首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tensiomyography is a non-invasive method of neuromuscular assessment used to measure muscle action characteristics, muscle tone, and muscle fiber type, and provides information on acute and chronic responses of muscle to different training loads. The aims of the present study were: to analyse differences in muscle response and mechanical characteristics of two major muscles of the lower extremity in a large group of Spanish soccer players according to playing position, and to provide group norms against which clinical findings may be compared. Data were collected from 78 professional soccer players (age 26.6 ± 4.4 years; height: 179.2 ± 5.3 cm; body mass: 75.8 ± 5.3 kg). Tensiomyography was recorded from the rectus femoris (RF) and biceps femoris (BF) muscles after 2 days without take part in any strenuous exercise or training. Five tensiomyographic parameters were analyzed: maximal displacement (Dm), contraction time (Tc), sustain time (Ts), delay time (Td), and half-relaxation time (Tr). A good to excellent intra-session reliability was found for all contractile parameters (ICC ranged from 0.78 to 0.95). No significant differences between players of any position were observed in absolute values of BF. However, significant differences were observed for Tc, Tr and Ts between the different playing positions on RF (P < 0.05, effect size ranged from 1.3 to 1.6). Professional soccer players showed muscles with ability to rapidly generate force during contractions. The neuromuscular profile provided could help in identifying the normative data that are important for the different positions in order to optimize the training and recovery process of each individual player.  相似文献   

2.
Recent evidence supports the use of certain soccer drills for combined technical and physical training. Therefore, it is important to be able to accurately monitor training intensity during soccer drills intended for physical development to allow the optimization of training parameters. Twenty-eight professional soccer players were assessed for heart rate (HR) and rating of perceived exertion (RPE) responses to 5 commonly used soccer training drills (2v2 to 8v8 drills). The responses of both HR and RPE differed significantly (p < 0.05) between the drills, generally showing an elevated response to drills involving lower player numbers. However, the 2v2 drill showed a significantly (p < 0.05) lower HR response (mean +/- SD: 88.7 +/- 1.2% HRmax) than 3v3 (91.2 +/- 1.3% HRmax) and 4v4 drills (90.2 +/- 1.6% HRmax). There was no significant correlation between the HR and RPE responses to the various drills (r = 0.60, p = 0.200). This poor relationship is probably because during the 2v2 drill, RPE was higher than during any of the other 6 drills, whereas HR was only fourth highest of the 6 drills. This demonstrates that HR and RPE are only poorly related during the intense drills used in this study, and that HR underestimates the intensity of the 2v2 drill. Heart rate demonstrated lower intersubject variability (1.3-2.2%) than RPE (5.1-9.9%). However, unlike HR, Borg 15-point RPE appears to be a valid marker of exercise intensity over a wide range of soccer training drills by maintaining validity in all drills and demonstrating acceptable intersubject variability. A combination of both HR- and RPE-based training load calculations appears optimal for use in soccer training.  相似文献   

3.
4.
Electromyography of the genioglossus muscles in man   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
Despite limited data on humans, previous studies suggest that there is an association between the duration of daily muscle activity and the proportion of type I muscle fibers. We quantified the activity of limb muscles in healthy men and women during normal use and compared these measurements with published reports on fiber-type proportions. Seven men (age range = 21-28 yr) and seven women (age range = 18-26 yr) participated in two 10-h recording sessions. Electromyogram (EMG) activity of four muscles in nondominant upper (first dorsal interosseus and biceps brachii) and lower limbs (vastus medialis and vastus lateralis) was recorded with surface electrodes. Hand and arm muscles were active for 18% of the recording time, whereas leg muscles were active for only 10% of the recording time. On average, upper-limb muscles were activated 67% more often than lower-limb muscles. When lower-limb muscles were activated, however, the mean amplitude of each burst was greater in leg muscles [18 and 17% maximum voluntary contraction (MVC)] compared with hand (8% MVC) and arm (6% MVC) muscles. Temporal association in activity between pairs of muscles was high for the two lower-limb muscles (r2 = 0.7) and relatively weak for the two upper-limb muscles (r2 = 0.09). Long-term muscle activity was only different between men and women for the biceps brachii muscle. We found no relation between duration of muscle activity in 10-h recordings and the reported values of type I fibers in men and women.  相似文献   

