首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutants of Salmonella typhimurium were isolated that require tyrosine for growth because of an altered tyrosyl-transfer ribonucleic acid (tRNA) synthetase. Extracts of one strain (JK10) contain a labile enzyme with decreased ability to transfer tyrosine to tRNA(Tyr) and a higher K(m) for tyrosine than the wild-type enzyme. Strain JK10 maintains repressed levels of the tyrosine biosynthetic enzymes when the growth rate is restricted due to limitation of charged tRNA(Tyr). Several second-site revertants of strain JK10 exhibit temperature-sensitive growth due to partially repaired, heat-labile tyrosyl-tRNA synthetase. The tyrosine biosynthetic enzymes are not derepressed in thermosensitive strains grown at the restrictive temperature. A class of tyrosine regulatory mutants, designated tyrR, contains normal levels of tyrosyl-tRNA synthetase and tRNA(Tyr). These results suggest that charging of tRNA(Tyr) is not necessary for repression. This conclusion is substantiated by the finding that 4-aminophenylalanine, a tyrosine analogue which causes repression of the tyrosine biosynthetic enzymes, is not attached to tRNA(Tyr) in vivo, nor does it inhibit the attachment reaction in vitro. A combined regulatory effect due to the simultaneous presence of tyrS and tyrR mutations in the same strain was detected. The possibility of direct participation of tyrosyl-tRNA synthetase in tyrosine regulation is discussed.  相似文献   

2.
3.
A method is described which permits the simultaneous isolation and separation of insoluble aminoacyl-tRNA synthetase protein - RNA complexes containing high specific synthetase activity, and soluble tRNA which retains 25% to 50% of its specific amino acid accepting activity. A possible amino acid accepting activity of the RNA part of the insoluble aminoacyl-tRNA synthetase protein - RNA complex was investigated by assaying the unchanged complex and the RNA obtained after dissociation from the protein part of the synthetase complex. No amino acid accepting activity was found.  相似文献   

4.
Detailed study of methionine-mediated repression of enzymes involved in methionine biosynthesis in Saccharomyces cerevisiae led to classification of these enzymes into two distinct regulatory groups. Group I comprises four enzymes specifically involved in different parts of methionine biosynthesis, namely, homoserine-O-transacetylase, homocysteine synthetase, adenosine triphosphate sulfurylase, and sulfite reductase. Repressibility of these enzymes is greatly decreased in strains carrying a genetically impaired methionyl-transfer ribonucleic acid (tRNA) synthetase (mutation ts(-) 296). Conditions leading to absence of repression in the mutant strain have been correlated with a sharp decrease in bulk tRNA(met) charging, whereas conditions which restore repressibility of group I enzymes also restore tRNA(met) charging. These findings implicate methionyl-tRNA in the regulatory process. However, the absence of a correlation in the wild type between methionyl-tRNA charging and the levels of methionine group I enzymes suggests that only a minor iso accepting species of tRNA(met) may be devoted with a regulatory function. Repressibility of the same four enzymes (group I) was also decreased in strains carrying the regulatory mutation eth2(r). Although structural genes coding for two of these enzymes, as well as mutations ts(-) 296 and eth2(r) segregate independently to each other, synthesis of group I enzymes is coordinated. The pleiotropic regulatory system involved seems then to comprise beside a "regulatory methionyl tRNA(met)," another element, product of gene eth2, which might correspond either to an aporepressor protein or to the "regulatory tRNA(met)" itself. Regulation of group II enzymes is defined by response to exogenous methionine, absence of response to either mutations ts(-) 296 and eth2(r), and absence of coordinacy with group I enzymes. However, the two enzymes which belong to this group and are both involved in threonine and methionine biosynthesis undergo distinct regulatory patterns. One, aspartokinase, is subject to a bivalent repression exerted by threonine and methionine, and the other, homoserine dehydrogenase, is subject only to methionine-mediated repression. Participation of at least another aporepressor and another corepressor, different from the ones involved in regulation of group I enzymes, is discussed.  相似文献   

