首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用表面铺展-AgNO_3和PTA染色技术,对雄性褐家鼠性染色体配对形态和行为进行研究表明:X和Y轴在减数分裂前期Ⅰ的不同阶段固缩速度不同;性染色体在配对之前轴心增粗、配对延迟到早粗线期;性染色体首次配对起始区发生在X和Y短臂端粒区,其次配对起始区发生在X与Y长臂的端粒区或长臂的中间区;在中粗线期几乎整条Y与约1/3 X配对形成X-YSC;配对区的侧生组分分为两股,其中一股发生泡状变形,不配对片段发生多种变形。本文对X和Y配对起始位点,配对的同源性及XY轴心增厚与变形机制作了讨论.  相似文献   

2.
六种鱼的精母细胞联会复合体的电镜观察   总被引:6,自引:0,他引:6  
刘雅娟  余其兴 《遗传学报》1991,18(5):407-414
我们以界面铺张——硝酸银染色技术,对鲈形目三种鱼(尼罗罗非鱼、莫桑比克罗非鱼、刺鳅)和鲤形目(鱼句)亚科三种鱼(花(鱼骨)、黑鳍鳈、麦穗鱼)的精母细胞联会复合体进行了电镜观察研究。系统考察了鱼类常染色体SC的亚显微结构、形成过程和配对行为,比较分析了刺鳅的性染色体SC的异配形态和行为,并绘制了鲈形目三种鱼的SC组型模式图。  相似文献   

3.
Surface-spread, silver-stained primary spermatocytes from individuals of the Sitka deer mouse (Peromyscus sitkensis) were analyzed by electron microscopy. Pairing of the X and Y chromosomes is initiated at early pachynema and is complete by mid pachynema. The pattern of sex chromosome pairing is unique in that it is initiated at an interstitial position, with subsequent synapsis proceeding in a unidirectional fashion towards the telomeres of the homologous segments. One-third the length of the X and two-thirds the length of the Y are involved in the synaptonemal complex of the sex bivalent. Various morphological complexities develop in the heteropycnotic (unpaired) segments as pachynema progresses, but desynapsis is not initiated until diplonema. Analysis of C-banded diakinetic nuclei indicated that sex chromosome pairing involves the heterochromatic short arm of the X and the long arm of the heterochromatic Y. An interstitial chiasma between the X and Y was observed in the majority of the diakinetic nuclei. The observation of a substantial pairing region and chiasma formation between the sex chromosomes of these deer mice is interpreted as indicating homology between the short arm of the X and the long arm of the Y.  相似文献   

4.
Relative length is a constant and distinctive characteristic for each autosomal SC, despite variations in absolute length from cell to cell. Arm ratio is distinctive for each SC except for two of the three sub-acrocentrics, and serves, together with relative length, for identification. The constancy of relative length and arm ratios indicates biological stability and lack of physical distortion in these spread preparations. There is a 11 relationship between relative lengths of autosomal SCs and mitotic autosomes; their arm ratios are also similar. These close parallels provide strikingly similar SC and somatic karyotypes. Variability was observed in sub-acrocentric arm ratios and in lengths of unpaired X and Y axes, correlated with the presence of constitutive heterochromatin. — Utilizing progressive differentiations of the X and Y chromosomes for staging, it is demonstrated that autosomal SCs decrease in length from late zygotene to mid-pachytene, and then increase at late pachytene. Within a nucleus, synchrony of length changes is maintained. It is concluded that the factors governing autosomal SC length are regular for any given bivalent from cell to cell, and may be related to those that control somatic autosome length relationships. — The X and Y axes differ quantitatively as well as qualitatively from autosomal SCs. The SC portion of the X and Y is constant in length through most of pachytene; the unpaired axes shorten and lengthen, but not in proportion to autosomal SCs. X and Y relative lengths and arm ratios vary throughout pachytene and do not maintain proportionality with somatic values. The evidence suggests, but does not prove, that the long arm of the X is paired with the short arm of the Y. — Twists occur in autosomal SCs at increasing frequencies throughout pachytene but cannot account for length changes. The number of twists per SC is directly proportional to SC length. Intertwining of SCs is random and proportional to SC length. End-to-end associations of autosomal SCs appear to be random; however, the ends of the X and Y are less often involved in such connections. — The length of axial material in all chromosomes at pachytene, expressed as an equivalent length of DNA double helix, represents 0.013% of the diploid DNA complement.  相似文献   