7.
Electromyography of trunk muscles in isometric graded axial rotation.   总被引:2,自引:0,他引:2  
This study was conducted to determine the pattern, magnitude, and phasic inter-relationship of the trunk muscles in maximal isometric and graded isometric axial rotational contractions and compare them with those previously observed from the same subjects in the same experimental session in dynamic conditions. In 50 normal young healthy subjects (27 male and 23 female), after a suitable skin preparation, bipolar silver-silver chloride recessed pregelled surface electrodes were placed on external oblique, internal oblique, rectus abdominis, pectoralis major, latissimus dorsi, erector spinae at T(10) and L(3) levels bilaterally with 2 cm interelectrode distance. EMG signals from grounded subjects were suitably preamplified and amplified by a fully isolated system. These subjects were stabilized in an upright-seated posture in the Axial Rotation Tester (AROT), which was placed in isometric mode for force and rotation output from the AROT. The 14 channels of EMG, the force and the rotation were sampled at 1 kHz. The subjects initially registered their isometric maximal voluntary contraction (MVC) on both sides which was used for reference and then performed their 25%, 50% and 75% of MVC bilaterally in an isometric mode in a random order. The EMG magnitude, the slope of the rise of the EMG, and the phasic interrelationship of muscles were analyzed. The results showed that female sample generated only 65% of torque of their male counterparts. There were no significant differences between the male and the female samples in the EMG variables. Exertions to the left and to the right were not significantly different from each other for the measured variables. However, the magnitude contribution of the muscles and the slope of rise of EMG were significantly different in two directions (p<0.001). The phasic interrelationship of the external obliques, the latissimus dorsi and the erector spinae were different from other muscles (p<0.01). With the increasing grades of contraction the latissimus dorsi and the external obliques increased their magnitude significantly whereas that of the erectores spinae underwent a decrease in proportionate terms (but not in absolute magnitude) suggesting their role as stabilizers but not as rotators.  相似文献   

8.
Electromyographic (EMG) recordings were taken from 14 shoulder muscles (or major parts of them) in a gorilla, a chimpanzee and an orangutan as they stood quadrupedally and tripedally, descended from elevated substrates, crutch-walked, and progressed quadrupedally on inclined and level substrates. In the African apes, low potentials commonly (but not always) occurred in the sternocostal pectoralis major, anterior deltoid, supraspinatus and subscapularis muscles during quadrupedal stance. The quadrupedal orangutan always exhibited low potentials in the pectoralis major muscle and EMG activity commonly occurred in her supraspinatus and subscapularis muscles. Quiescent tripedal stances were not accompanied by striking changes in EMG patterns from those which characterized quadrupedal stances. Per contra, eccentric loadings of the forelimb during descents from elevated substrates generally recruited notable EMG activity in the deltoid, supraspinatus and, to a lesser extent, infraspinatus muscles of the three pongid apes. The pectoralis major and caudal serratus anterior muscles were much more active in Pongo and Pan during these descents. Supportive segments of quadrupedal locomotive cycles were generally accompanied by EMG activity in the pectoralis major, intermediate and posterior deltoid and supraspinatus muscles. The intermediate and posterior deltoid muscles were characteristically active during pre-release of the hand and early swing phase. The cranial trapezius and supraspinatus muscles also may act during early swing phase. We conclude that the pectoralis major and perhaps the supraspinatus and subscapularis might serve regularly as postural muscles during static terrestrial quadrupedalism in pongid apes. The lack of dramatic differences between the EMG patterns exhibited during fist-walking versus knuckle-walking indicates that an evolutionary transformation from a shoulder complex like that of Pongo to ones like Pan or vice versa need not entail major changes in myological features.  相似文献   

9.
10.
The present study sought to evaluate the inconsistencies previously observed regarding the predominance of continuous or interval training for improving fitness. The experimental design initially equated and subsequently maintained the same relative exercise intensity by both groups throughout the program. Twelve subjects were equally divided into continuous (CT, exercise at 50% maximal work) or interval (IT, 30 s work, 30 s rest at 100% maximal work) training groups that cycled 30 min day-1, 3 days.week-1, for 8 weeks. Following training, aerobic power (VO2max), exercising work rates, and peak power output were all higher (9-16%) after IT than after CT (5-7%). Vastus lateralis muscle citrate synthase activity increased 25% after CT but not after IT. A consistent increase in adenylate kinase activity (25%) was observed only after IT. During continuous cycling testing the CT group had reduced blood lactate (lab) levels and respiratory quotient at both the same absolute and relative (70% VO2max) work rates after training, while the IT group displayed similar changes only at the same absolute work rates. By contrast, both groups responded similarly during intermittent cycling testing with lower lab concentrations seen only at absolute work rates. These results show that, of the two types of training programs currently employed, IT produces higher increases in VO2max and in maximal exercise capacity. Nevertheless, CT is more effective at increasing muscle oxidative capacity and delaying the accumulation of lab during continuous exercise.  相似文献   