5.
6.
Growth conditions that result in the accumulation of the tryptophan intermediate indoleglycerol phosphate or of the histidine intermediate imidazoleglycerol phosphate cause mycelia of Neurospora crassa to exhibit an immediate and sustained increase in the differential rate at which the biosynthetic enzymes of the tryptophan, histidine, and arginine pathways are synthesized. These accumulated intermediates are shown to be inhibitors of the activity of aminoacyltransfer ribonucleic acid (tRNA) synthetases, as judged by an in vitro esterification assay. The tryptophan intermediate is shown to inhibit the charging of tryptophan, and the histidine intermediate is shown to inhibit charging of histidine. The inhibitions noted are consistent with the finding that the level of charged tRNATrp is decreased significantly in cells that have accumulated indoleglycerol phosphate and that of tRNAHis is decreased significantly in cells that have accumulated imidazoleglycerol phosphate. These results are interpreted as support for the involvement of aminoacyl-tRNA species in mediating cross-pathway regulation of the tryptophan, histidine, and arginine biosynthetic pathways as proposed in Lester's polyrepressor hypothesis (G. Lester, 1971). the correlations noted lead to the conclusion that Neurospora utilizes regulatory mechanisms that have the ability to react to changes in the level of charging of tRNA species.  相似文献   

7.
8.
9.
Transfer RNA (tRNA) molecules play vital roles during protein synthesis. Their acceptor arms are aminoacylated with specific amino acid residues while their anticodons delimit codon specificity. The history of these two functions has been generally linked in evolutionary studies of the genetic code. However, these functions could have been differentially recruited as evolutionary signatures were left embedded in tRNA molecules. Here we built phylogenies derived from the sequence and structure of tRNA, we forced taxa into monophyletic groups using constraint analyses, tested competing evolutionary hypotheses, and generated timelines of amino acid charging and codon discovery. Charging of Sec, Tyr, Ser and Leu appeared ancient, while specificities related to Asn, Met, and Arg were derived. The timelines also uncovered an early role of the second and then first codon bases, identified codons for Ala and Pro as the most ancient, and revealed important evolutionary take-overs related to the loss of the long variable arm in tRNA. The lack of correlation between ancestries of amino acid charging and encoding indicated that the separate discoveries of these functions reflected independent histories of recruitment. These histories were probably curbed by co-options and important take-overs during early diversification of the living world.  相似文献   

10.
A suppressor tRNA(Tyr) and mutant tyrosyl-tRNA synthetase (TyrRS) pair was developed to incorporate 3-iodo-L-tyrosine into proteins in mammalian cells. First, the Escherichia coli suppressor tRNA(Tyr) gene was mutated, at three positions in the D arm, to generate the internal promoter for expression. However, this tRNA, together with the cognate TyrRS, failed to exhibit suppressor activity in mammalian cells. Then, we found that amber suppression can occur with the heterologous pair of E.coli TyrRS and Bacillus stearothermophilus suppressor tRNA(Tyr), which naturally contains the promoter sequence. Furthermore, the efficiency of this suppression was significantly improved when the suppressor tRNA was expressed from a gene cluster, in which the tRNA gene was tandemly repeated nine times in the same direction. For incorporation of 3-iodo-L-tyrosine, its specific E.coli TyrRS variant, TyrRS(V37C195), which we recently created, was expressed in mammalian cells, together with the B.stearothermophilus suppressor tRNA(Tyr), while 3-iodo-L-tyrosine was supplied in the growth medium. 3-Iodo-L-tyrosine was thus incorporated into the proteins at amber positions, with an occupancy of >95%. Finally, we demonstrated conditional 3-iodo-L-tyrosine incorporation, regulated by inducible expression of the TyrRS(V37C195) gene from a tetracycline-regulated promoter.  相似文献   

11.
Transfer ribonucleic acid is well fractionated on columns of arginine-agarose, whose properties appear in general to be similar to those of DEAE-Sephadex. However, the amino acid acceptor species are separated into sharper peaks and in several instances, notably for methionine, glycine, serine, leucine and aspartate accepting tRNAs from Escherichia coli, isoaccepting species are well resolved. In the case of methionine accepting tRNA from E. coli the tRNA Met-m species is eluted before the tRNA Met-f species and since it is also eluted prior to the bulk of the tRNA it is obtained in a high degree of purity. By comparing the properties of columns of arginine-agarose and its methyl ester in which the carboxylate anion is blocked, it is seen that the carboxylate ion plays a role in the fractionation of the tRNA Met species.  相似文献   