5.
The sex chromosomes of the partly sympatric species of gerbils Gerbillus pyramidum and G. gerbillus (Mammalia: Gerbillinae) were investigated by a variety of light- and electron-microscope methods, including DNA replication banding and synaptonemal complex (SC) techniques. The sex-chromosome mechanism of G. pyramidum is of the maleXY:femaleXX type, whereas that of G. gerbillus is of the less common maleXY1Y2:femaleXX system. The results include the demonstration that the X chromosomes of both species are compound. One segment is added to the X chromosome of G. pyramidum, leading to an increase in length from the standard 5% to approximately 7.3%, whereas two different extra segments increase the length of the X chromosome of G. gerbillus to approximately 11% of the length of the haploid genome. In both cases the extra material is autosomal and is also represented in the respective Y chromosomes. Classifying heterochromatin by the variation in staining quality was helpful in elucidating the possible origin of the different chromosome segments, including the pericentromeric regions. Observations on meiotic chromosome pairing and chiasma formation have confirmed the homologies established by band comparisons. The occurrence of chiasmata between the sex chromosomes supports the autosomal origin of the pairing segments. These and other findings have been interpreted in the framework of a multistep evolutionary model. This sequence starts from a hypothetical pair of sex chromosomes, the X element of which amounts to 5% of the haploid genome, and leads through three translocations involving two pairs of autosomes and one pericentric inversion to the most complex situation of this series, manifested in G. gerbillus. The adaptive value, if any, of autosome incorporation into the sex chromosomes repeatedly occurring here is unknown. It is, however, a remarkable fact that in one species, G. gerbillus, the complex sex-chromosome constitution is conserved over vast geographic distances, and in the other, G. pyramidum, the compound X and Y chromosomes withstand change in the face of extreme autosome restructuring.  相似文献   

6.
The behavior of the X and Y chromosomes in somatic and testicular cells of the sand rat (P. obesus) has been investigated with light and electron-microscope procedures. The Y chromosome has been identified as the fourth longest of the complement, both by C-banding and by its meiotic behavior. The X chromosome is the longest of the complement and carries two major C-heterochromatic blocks, one in the distal part of the long arm and the other forming most of the short arm. During presynaptic stages in spermatocytes, separate C-heterochromatic blocks, representing the sex chromosomes, are observed in the nuclei. An XY body is regularly formed at pachytene. During first meiotic metaphase the X and Y chromosomes show variable associations, none of them chiasmatic. Second meiotic metaphases contain, as in other mammals, a single sex chromosome, suggesting normal segregation between the X and the Y. — Electron microscopic observations of the autosomal synaptonemal complexes (SCs) and the single axes of the X and Y chromosomes during pachytene permit accurate, statistically significant identification of each of the largest chromosomes of the complement and determination of the mean arm ratios of the X and Y axes. The X and Y axes always lie close to each other but do not form a SC. The ends of the X and Y axes are attached to the nuclear envelope and associate with each other in variable ways, both autologously (X with X or Y with Y) and heterologously (X with Y), with a tendency to form a maximum number (four) of associated ends. Analysis of 36 XY pairs showed no significant preference for any single specific attachment between arm ends. The eighth longest autosomal bivalent is frequently partially asynaptic during early pachytene, and only at that time is often near or touching one end of the X axis. — It is concluded that while axis formation and migration of the axes along the plane of the nuclear envelope proceed normally in the X and Y chromosomes, true synapsis (with SC formation) does not occur because the pairing region of the X chromosome has probably been relocated far from the chromosome termini by the insertion of distal C-heterochromatic blocks.  相似文献   