11.
To determine whether the concomitant effects of pregnancy and exercise yield substrate and endocrine patterns different from those expected during exercise alone, we compared the responses of glucose, lactate, free fatty acids, insulin, epinephrine (EP), norepinephrine (NE), human chorionic gonadotropin (HCG), human placental lactogen (HPL), estriol, and progesterone (P) in nonpregnant women (NP; n = 7) and pregnant women in the second (TR2; n = 6) and third trimester (TR3; n = 8) of pregnancy, before, during, and after 30 min of bicycle ergometer exercise at heart rates of 130-140 beats/min. In general, all substrates and hormone concentrations increased with exercise (P less than 0.05), except insulin, which decreased (P less than 0.05), and HCG, which did not change (P = 0.08). Differences in selected hormone concentrations (P, estriol, HCG, and HPL) among groups were already present at rest because of the different stages of pregnancy. Differences among groups at rest were also found in insulin and NE (P less than 0.05). Significantly different responses to exercise (i.e., group x time interactions) were as follows. NP vs. TR2:P, estriol, HCG, HPL, EP, and NE (P less than 0.05); NP vs. TR3: glucose, EP, and NE (P less than 0.05); TR2 vs. TR3: lactate, EP, and NE (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The force-frequency relationship for an individual muscle depends on the fatigue state, the length at which it is activated, and the muscle's activation history. The relationship among stimulation frequency and dynamic (nonisometric) muscle performance measurements (e.g., excursion, work, peak power, and average power) has not been reported. The purpose of this study was to identify the relationship between stimulation frequency and dynamic performance measurements for fresh and fatigued muscles. Constant-frequency and catchlike-inducing trains (CFT and CIT, respectively) were tested. When fresh, interpulse intervals of 40-50 ms [20-25 pulses/s (pps)] produced maximum performance for CFTs. For CITs, maximum performance occurred at interpulse intervals of 50-60 ms ( approximately 16-20 pps). Generally, CFTs produced slightly greater performance than did CITs. When fatigued, however, CITs produced greater performance than did CFTs. Maximum performance for CFTs occurred at interpulse intervals of 20-40 ms (25-50 pps) and at 30-50 ms (20-33 pps) for CITs. Enhancement of performance by CITs when fatigued may be due to less susceptibility to impairments in excitation-contraction coupling and greater ability to maintain rates of rise of force than CFTs.  相似文献   

13.
The effects of muscle contraction frequency on blood flow to the calf muscle (Qcalf) were studied in six female subjects, who performed dynamic plantar flexions at frequencies of 20, 40, 60, 80 and 100 contractions.min-1, in a supine position. The Qcalf measured by a mercury-in-rubber strain gauge plethysmograph, increased as contraction frequency increased and reached a peak at 60-80 contractions.min-1. After 100 plantar flexions at 60 contractions.min-1, the mean Qcalf was 30.95 (SEM 4.52) ml.100 ml-1.min-1. At 100 contractions.min-1, however, it decreased significantly compared with that at 60 contractions.min-1 at a specified time (2 min or exhaustion) or after a fixed amount of work (100 contractions). The contraction frequency at which Qcalf reached a peak depended on the duration of exercise. The heart rate showed its highest mean value at 60 contractions.min-1 and decreased significantly at 100 contractions.min-1. The mean blood pressure was lower at 100 contractions.min-1 than at 60 contractions.min-1. The relaxation period between contractions, measured by recording the electromyogram from the gastrocnemius muscles, shortened markedly as the frequency increased; the mean value at 100 contractions.min-1 was 0.14 (SEM 0.02) s, which corresponded to 35.7% of the contraction time. This shortened relaxation period between contractions should have led to the inhibition of exercise hyperaemia at the higher contraction frequencies.  相似文献   

14.
The purpose of this investigation was to determine whether there were differences in the magnitude of insular cortex activation across varying intensities of static and dynamic exercise. Eighteen healthy volunteers were studied: eight during two intensities of leg cycling and ten at different time periods during sustained static handgrip at 25% maximal voluntary contraction or postexercise cuff occlusion. Heart rate, blood pressure (BP), perceived exertion, and regional cerebral blood flow (rCBF) distribution data were collected. There were significantly greater increases in insular rCBF during lower (6.3 +/- 1.7%; P < 0.05) and higher (13.3 +/- 3.8%; P < 0.05) intensity cycling and across time during static handgrip (change from rest for right insula at 2-3 min, 3.8 +/- 1.1%, P < 0.05; and at 4-5 min, 8.6 +/- 2.8%, P < 0.05). Insular rCBF was decreased during postexercise cuff occlusion (-5.5 +/- 1.2%; P < 0.05) with BP sustained at exercise levels. Right insular rCBF data, but not left, were significantly related, with individual BP changes (r(2) = 0.80; P < 0.001) and with ratings of perceived exertion (r(2) = 0.79; P < 0.01) during exercise. These results suggest that the magnitude of insular activation varies with the intensity of exercise, which may be further related to the level of perceived effort or central command.  相似文献   