12.
Sequence comparisons have been combined with mutational and kinetic analyses to elucidate how the catalytic mechanism of Bacillus stearothermophilus tyrosyl-tRNA synthetase evolved. Catalysis of tRNA(Tyr) aminoacylation by tyrosyl-tRNA synthetase involves two steps: activation of the tyrosine substrate by ATP to form an enzyme-bound tyrosyl-adenylate intermediate, and transfer of tyrosine from the tyrosyl-adenylate intermediate to tRNA(Tyr). Previous investigations indicate that the class I conserved KMSKS motif is involved in only the first step of the reaction (i.e. tyrosine activation). Here, we demonstrate that the class I conserved HIGH motif also is involved only in the tyrosine activation step. In contrast, one amino acid that is conserved in a subset of the class I aminoacyl-tRNA synthetases, Thr40, and two amino acids that are present only in tyrosyl-tRNA synthetases, Lys82 and Arg86, stabilize the transition states for both steps of the tRNA aminoacylation reaction. These results imply that stabilization of the transition state for the first step of the reaction by the class I aminoacyl-tRNA synthetases preceded stabilization of the transition state for the second step of the reaction. This is consistent with the hypothesis that the ability of aminoacyl-tRNA synthetases to catalyze the activation of amino acids with ATP preceded their ability to catalyze attachment of the amino acid to the 3' end of tRNA. We propose that the primordial aminoacyl-tRNA synthetases replaced a ribozyme whose function was to promote the reaction of amino acids and other small molecules with ATP.  相似文献   

13.
During mRNA translation, synonymous codons for one amino acid are often read by different isoaccepting tRNAs. The theory of selective tRNA charging predicts greatly varying percentages of aminoacylation among isoacceptors in cells starved for their common amino acid. It also predicts major changes in tRNA charging patterns upon concentration changes of single isoacceptors, which suggests a novel type of translational control of gene expression. We therefore tested the theory by measuring with Northern blots the charging of Leu-tRNAs in Escherichia coli under Leu limitation in response to over expression of tRNA(GAG)(Leu). As predicted, the charged level of tRNA(GAG)(Leu) increased and the charged levels of four other Leu isoacceptors decreased or remained unchanged, but the charged level of tRNA(UAG)(Leu) increased unexpectedly. To remove this apparent inconsistency between theory and experiment we postulated a previously unknown common codon for tRNA(GAG)(Leu) and tRNA(UAG)(Leu). Subsequently, we demonstrated that the tRNA(GAG)(Leu) codon CUU is, in fact, read also by tRNA(UAG)(Leu), due to a uridine-5-oxyacetic acid modification.  相似文献   

14.
Through an exhaustive search for Escherichia coli aminoacyl-tRNA synthetase(s) responsible for the misacylation of yeast suppressor tRNA(Tyr), E. coli lysyl-tRNA synthetase was found to have a weak activity to aminoacylate yeast amber suppressor tRNA(Tyr) (CUA) with L-lysine. Since our protein-synthesizing system for site-specific incorporation of unnatural amino acids into proteins is based on the use of yeast suppressor tRNA(Tyr)/tyrosyl-tRNA synthetase (TyrRS) pair as the "carrier" of unusual amino acid in E. coli translation system, this misacylation must be repressed as low as possible. We have succeeded in effectively repressing the misacylation by changing several nucleotides in this tRNA by genetic engineering. This "optimized" tRNA together with our mutant TyrRS should serve as an efficient and faithful tool for site-specific incorporation of unnatural amino acids into proteins in a protein-synthesizing system in vitro or in vivo.  相似文献   

15.
16.
17.
The cell wall of lactic acid bacteria has the typical Gram-positive structure made of a thick, multilayered peptidoglycan sacculus decorated with proteins, teichoic acids and polysaccharides, and surrounded in some species by an outer shell of proteins packed in a paracrystalline layer (S-layer). Specific biochemical or genetic data on the biosynthesis pathways of the cell wall constituents are scarce in lactic acid bacteria, but together with genomics information they indicate close similarities with those described in Escherichia coli and Bacillus subtilis, with one notable exception regarding the peptidoglycan precursor. In several species or strains of enterococci and lactobacilli, the terminal D-alanine residue of the muramyl pentapeptide is replaced by D-lactate or D-serine, which entails resistance to the glycopeptide antibiotic vancomycin. Diverse physiological functions may be assigned to the cell wall, which contribute to the technological and health-related attribut es of lactic acid bacteria. For instance, phage receptor activity relates to the presence of specific substituents on teichoic acids and polysaccharides; resistance to stress (UV radiation, acidic pH) depends on genes involved in peptidoglycan and teichoic acid biosynthesis; autolysis is controlled by the degree of esterification of teichoic acids with D-alanine; mucosal immunostimulation may result from interactions between epithelial cells and peptidoglycan or teichoic acids.  相似文献   