7.
Recombination nodules in the oocytes of the chicken, Gallus domesticus   总被引:2,自引:0,他引:2  
Chicken oocytes at pachytene were processed with the microspreading technique (Moses, 1977), and their synaptonemal complex (SC) complements were analyzed by electron microscopy. Ellipsoidal nodules, 140 X 120 nm in diameter, were associated with the central space of synaptonemal complexes. The average number of nodules per pachytene oocyte was 57.5. The number of nodules per bivalent showed a clear linear relationship with SC length, except for the microchromosomes, which showed a single obligatory nodule. The distribution of nodules along the 10 longest SCs was nonrandom, with low frequencies in the vicinity of kinetochores and high frequencies near the telomeres. The microchromosomes showed a single nodule whose average location was 1.21 micron from the kinetochore. In the ZW pair there was a single nodule whose average location was 0.31 micron from the paired telomeres and not more than 0.65 micron from them. The total number of nodules per cell and the number of nodules in each of the five major bivalents showed good agreement with the total number of chiasmata and the number of chiasmata of the major bivalents of roosters. Thus, these nodules share the characteristics of recombination nodules described in other organisms. The single, obligatory, strictly localized recombination nodule found in the pairing end of the ZW pair strongly suggests that recombination between the Z and W chromosomes in the female chicken is a regular process that may be similar to the obligatory recombination between the pairing ends of the human X and Y chromosomes that was recently described in studies using DNA probes.  相似文献   

8.
The synaptic and recombinational behavior of the sex chromosomes in male laboratory mice carrying the Y* rearrangement was analyzed by light and electron microscopy. Examination of zygotene and pachytene X-Y* configurations revealed a surprising paucity of the staggered pairing configuration predicted from the distal position of the X pseudoautosomal region and the subcentromeric position of the Y* pseudoautosomal region. When paired at pachynema, the X and Y* chromosomes usually assumed configurations similar to those of typical sex bivalents from normal male laboratory mice. The X and Y* chromosomes were present as univalents in more than half of the early- and mid-pachytene nuclei, presumably as a result of steric difficulties associated with homologous alignment of the pseudoautosomal regions. When paired at diakinesis and metaphase I, the X and Y* chromosomes exhibited an asymmetrical chiasmatic association indicative of recombination within the staggered synaptic configuration. Both pairing disruption and recombinational failure apparently contribute to diakinesis/metaphase I sex-chromosome univalency, as most cells at these stages possessed X and Y* univalents lacking evidence of prior recombination. Recombinant X or Y* chromosomes were detected in all metaphase II complements examined, thus substantiating the hypothesis that X-Y recombination is a prerequisite for the normal progression of male meiosis.  相似文献   

9.
The pairing behavior of the sex chromosomes in male and female individuals representing seven species of Peromyscus was analyzed by electron microscopy of silver-stained zygotene and pachytene configurations. Six species possess submetacentric or metacentric X chromosomes with heterochromatic short arms. Sex-chromosome pairing in these species is initiated during early pachynema at an interstitial position on the X and Y axes. Homologous synapsis then progresses in a unidirectional fashion towards the telomeres of the X short arm and the corresponding arm of the heterochromatic Y chromosome. The distinctive pattern of synaptic initiation allowed a late-synapsing bivalent in fetal oocytes to be tentatively identified as that of the X chromosomes. In contrast to the other species, Peromyscus megalops possesses an acrocentric X chromosome and a very small Y chromosome. Sex-chromosome pairing in this species is initiated at the proximal telomeric region during late zygonema, and then proceeds interstitially towards the distal end of the Y chromosome. These observations suggest that the presence of X short-arm heterochromatin and corresponding Y heterochromatin interferes with late-zygotene alignment of the pairing initiation sites, thereby delaying XY synaptic initiation until early pachynema. The pairing initiation sites are conserved in the vicinity of the X and Y centromeres in Peromyscus, and consequently the addition of heterochromatin during sex-chromosome evolution essentially displaces these sites to an interstitial position.  相似文献   

