cancer, endometrial cancer, obesity, type 2 diabetes, and cardiovascular disease. Recently, a genomewide association study (GWAS) of age at menarche (AAM) in 104,533 individuals of European ancestry was reported by the ReproGen consortium. They identified 42 loci known and novel loci that were linked to age at menarche. Because age at menarche varies between ethnic groups, we decided to investigate if these results would be replicated in the Korean population. To this end, we examined the association of the SNPs reported in the ReproGen GWAS with AAM in 3,194 individuals from the Korean Genome and Epidemiology Study (KoGES) cohort. Genotype data for total 17 SNPs (6 genotyped SNPs and 11 imputed SNPs) were available for the association analysis using linear regression analysis for age at menarche with controlling current age, waist-to-hip ratio, and body mass index as the covariates. We found replication of the ReproGen study in two SNPs; one SNP (rs466639) in the retinoic acid receptor gamma gene (RXRG), showing a significant association with early menarche (beta = ?0.224 ± 0.065, p value = 5.2 × 10?4, Bonferroni-corrected p value = 0.009), and the other (rs10899489), in GRB2 (growth factor receptor bound protein 2)-associated binding protein 2 (GAB2), linked to late menarche (beta = 0.140 ± 0.047, p value = 2.8 × 10?3, Bonferroni-corrected p value = 0.049). This result possibly suggests that genetic factors governing AAM in the Korean population would be distinct from those in the Europeans, implying roles of modulating or interacting factors in determining AAM, including environmental factors such as nutritional status.  相似文献   

11.
β-Thalassemia/HbE disease is clinically variable. In searching for genetic factors modifying the disease severity, patients were selected based on their disease severities, and a genome-wide association study (GWAS) was performed. Genotyping was conducted with the Illumina Human 610-Quad BeadChips array using DNAs from 618 Thai β0-thalassemia/HbE patients who were classified as 383 severe and 235 mild phenotypes by a validated scoring system. Twenty-three SNPs in three independent genes/regions were identified as being significantly associated with the disease severity. The highest association was observed with SNPs in the β-globin gene cluster (chr.11p15), and rs2071348 of the HBBP1 gene revealed the most significant association [P = 2.96 × 10?13, odds ratio (OR) = 4.33 (95% confidence interval (CI), 2.74–6.84)]. The second was identified in the intergenic region between the HBS1L and MYB genes (chr.6q23), among which rs9376092 was the most significant [P = 2.36 × 10?10, OR = 3.07 (95% CI, 2.16–4.38)]. The third region was located in the BCL11A gene (chr.2p16.1), and rs766432 showed the most significant association [P = 5.87 × 10?10, OR = 3.06 (95% CI, 2.15–4.37)]. All three loci were replicated in an independent cohort of 174 Indonesian patients. The associations to fetal hemoglobin levels were also observed with SNPs on these three regions. Our data indicate that several genetic loci act in concert to influence HbF levels of β0-thalassemia/HbE patients. This study revealed that all the three reported loci and the α-globin gene locus are the best and common predictors of the disease severity in β-thalassemia.  相似文献   

12.
Hypertension is a complex disease that is caused by the interaction of multiple genetic and environmental risk factors, affecting 30% adult in industrialized countries. The identification of genetic factors that impact one’s predisposition to hypertension and its progression is an ongoing challenge. A genome-wide association study of African-Americans, who have one of the highest rates of hypertension in the world, was reported. We replicated the GWAS results in 8842 unrelated Koreans. Fifteen of the 30 reported SNPs were analyzed for their association with blood pressure and hypertension. Linear regression was used to analyze blood pressure as a quantitative trait in 7551 subjects, and a case-control study was performed using 1968 hypertensive cases and 4452 normotensive controls by logistic regression analysis. The quantitative trait study demonstrated a moderate association of 2 SNPs, rs9301196 (p=4.9×10?3 for diastolic blood pressure) and rs2823756 (p=0.04 for systolic blood pressure), which were also associated with hypertension (p=0.042 and p=6.3×10?3, respectively). Further, 3 SNPs were associated with hypertension (p=0.042 for rs7902529, p=0.027 for rs10135446, and p=0.01 for rs4613079) but not with blood pressure. Based on the moderate association signals and the low proportion of positive signals, this cross validation between African-Americans and Asians suggests that association studies of blood pressure traits require a larger number of subjects and a more refined design.  相似文献   