18.
Davie, Joseph M. (Indiana University, Bloomington), and Thomas D. Brock. Effect of teichoic acid on resistance to the membrane-lytic agent of Streptococcus zymogenes. J. Bacteriol. 92:1623-1631. 1966.-The resistance of Streptococcus zymogenes to its own lytic agent has been shown to be due to the production of a specific, inhibitory teichoic acid. A survey of streptococcal strains showed that only strains resistant to the lytic agent produced the specific inhibitor. In addition, the inhibitor can be removed from spheroplasts of resistant strains, thereby making them sensitive to the lysin. Throughout the early part of the growth cycle, the inhibitor is associated with the cell and cannot be found in the medium. During late logarithmic phase, however, the inhibitor is released into the medium by the cells, and therefore is a contributing factor to the apparent lability of the lytic agent. The purified, inhibitory teichoic acid contains ribitol, phosphate, glucose, and d-alanine. The alkaline lability of the biological activity of the teichoic acid was correlated with the hydrolysis of the d-alanine. A streptococcal strain which is sensitive to the membrane-lytic agent produced an inactive ribitol teichoic acid which lacks the ester-linked d-alanine, whereas a lysin-resistant mutant of this strain produces a teichoic acid which contains d-alanine and which has inhibitory activity.  相似文献   

19.
A ribonuclease (RNase) activity, RNase "XlaI," responsible for the excision of intervening sequences from two yeast transfer ribonucleic acid (tRNA) precursors, pre-tRNA(Tyr) and pre-tRNA(3Leu), has been purified 54-fold from nuclear extracts of Xenopus laevis oocytes. The RNase preparation is essentially free of contaminating RNase. A quantitative assay for RNase XlaI was developed, and the reaction products were characterized. RNase XlaI cleavage sites in the yeast tRNA precursors were identical to those made by yeast extracts (including 3'-phosphate and 5'-hydroxyl termini). Cleavage of pre-tRNA(3Leu) by RNase XlaI and subsequent ligation of the half-tRNA molecules do not require removal of the 5' leader or 3' trailer sequences.  相似文献   

20.
The correlation between the in vivo functioning and the in vitro behavior of the thermolabile alanyl-transfer ribonucleic acid (tRNA) synthetase (ARS) of Escherichia coli strain BM113 is presented. As a measure for the ARS activity inside the cell, the amount of acylated tRNA(ala) in vivo was determined. The rapid drop of the per cent tRNA(ala) charged which was observed upon shifting a culture of BM113 to the nonpermissive temperature indicates that in vivo acylation of tRNA(ala) might be the growth-limiting step at high temperature. Since neither growth nor the in vivo charging level of tRNA(ala) was affected by the addition of high l-alanine concentrations to the medium, one may infer that impaired functioning of the mutant enzyme at 40 C seems not to be due to reduced affinity of the enzyme for the amino acid. Separation of bulk tRNA of E. coli and of yeast on benzoylated diethylaminoethyl cellulose and charging of the fractions of the column by wild-type and mutant ARS reveal that only those tRNA species aminoacylated by the wild-type enzyme are also charged by the mutant ARS. Determination of the K(m) values of wild-type and mutant ARS for the three isoaccepting tRNA(ala) species of E. coli shows a ca. 10-fold increase of the apparent K(m) values of the mutant enzyme for all three species. Thus, the mutation proportionally reduces the apparent affinity for tRNA(ala) without causing any detectable recognition errors. Investigation of heat inactivation kinetics of wild-type and mutant ARS without and in the presence of substrates provides further evidence that only the transfer site of the ARS is altered by the mutation. Moreover, whereas both enzymes possess the same pH optimum of the relative maximal velocity, their pH dependence of the K(m) values for tRNA is different. The K(m) of the wild-type enzyme decreases at pH values below 7.0 and that of the mutant enzyme shows the inverse tendency; this again indicates an alteration of the tRNA binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号