10.
Using the Counce-Meyer spreading technique, in over 70 spermatocytes it was possible consistently to obtain whole, flattened nuclei containing complete sets of pachytene SCs. The SCs are visible in both the phase and electron microscopes. Each SC is morphologically intact, preferentially stained, and attached to the nuclear envelope by a dense, terminal plaque. It is thus possible to trace each SC for its entire length. Also, a structure representing the kinetochore is clearly visible in each autosomal SC. Karyotypes comparable to the somatic karyotype can be constructed by arranging SCs according to length and kinetochore position. The observed regularity of SC morphology implies structural stability sufficient to withstand the stresses imposed by the procedure.— A coarse network of closely packed nuclear annuli connecting SC attachment plaques often provides end-to-end associations and may tend to immobilize SCs during processing.— Three kinds of perturbation of SC structure are encountered. Twists in the SC frequently occur, but no regular pattern or correspondence with chiasma distribution is observed. SCs occasionally hook around each other without disruption, but in two instances the unpaired axis of the X apparently was interlocked within an autosomal SC. Stretching of the SC is infrequent; it is conspicuous when it occurs and is usually associated with other obvious distortions of the nucleus.— Distinctive morphologies of the X and Y chromosomes facilitate their identification in all preparations. — During zygotene, autosomal synapsis, i.e., the formation of SCs from the pairing of single axial elements, initiates at distal ends and terminates at the kinetochore region; neither initiation nor termination is synchronous among all autosomes.  相似文献   

11.
An immunocytochemical method was used to label the kinetochores on human synaptonemal complexes. Synaptonemal complex spreads were labelled with autoimmune CREST serum, followed by a second antibody labelled with colloidal gold, and examined by electron microscopy. Clusters of gold particles were found at discrete sites which were identified as kinetochores on the autosomal synaptonemal complexes, as well as on the XY pair. This method was used to investigate the extent of pairing of the human X and Y chromosomes at pachytene. Our observations confirm earlier work, based purely on measurements, that the pairing of the sex chromosomes sometimes extends beyond the centromere of the Y chromosome into the long arm. At the same time we showed that the centromeric indices of the X and Y at pachytene are highly variable, so that measurements alone are not sufficient to estimate the degree of pairing of the sex chromosomes.  相似文献   

12.
B D McKee  G H Karpen 《Cell》1990,61(1):61-72
In Drosophila melanogaster males, the sex chromosomes pair during meiosis in the centric X heterochromatin and at the base of the short arm of the Y (YS), in the vicinity of the nucleolus organizers. X chromosomes deficient for the pairing region segregate randomly from the Y. In this report we show that a single ribosomal RNA (rRNA) gene stimulates X-Y pairing and disjunction when inserted onto a heterochromatically deficient X chromosome by P element-mediated transformation. We also show that insert-containing X chromosomes pair at the site of insertion, that autosomal rDNA inserts do not affect X-Y pairing or disjunction, and that the strength of an X pairing site is proportional to the dose of ectopic rRNA genes. These results demonstrate that rRNA genes can promote X-Y pairing and disjunction and imply that the nucleolus organizers function as X-Y pairing sites in wild-type Drosophila males.  相似文献   

13.
Differences in length of the heterochromatic short arms of the X and Y chromosomes in individuals ofPeromyscus beatae are hypothesized to result from unequal crossing over. To test this hypothesis, we examined patterns of synapsis, chiasma formation, and segregation for maleP. beatae which were either heterozygous or homozygous for the amount of short-arm sex heterochromatin. Synaptonemal complex analysis demonstrated that mitotic differences in heterochromatic shortarm lengths between the X and Y chromosomes were reflected in early pachynema as corresponding differences in axial element lengths within the pairing region of the sex bivalent. These length differences were subsequently eliminated by synaptic adjustment such that by late pachynema, the synaptonemal complex configurations of the XY bivalent of heterozygotes were not differentiable from those of homozygotes. Crossing over between the heterochromatic short arms of the XY bivalent was documented by the routine appearance of a single chiasma in this region during diakinesis/metaphase I. Sex heterochromatin heterozygotes were characterized by the presence of asymmetrical chiasma between the X and Y short arms at diakinesis/metaphase I and sex chromosomes with unequal chromatid lengths at metaphase II. These data corroborate our hypothesis on the role of unequal crossing over in the production and propagation of X and Y heterochromatin variation and suggest that, in some cases, crossing over can occur during the process of synaptic adjustment.  相似文献   