13.
Despite the family aggregation of severe teenage acne, the genetic basis of this common skin condition remains unclear. We conducted a genome-wide association study (GWAS) on severe teenage acne in 928 European Americans. The SNP rs4133274 on chromosome 8q24 (72 kb upstream of MYC) revealed the most significant association with severe teenage acne (p value = 1.7 × 10?6). The variant allele of this SNP (G allele) was associated with an increased risk of severe teenage acne with odds ratio of 4.01 (95 % confidence interval = 2.37–6.82). Upon further replication, our findings suggest new genetic basis of acne and may explain the association between acne and cancer risk observed in the epidemiological studies.  相似文献   

14.
Genome-wide association studies (GWAS) of ischemic stroke (IS) have been performed on several cohorts of Caucasian or African population and Japanese, resulting in somewhat inconsistent conclusion. We aimed to identify susceptibility loci for IS by exome sequencing in a Chinese Han population. Exome sequencing was used to screen susceptibility loci among 100 cases and 100 matched controls. Significant SNPs from the first stage were verified in up to 3,554 participants from three hospital-based case–control studies. In the initial exome sequencing analysis, rs10489177 in c1orf156 gene located on chromosome 1q24 (p?<?1?×?10?8) and rs17118 in XYLB gene located on chromosome 3p21 (p?<?1?×?10?6) were found to be significantly associated with IS. In the following validation stage, significantly increased odds ratios were observed in individuals with rs10489177 GG (OR?=?2.02, 95 % CI?=?1.35–3.03) or rs17118 AA genotype (OR?=?1.50, 95 % CI?=?1.17–1.91). The rs10489177 GG genotype was associated with significantly increased risk for IS in individuals without hypertension (OR?=?2.78, 95 % CI?=?1.59–4.86) and in individuals without diabetes (OR?=?1.93, 95 % CI?=?1.27–2.94). In contrast, the rs17118 AA genotype may significantly increase the risk for IS, particularly for individuals with hypertension (OR?=?1.73, 95 % CI?=?1.08–2.78) and for individuals without diabetes (OR?=?1.52, 95 % CI?=?1.17–1.98) or non-smoker (OR?=?1.59, 95 % CI?=?1.16–2.19). Collectively, our study identified two novel loci (rs17118 and rs10489177) which were associated with an increased risk for IS in Chinese Han populations. Further studies are needed to confirm these associations in other populations and elucidate the biological mechanisms underlying the observed associations.  相似文献   

15.
Paget’s disease of bone (PDB) is one of the most frequent metabolic bone disorders (1–5%), next to osteoporosis, affecting individuals above age 55. Sequestosome1 mutations explain a part of the PDB patients, but still the disease pathogenesis in the remaining PDB patients is largely unknown. Therefore, association studies investigating the relationship between genetic polymorphisms and sporadic PDB have been performed to find the genetic risk variants. Previously such studies indicated a role of the OPG and RANK gene. The latter was recently confirmed in a genome-wide association study (GWAS) which also indicated the involvement of chromosomal regions harbouring the CSF1 and OPTN gene. In this study, we sought to replicate these findings in a Belgian and a Dutch population. Similar significant results were obtained for the single nucleotide polymorphisms and the haplotypes. The most significant results are found in the CSF1 gene region, followed by the OPTN and TNFRSF11A gene region (p values ranging from 1.3 × 10?4 to 3.8 × 10?8, OR = 1.523–1.858). We next obtained significant association with a polymorphism from the chromosomal region around the TM7SF4 gene (p = 2.7 × 10?3, OR = 1.427), encoding DC-STAMP which did not reach genome-wide significance in the GWAS, but based on its function in osteoclasts it can be considered a strong candidate gene. After meta-analysis with the GWAS data, p values ranged between 2.6 × 10?4 and 8.8 × 10?32. The calculated cumulative population attributable risk of these four loci turned out to be about 67% in our two populations, indicating that most of the genetic risk for PDB is coming from genetic variants close to these four genes.  相似文献   

