首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
M D Ryan  J Drew 《The EMBO journal》1994,13(4):928-933
We describe the construction of a plasmid (pCAT2AGUS) encoding a polyprotein in which a 19 amino acid sequence spanning the 2A region of the foot-and-mouth disease virus (FMDV) polyprotein was inserted between the reporter genes chloramphenicol acetyl transferase (CAT) and beta-glucuronidase (GUS) maintaining a single, long open reading frame. Analysis of translation reactions programmed by this construct showed that the inserted FMDV sequence functioned in a manner similar to that observed in FMDV polyprotein processing: the CAT2AGUS polyprotein underwent a cotranslational, apparently autoproteolytic, cleavage yielding CAT-2A and GUS. Analysis of translation products derived from a series of constructs in which sequences were progressively deleted from the N-terminal region of the FMDV 2A insertion showed that cleavage required a minimum of 13 residues. The FMDV 2A sequence therefore provides the opportunity to engineer either whole proteins or domains such that they are cleaved apart cotranslationally with high efficiency.  相似文献   

2.
Simultaneous expression of multiple proteins in plants finds ample applications. Here, we examined the biotechnological application of native kex2p-like protease activity in plants for coordinate expression of multiple secretory proteins from a single transgene encoding a cleavable polyprotein precursor. We expressed a secretory red fluorescent protein (DsRed) or human cytokine (GMCSF), fused to a downstream green fluorescent protein (GFP) by a linker containing putative recognition sites of the kex2p-like protease in tobacco cells and referred to them as RKG and GKG cells, respectively. Our analyses showed that GFP is cleaved off the fusion proteins and secreted into the media by both RKG and GKG cells. The cleaved GFP product displayed the expected fluorescence characteristics. Using GFP immunoprecipitation and fluorescence analysis, the cleaved DsRed product in the RKG cells was found to be functional as well. However, DsRed was not detected in the RKG culture medium, possibly due to its tetramer formation. Cleaved and biologically active GMCSF could also be detected in GKG cell extracts, but secreted GMCSF was found to be only at a low level, likely because of instability of GMCSF protein in the medium. Processing of polyprotein precursors was observed to be similarly effective in tobacco leaf, stem and root tissues. Importantly, we also demonstrated that, via agroinfiltration, polyprotein precursors can be efficiently processed in plant species other than tobacco. Collectively, our results demonstrate the utility of native kex2p-like protease activity for the expression of multiple secretory proteins in plant cells using cleavable polyprotein precursors containing kex2p linker(s).  相似文献   

3.
Achieving co-ordinate, high-level and stable expression of multiple transgenes in plants is currently difficult. Expression levels are notoriously variable and influenced by factors that act independently on transgenes at different genetic loci. Instability of expression due to loss, re-arrangement or silencing of transgenes may occur, and is exacerbated by increasing numbers of transgenic loci and repeated use of homologous sequences. Even linking two or more genes within a T-DNA does not necessarily result in co-ordinate expression. Linking proteins in a single open reading frame--a polyprotein--is a strategy for co-ordinate expression used by many viruses. After translation, polyproteins are processed into constituent polypeptides, usually by proteinases encoded within the polyprotein itself. However, in foot-and-mouth disease virus (FMDV), a sequence (2A) of just 16-20 amino acids appears to have the unique capability to mediate cleavage at its own C-terminus by an apparently enzyme-independent, novel type of reaction. This sequence can also mediate cleavage in a heterologous protein context in a range of eukaryotic expression systems. We have constructed a plasmid in which the 2A sequence is inserted between the reporter genes chloramphenicol acetyltransferase (CAT) and beta-glucuronidase (GUS), maintaining a single open reading frame. Here we report that expression of this construct in wheatgerm lysate and transgenic plants results in efficient cleavage of the polyprotein and co-ordinate expression of active CAT and GUS. Self-processing polyproteins using the FMDV 2A sequence could therefore provide a system for ensuring co-ordinated, stable expression of multiple introduced proteins in plant cells.  相似文献   

4.
We developed an in vitro translation extract from Krebs-2 cells that translates the entire open reading frame of the hepatitis C virus (HCV) strain H77 and properly processes the viral protein precursors when supplemented with canine microsomal membranes (CMMs). Translation of the C-terminal portion of the viral polyprotein in this system is documented by the synthesis of NS5B. Evidence for posttranslational modification of the viral proteins, the N-terminal glycosylation of E1 and the E2 precursor (E2-p7), and phosphorylation of NS5A is presented. With the exception of NS3, efficient generation of all virus-specific proteins is CMM dependent. A time course of the appearance of HCV products indicates that the viral polyprotein is cleaved cotranslationally. A competitive inhibitor of the NS3 protease inhibited accumulation of NS3, NS4B, NS5A, and NS5B, but not that of NS2 or structural proteins. CMMs also stabilized HCV mRNA during translation. Finally, the formyl-[35S]methionyl moiety of the initiator tRNA(Met) was incorporated exclusively into the core protein portion of the polyprotein, demonstrating that translation initiation in this system occurs with high fidelity.  相似文献   