14.
Sex Chromosome Meiotic Drive in DROSOPHILA MELANOGASTER Males   总被引:5,自引:5,他引:0       下载免费PDF全文
McKee B 《Genetics》1984,106(3):403-422
In Drosophila melanogaster males, deficiency for X heterochromatin causes high X-Y nondisjunction and skewed sex chromosome segregation ratios (meiotic drive). Y and XY classes are recovered poorly because of sperm dysfunction. In this study it was found that X heterochromatic deficiencies disrupt recovery not only of the Y chromosome but also of the X and autosomes, that both heterochromatic and euchromatic regions of chromosomes are affected and that the "sensitivity" of a chromosome to meiotic drive is a function of its length. Two models to explain these results are considered. One is a competitive model that proposes that all chromosomes must compete for a scarce chromosome-binding material in Xh(-) males. The failure to observe competitive interactions among chromosome recovery probabilities rules out this model. The second is a pairing model which holds that normal spermiogenesis requires X-Y pairing at special heterochromatic pairing sites. Unsaturated pairing sites become gametic lethals. This model fails to account for autosomal sensitivity to meiotic drive. It is also contradicted by evidence that saturation of Y-pairing sites fails to suppress meiotic drive in Xh(- ) males and that extra X-pairing sites in an otherwise normal male do not induce drive. It is argued that meiotic drive results from separation of X euchromatin from X heterochromatin.  相似文献   

15.
On the nature and extent of XY pairing at meiotic prophase in man   总被引:19,自引:0,他引:19  
Evidence is presented that pairing between the human X and Y chromosomes could be more extensive at early pachytene than has previously been supposed and could involve even the entire euchromatic portion of the Y chromosome. Following desynapsis over the major part of the X and Y axes, a small paired segment of Xp and Yp remains into late pachytene. Association between the distal tips of Xq and Yq can also be observed in about one half of the spermatocytes examined. A hypothesis linking meiotic pairing to early replicating sites along the chromosomes is proposed.  相似文献   

16.
The normal association between the X and Y chromosomes at metaphase I of meiosis, as seen in air-dried light microscope preparations of mouse spermatocytes, is frequently lacking in the spermatocytes of the sterile interspecific hybrid between the laboratory mouse strains C57BL/6 and Mus spretus. The purpose of this work is to determine whether the separate X and Y chromosomes in the hybrid are asynaptic, caused by failure to pair, or desynaptic, caused by precocious dissociation. Unpaired X-Y chromosomes were observed in air-dried preparations at diakinesis, just prior to metaphase I. Furthermore, immunocytology and electron microscopy studies of surface-spread pachytene spermatocytes indicate that the X and Y chromosomes frequently fail to initiate synapsis as judged by the failure to form a synaptonemal complex between the pairing regions of the X and Y Chromosomes. Several additional chromosomal abnormalities were observed in the hybrid. These include fold-backs of the unpaired X or Y cores, associations between the autosome and sex chromosome cores, and autosomal univalents. The occurrence of abnormal autosomal and XY-autosomal associations was also correlated with cell degeneration during meiotic prophase. The primary breakdown in hybrid spermatogenesis occurs at metaphase I (MI), with the appearance of degenerated cells at late MI. In those cells, the X and Y are decondensed rather than condensed as they are in normal mouse MI spermatocytes. These results, in combination with the previous genetic analysis of spermatogenesis in hybrids and backcrosses with fertile female hybrids, suggest that the spermatogenic breakdown in the interspecific hybrid is primarily correlated with the failure of XY pairing at meiotic prophase, asynapsis, followed by the degeneration of spermatocytes at metaphase I. Secondarily, the failure of XY pairing can be accompanied by failure of autosomal pairing, which appears to involve an abnormal sex vesicle and degeneration at pachytene or diplotene.by C. Heyting  相似文献   