16.
We examined the genetic background of nonalcoholic fatty liver disease (NAFLD) in the Japanese population, by performing a genome-wide association study (GWAS). For GWAS, 392 Japanese NAFLD subjects and 934 control individuals were analyzed. For replication studies, 172 NAFLD and 1,012 control subjects were monitored. After quality control, 261,540 single-nucleotide polymorphisms (SNPs) in autosomal chromosomes were analyzed using a trend test. Association analysis was also performed using multiple logistic regression analysis using genotypes, age, gender and body mass index (BMI) as independent variables. Multiple linear regression analyses were performed to evaluate allelic effect of significant SNPs on biochemical traits and histological parameters adjusted by age, gender, and BMI. Rs738409 in the PNPLA3 gene was most strongly associated with NAFLD after adjustment (P = 6.8 × 10?14, OR = 2.05). Rs2896019, and rs381062 in the PNPLA3 gene, rs738491, rs3761472, and rs2143571 in the SAMM50 gene, rs6006473, rs5764455, and rs6006611 in the PARVB gene had also significant P values (<2.0 × 10?10) and high odds ratios (1.84–2.02). These SNPs were found to be in the same linkage disequilibrium block and were associated with decreased serum triglycerides and increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in NAFLD patients. These SNPs were associated with steatosis grade and NAFLD activity score (NAS). Rs738409, rs2896019, rs738491, rs6006473, rs5764455, and rs6006611 were associated with fibrosis. Polymorphisms in the SAMM50 and PARVB genes in addition to those in the PNPLA3 gene were observed to be associated with the development and progression of NAFLD.  相似文献   

17.
Recent surveys have identified SLC22A4, SLC22A5, RUNX1, JAK1 as susceptibility genes for various immune-related diseases. An association study was performed in 738 Behcet’s patients with ocular involvement and 1,873 controls using the iPLEX system method. The first-stage study for 30 SNPs showed that SNPs rs2780815, rs310241, rs3790532 in JAK1 were associated with Behcet’s disease in Han Chinese (Pc(Bonferroni correction) = 0.022–7.7 × 10?3). The G allele and AA genotype of SNP rs2834643 in RUNX1 (Pc = 0.041–1.75 × 10?3), but none of the other SNPs, were associated with Behcet’s disease. Haplotype analysis for the SLC22A4, SLC22A5 genes showed an increased tendency for AGTCTGCCGC frequency in patients compared with controls; however, the significance was lost after Bonferroni correction (P = 0.004, Pc > 0.05). Subsequently, we further replicated the significantly associated SNPs using another independent cohort. Replication and combining studies showed that three SNPs rs2780815, rs310241, rs3790532 in JAK1, but not SNP rs2834643 in RUNX1, were consistently associated with Behcet’s disease (replication: Pc = 0.012–9.60 × 10?4; combining: Pc = 0.030–1.90 × 10?4). SNPs rs2780815, rs310241, rs3790532 were estimated to confer a population attributable risk of 35.0, 28.0, 27.0 %, respectively. We found a strong association between HLA-B51 with Behcet’s disease in Chinese Han population (P = 1.35 × 10?73; OR = 5.15; 95 % CI 4.28–6.19). GMDR analysis showed that no gene–gene interaction was detectable between JAK1 and HLA-B51. Logistic analysis indicated that the JAK1 gene was an independent risk factor for Behcet’s disease (P > 0.05). Real-time PCR analysis showed that no difference on the expression of JAK1 in PBMCs or LPS-stimulated PBMCs between individuals with the different rs1762780815 genotypes studied (P > 0.05). In conclusion, this study suggests that JAK1, but not SLC22A4, SLC22A5 and RUNX1, contributes to the genetic susceptibility to Behcet’s disease with ocular involvement.  相似文献   