5.
6.
7.
E unum pluribus: multiple proteins from a self-processing polyprotein   总被引:1,自引:0,他引:1  
Many applications of genetic engineering require transformation with multiple (trans)genes, although to achieve these using conventional techniques can be challenging. The 2A oligopeptide is emerging as a highly effective new tool for the facile co-expression of multiple proteins in a single transformation step, whereby a gene encoding multiple proteins, linked by 2A sequences, is transcribed from a single promoter. The polyprotein self-processes co-translationally such that each constituent protein is generated as a discrete translation product. 2A functions in all the eukaryotic systems tested to date and has already been applied, with great success, to a broad range of biotechnological applications: from plant metabolome engineering to the expression of T-cell receptor complexes, monoclonal antibodies or heterodimeric cytokines in animals.  相似文献   

8.
目前双基因和多基因转基因植物已经商品化,并展现了广泛的应用前景。但在转基因植物研究中,使多个基因同时在植物体中表达调控依然很难实现,是植物基因工程和生物技术发展中的难点。融合基因表达载体作为一种新型的方法,弥补了获得双价或多价转基因植物传统方法的缺点,具有更高的应用价值。本文对目前构建融合基因的方法作了评述,并对比较新颖的连接肽2A和LP4做了详细介绍。  相似文献   

9.
We developed a method for expression in Arabidopsis of a transgene encoding a cleavable chimeric polyprotein. The polyprotein precursor consists of a leader peptide and two different antimicrobial proteins (AMPs), DmAMP1 originating from Dahlia merckii seeds and RsAFP2 originating from Raphanus sativus seeds, which are linked by an intervening sequence ("linker peptide") originating from a natural polyprotein occurring in seed of Impatiens balsamina. The chimeric polyprotein was found to be cleaved in transgenic Arabidopsis plants and the individual AMPs were secreted into the extracellular space. Both AMPs were found to exert antifungal activity in vitro. It is surprising that the amount of AMPs produced in plants transformed with some of the polyprotein transgene constructs was significantly higher compared with the amount in plants transformed with a transgene encoding a single AMP, indicating that the polyprotein expression strategy may be a way to boost expression levels of small proteins.  相似文献   

10.
A novel approach is developed for coordinated expression of multiple proteins from a single transgene in plants. An Ssp DnaE mini‐intein variant engineered for hyper‐N‐terminal autocleavage is covalently linked to the foot‐and‐mouth disease virus 2A (F2A) peptide with unique ribosome skipping property, via a peptide linker, to create an ‘IntF2A’ self‐excising fusion protein domain. This IntF2A domain acts, in cis, to direct highly effective release of its flanking proteins of interest (POIs) from a ‘polyprotein’ precursor in plants. This is successfully demonstrated in stably transformed cultured tobacco cells as well as in different organs of transgenic tobacco plants. Highly efficient polyprotein processing mediated by the IntF2A domain was also demonstrated in lettuce and Nicotiana benthamiana based on transient expression. Protein constituents released from the polyprotein precursor displayed proper function and accumulated at similar levels inside the cells. Importantly, no C‐terminal F2A extension remains on the released POIs. We demonstrated co‐expression of as many as three proteins in plants without compromising expression levels when compared with those using single‐protein vectors. Accurate differential cellular targeting of released POIs is also achieved. In addition, we succeeded in expressing a fully assembled and functional chimeric anti‐His Tag antibody in N. benthamiana leaves. The IntF2A‐based polyprotein transgene system overcomes key impediments of existing strategies for multiprotein co‐expression in plants, which is particularly important for gene/trait stacking.  相似文献   

11.
Significant advances in our understanding of normal development and disease have been facilitated by engineered mice in which genes can be altered in a spatially, temporally, or cell type restricted manner using site specific recombinase systems like Cre‐loxP or Flp‐frt. In many circumstances it is important to understand how interactions between multiple genes influence a given phenotype. Robust approaches for precisely controlling multiple genetic alterations independently are limited, however, thus the impact of mutation order and timing on phenotype is generally unknown. Here we describe and validate a novel Gt(ROSA)26Sor targeted transgene allowing precise control over the order and timing of multiple genetic mutations in the mouse. The transgene expresses an optimized, Flp‐estrogen receptor fusion protein (Flpo‐ERT2) under the control of a loxP‐stop‐loxP cassette. In this system, genes modified by loxP sites are altered first upon expression of Cre. Cre also eliminates the loxP‐stop‐loxP cassette, permitting widespread expression of Flpo‐ERT2. Because of the estrogen receptor fusion, Flp activity remains inert until administration of tamoxifen, allowing genes modified by frt sites to be modified subsequently with controllable timing. This mouse transgene will be useful in a wide variety of applications where independent control of different mutations in the mouse is desirable.  相似文献   