17.
Illegitimate pairing of the X and Y chromosomes in Sxr mice   总被引:3,自引:0,他引:3  
X/Y male mice carrying the sex reversal factor, Sxr, on their Y chromosomes typically produce 4 classes of progeny (recombinant X/X Sxr male male and X/Y non-Sxr male male, and non-recombinant X/X female female and X/Y Sxr male male) in equal frequencies, these deriving from obligatory crossing over between the chromatids of the X and Y during meiosis. Here we show that X/Y males that, exceptionally, carry Sxr on their X chromosome, rather than their Y, produce fewer recombinants than expected. Cytological studies confirmed that X-Y univalence is frequent (58%) at diakinesis as in X/Y Sxr males, but among those cells with X-Y bivalents only 38% showed normal X-Y pseudo-autosomal pairing. The majority of such cells (62%) instead showed an illegitimate pairing between the short arms of the Y and the Sxr region located at the distal end of the X, and this can be understood in terms of the known homology between the testis-determining region of the Y short arm and that of the Sxr region. This pairing was sufficiently tenacious to suggest that crossing over took place between the 2 regions, and misalignment and unequal exchange were suggested by indications of bivalent asymmetry. Metaphase II cells deriving from meiosis I divisions in which the normal X-Y exchange had not occurred were also found. The cytological data are therefore consistent with the breeding results and suggest that normal pseudo-autosomal pairing and crossing over is not a prerequisite for functional germ cell formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In the pygmy mouse, Mus dunni, the entire Y chromosome and the short arm of the X and distal region of its long arm are constitutively heterochromatic. Different banding studies on somatic chromosomes revealed the GC nature of the distally located heterochromatin of the long arms of both the X and Y chromosomes. The short arm of the X and the rest of the Y are AT-rich. During meiosis, the long arms of the X and Y paired extensively, sometimes more than half of the Y pairing with the X. This observation is in disagreement with that of Pathak and Hsu (1976) who reported end-to-end pairing between the long arm of the X and the short arm of the Y. The orientation observed by us is favourable to a successful meiotic recombination but whether this takes place remains to be demonstrated.  相似文献   

19.
The pairing behaviour of the X and Y chromosomes of Monodelphis dimidiata was studied with light and electron microscopy. Pairing of the sex chromosomes is delayed with respect to autosome synapsis. Both the X and the minute Y chromosome show an axis attached by its two ends to the nuclear envelope. Synapsis of the sex chromosomes occurs by the joining of the chromatin sheaths that surround the axes and by a small, three-layered structure close to the nuclear envelope. The X and Y chromosomes remain joined to each other during the diffuse stage and diplotene-diakinesis but they do not show a synaptonemal complex. During the diffuse stage a dense plate is formed at the boundary between the X-Y body and the nuclear envelope. During early metaphase a folded sheet is attached to the periphery of the X-Y body. This sheet is formed by a piece of the nuclear envelope carrying the dense plate and it shows transverse fibrils and a central element similar to synaptonemal-complex remains. No evidence of a non-chiasmate segregation mechanism was observed. Polarization of the axial ends of the sex chromosomes is observed after X-Y synapsis. These important departures from the X-Y pairing pattern of eutherian mammals are discussed and assumed to present a special mechanism for holding the minute Y joined to the X chromosome in this marsupial.  相似文献   

20.
P. Portin 《Genetica》1992,85(2):139-145
Heterologous segregation of the Y chromosome and secondary non-disjunction of the X chromosomes in female meiosis of Drosophila melanogaster was investigated in ten different crosses where different constellations of translocation/inversion or translocation/translocation systems of the large autosomes were present in the female parent. It appeared that the Y chromosome always segregates from the shortest of the possible heterologous pairing partners. This may be due to size-dependent mechanism of so-called distributive disjunction or to the possibility that the shorter the chromosome element is, the more easily it moves in the nucleus of the oocyte. Secondary non-disjunction of the X chromosomes appeared to be lower the more possible autosomal pairing partners the Y chromosome had, suggesting that the autosomes effectively compete with the X chromosomes for pairing with the Y chromosome. An alternative explanation is that, due to interchromosomal effect on recombination, crossing over in the X chromosomes was different in different experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号