18.
Gene–environment interactions need to be studied to better understand the obesity. We aimed at determining whether genetic susceptibility to obesity associates with diet intake levels and whether diet intakes modify the genetic susceptibility. In 29,480 subjects of the population-based Malmö Diet and Cancer Study (MDCS), we first assessed association between 16 genome-wide association studies identified obesity-related single-nucleotide polymorphisms (SNPs) with body mass index (BMI) and associated traits. We then conducted association analyses between a genetic risk score (GRS) comprising of 13 replicated SNPs and the individual SNPs, and relative dietary intakes of fat, carbohydrates, protein, fiber and total energy intake, as well as interaction analyses on BMI and associated traits among 26,107 nondiabetic MDCS participants. GRS associated strongly with increased BMI (P = 3.6 × 10?34), fat mass (P = 6.3 × 10?28) and fat-free mass (P = 1.3 × 10?24). Higher GRS associated with lower total energy intake (P = 0.001) and higher intake of fiber (P = 2.3 × 10?4). No significant interactions were observed between GRS and the studied dietary intakes on BMI or related traits. Of the individual SNPs, after correcting for multiple comparisons, NEGR1 rs2815752 associated with diet intakes and BDNF rs4923461 showed interaction with protein intake on BMI. In conclusion, our study does not provide evidence for a major role for macronutrient-, fiber- or total energy intake levels in modifying genetic susceptibility to obesity measured as GRS. However, our data suggest that the number of risk alleles as well as some of the individual obesity loci may have a role in regulation of food and energy intake and that some individual loci may interact with diet.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with strong genetic components. To identity novel risk variants for ALS, utilizing the latest genome-wide association studies (GWAS) and eQTL study data, we conducted a genome-wide expression association analysis by summary data-based Mendelian randomization (SMR) method. Summary data were derived from a large-scale GWAS of ALS, involving 12577 cases and 23475 controls. The eQTL annotation dataset included 923,021 cis-eQTL for 14,329 genes and 4732 trans-eQTL for 2612 genes. Genome-wide single gene expression association analysis was conducted by SMR software. To identify ALS-associated biological pathways, the SMR analysis results were further subjected to gene set enrichment analysis (GSEA). SMR single gene analysis identified one significant and four suggestive genes associated with ALS, including C9ORF72 (P value = 7.08 × 10?6), NT5C3L (P value = 1.33 × 10?5), GGNBP2 (P value = 1.81 × 10?5), ZNHIT3(P value = 2.94 × 10?5), and KIAA1600(P value = 9.97 × 10?5). GSEA identified 7 significant biological pathways, such as PEROXISOME (empirical P value = 0.006), GLYCOLYSIS_GLUCONEOGENESIS (empirical P value = 0.043), and ARACHIDONIC_ACID_ METABOLISM (empirical P value = 0.040). Our study provides novel clues for the genetic mechanism studies of ALS.  相似文献   

20.
Prostate-specific antigen (PSA) is a commonly used cancer biomarker for prostate cancer, and is often included as part of routine physical examinations in China. Serum levels of PSA may be influenced by genetic factors as well as other factors. A genome-wide association study (GWAS) conducted in a European population successfully identified six genetic loci that were significantly associated with PSA level. In this study, we aimed to identify common genetic variants that are associated with serum level of PSA in a Chinese population. We also evaluated the effects of those variants by creating personalized PSA cutoff values. A two-stage GWAS of PSA level was performed among men age 20–69 years and self-reported cancer-free participants that underwent routine physical examinations at several hospitals in Guangxi Province, China. Single nucleotide polymorphisms (SNPs) significantly associated with PSA levels in the first stage of sample (N = 1,999) were confirmed in the second stage of sample (N = 1,496). Multivariate linear regression was used to assess the independent contribution of confirmed SNPs and known covariates, such as age, to the level of PSA. SNPs in three regions were significantly associated with levels of PSA in this two-stage GWAS, and had combined P values between 4.62 × 10?17 and 6.45 × 10?37. The three regions are located on 1q32.1 at SLC45A3, 10q11.23 at MSMB, and 19q13.33 at KLK3. The region 1q32.1 at SLC45A3 was identified as a novel locus. Genetic variants contributed significantly more to the variance of PSA level than known covariates such as age. Personalized cutoff values of serum PSA, calculated based on the inheritance of these associated SNPs, differ considerably among individuals. Identification of these genetic markers provides new insight into the molecular mechanisms of PSA. Taking individual variation into account, these genetic variants may improve the performance of PSA to predict prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号