12.
13.
The murine λ5-VpreB1 locus encodes two proteins that form part of the pre-B-cell receptor and play a key role in B-lymphocyte development. We have identified a locus control region (LCR) which is responsible for coordinate activation of both genes in pre-B cells. Analysis of mice with single and multiple copies of transgenes shows a clear difference in the expression behavior of the genes depending on the transgene copy number. While expression of both λ5 and VpreB1 in single- and two-copy integrations requires the presence of a set of DNase I hypersensitive sites located 3′ of the λ5 gene, small fragments containing the genes have LCR activity when arranged in multiple-copy tandem arrays, indicating that additional components of the LCR are located within or close to the genes. The complete LCR is capable of driving efficient copy-dependent expression of a λ5 gene in pre-B cells even when it is integrated into centomeric γ-satellite DNA. The finding that activation of expression of the locus by positively acting factors is fully dominant over the silencing effect of heterochromatin has implications for models for chromatin-mediated gene silencing during B-cell development.  相似文献   

14.
A gene expression system designed for coordinated expression of multiple genes in plants and their targeting to specified subcellular locations was tested. A series of genes encoding polyproteins containing the tobacco vein mottling virus (TVMV) NIa proteinase along with two other reporter genes (those encoding the Escherichia coli acetate kinase (ACK) and Tn9 chloramphenicol acetyl transferase (CAT) enzymes) were assembled. The respective coding sequences of these genes were separated by a TVMV NIa proteinase recognition sequence. In addition, in some instances, chloroplast targeting information (a transit peptide (TP) from a pea rbcS gene) was incorporated into the polyprotein. We found that the NIa proteinase can be used to express, as individual polypeptides, the ACK and CAT proteins, and that these proteins retain enzymatic activity. Polyproteins with the structure TP-NIa-ACK-CAT or TP-ACK-CAT-NIa failed to yield chloroplast-localized ACK and CAT proteins, although the latter did give rise to a chloroplast-localized ACK-CAT polyprotein. These results indicate that the NIa proteinase acts in cis more rapidly than transport of proteins into the chloroplast, but that chloroplast localization can take place before complete processing of the polyprotein. Polyproteins with the structures ACK-NIa-TP-CAT and TP-ACK-NIa-TP-CAT yielded appropriately processed and targeted ACK and CAT. Our results show that subcellular localization signals can be effectively recognized in the context of a polyprotein, and they suggest an appropriate strategy for simultaneous engineering of multiple subcellular compartments in plants.  相似文献   

15.
16.
The availability of a variety of promoter sequences is necessary for the genetic engineering of plants, in basic research studies and for the development of transgenic crops. In this study, the promoter and 5′ untranslated regions of the evolutionally conserved protein translation factor SUI1 gene and ribosomal protein L36 gene were isolated from pineapple and sequenced. Each promoter was translationally fused to the GUS reporter gene and transformed into the heterologous plant system Arabidopsis thaliana. Both the pineapple SUI1 and L36 promoters drove GUS expression in all tissues of Arabidopsis at levels comparable to the CaMV35S promoter. Transient assays determined that the pineapple SUI1 promoter also drove GUS expression in a variety of climacteric and non-climacteric fruit species. Thus the pineapple SUI1 and L36 promoters demonstrate the potential for using translation factor and ribosomal protein genes as a source of promoter sequences that can drive constitutive transgene expression patterns.  相似文献   

17.
18.
Regulation of translation is critical for the accurate expression of a broad variety of genes that function in cell cycle progression and cell differentiation, as well as in the adaptation to cellular stress. The aetiologies of a number of human diseases, including cancer, have been linked to mutations in genes that control mRNA translation, or in cis-regulatory mRNA-sequences. Therefore, research on translational control and its therapeutic appliance has become most important. However, to date only a limited number of therapeutic drugs are known to affect translational control. Here we describe a novel, straightforward approach for the detection of cellular translational activity. We developed a Translational Control Reporter System (TCRS), which utilizes the cis-regulatory upstream open reading frame (uORF) from the c/ebpα locus to direct the translation of a dual reporter gene into two unique reporter peptides. The peptides contain a pre-pro-trypsin (PPT) signal for secretion into the medium and distinct immunogenic epitopes for detection and quantification purposes. TCRS-peptide expression levels reflect changes of translation initiation induced by serum growth factors, drugs or translation factor mutants. TCRS can be tailored to various research settings and the system may accomplish a broad application to uncover links between translational control and drugs.  相似文献   

19.
A recombinant vaccinia virus producing the bacteriophage T7 RNA polymerase was used to express foreign genes in eukaryotic cells. Translation efficiency in this expression system was enhanced significantly by employing the encephalomyocarditis virus (EMCV) 5'-untranslated region (UTR) which confers cap-independent translation by directing internal initiation of translation. The enhancement was accomplished by fusing open reading frames (ORFs) to the N terminus of the EMCV polyprotein coding region, thus utilizing its highly efficient translation initiation site. Expression vectors were constructed to allow cloning in all three reading frames. As reporter genes, we used the lacZ gene and a number of genes encoding coronavirus structural proteins: among others the genes encoding glycoproteins with N-terminal signal sequences. The signal sequences of these glycoproteins are located internally in the primary translation product. We demonstrated that this did not interfere with translocation and glycosylation and yields biologically active proteins. The usefulness of sequences that direct internal initiation was extended by using EMCV UTRs to express two and three ORFs from polycistronic mRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号