15.
We sought to examine the influence of exercise intensity on carotid baroreflex (CBR) control of heart rate (HR) and mean arterial pressure (MAP) at the onset of exercise in humans. To accomplish this, eight subjects performed multiple 1-min bouts of isometric handgrip (HG) exercise at 15, 30, 45 and 60% maximal voluntary contraction (MVC), while breathing to a metronome set at eupneic frequency. Neck suction (NS) of -60 Torr was applied for 5 s at end expiration to stimulate the CBR at rest, at the onset of HG (<1 s), and after approximately 40 s of HG. Beat-to-beat measurements of HR and MAP were recorded throughout. Cardiac responses to NS at onset of 15% (-12 +/- 2 beats/min) and 30% (-10 +/- 2 beats/min) MVC HG were similar to rest (-10 +/- 1 beats/min). However, HR responses to NS were reduced at the onset of 45% and 60% MVC HG (-6 +/- 2 and -4 +/- 1 beats/min, respectively; P < 0.001). In contrast to HR, MAP responses to NS were not different from rest at exercise onset. Furthermore, both HR and MAP responses to NS applied at approximately 40s of HG were similar to rest. In summary, CBR control of HR was transiently blunted at the immediate onset of high-intensity HG, whereas MAP responses were preserved demonstrating differential baroreflex control of HR and blood pressure at exercise onset. Collectively, these results suggest that carotid-cardiac baroreflex control is dynamically modulated throughout isometric exercise in humans, whereas carotid baroreflex regulation of blood pressure is well-maintained.  相似文献   

16.
17.
It is welldocumented that endurance exercise training results in a bluntednorepinephrine (NE) response to exercise of a given absolute exerciseintensity. However, it is not clear what effect traininghas on the catecholamine response to exercise of the same relativeintensity because previous studies have provided conflicting results.The purpose of the present study was, therefore, to determine thecatecholamine response to exercise of the same relative exerciseintensity before and after endurance exercise training. Six women andthree men [age 28 ± 8 (SD) yr] performed 10 wk oftraining. Maximal O2 uptake(O2 max) wasdetermined during treadmill exercise. Fifteen-minute treadmill exercisebouts were performed at 60, 65, 70, 75, 80, and 85% ofO2 max before andafter training.O2 max was increasedby 20% (from 39.2 ± 7.7 to 46.9 ± 8.1 ml · kg1 · min1;P < 0.05) in response to training.Plasma NE concentrations were higher(P < 0.05) during exercise at thesame relative intensity after, compared with before, training at65-85% ofO2 max.Differences between heart rates and plasma epinephrine concentrationsafter, compared with before, training were not statisticallysignificant. These results provide evidence that the NE response toexercise is dependent on the absolute as well as the relative intensity of the exercise.  相似文献   

18.
The purpose of this study was to determine whether incorporating arm movement into bridge exercise changes the electromyographic (EMG) activity of selected trunk muscles. Twenty healthy young men were recruited for this study. EMG data were collected for the rectus abdominis (RA), internal oblique (IO), erector spinae (ES), and multifidus (MF) muscles of the dominant side. During bridging, an experimental procedure was performed with two options: an intervention factor (with and without arm movement) and a bridging factor (on the floor and on a therapeutic ball). There were significant main effects for the intervention factor in the IO and ES and for the bridging factor in the IO. The RA and IO showed significant interaction between the intervention and bridge factors. Furthermore, IO/RA ratio during bridging on the floor (without arm movement, 2.05 ± 2.61; with arm movement, 3.24 ± 3.42) and bridging on the ball (without arm movement: 2.95 ± 3.87; with arm movement: 5.77 ± 4.85) showed significant main effects for, and significant interaction between the intervention and bridge factors. However, no significant main effects or interaction were found for the MF/ES ratio. These findings suggest that integrating arm movements during bridge exercises may be used to provide preferential loading to certain trunk muscle groups and that these effects may be better derived by performing bridge exercises on a therapeutic ball.  相似文献   

19.
20.
The mechanical output of a muscle may be characterised by having distinct functional behaviours, which can shift to satisfy the varying demands of movement, and may vary relative to a proximo-distal gradient in the muscle-tendon architecture (MTU) among lower-limb muscles in humans and other terrestrial vertebrates. We adapted a previous joint-level approach to develop a muscle-specific index-based approach to characterise the functional behaviours of human lower-limb muscles during movement tasks. Using muscle mechanical power and work outputs derived from experimental data and computational simulations of human walking and running, our index-based approach differentiated known distinct functional behaviours with varying mechanical demands, such as greater spring-like function during running compared with walking; with anatomical location, such as greater motor-like function in proximal compared with the distal lower-limb muscles; and with MTU architecture, such as greater strut-like muscles fibre function compared with the MTU in the ankle plantarflexors. The functional indices developed in this study provide distinct quantitative measures of muscle function in the human lower-limb muscles during dynamic movement tasks, which may be beneficial towards tuning the design and control strategies of physiologically-inspired robotic and assistive devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号