首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urease activity of adherent bacteria in the sheep rumen   总被引:1,自引:0,他引:1  
In experiments on six sheep fed on a low protein diet (6.2 g N/day), it was found that the urease activity of the rumen fluid did not change significantly in the first 6 hours after feeding and that it ranged from 45 to 75 nkat.ml-1. The major portion was bound to the bacterial fraction and formed about 70% of total rumen fluid activity. Urease activity determined in food particles with adherent bacteria removed from the rumen before and 3 and 6 hours after feeding ranged from 20 to 26 nkat.g-1 food (wet weight), and on rumen wall samples with adherent bacteria from 30 to 800 nkat per 2.5 cm2 tissue. Again, no significant changes correlated to the time after feeding were found. The results show that urease activity in the sheep rumen is localized on food particles and on rumen wall epithelium with adherent bacteria, as well as in the rumen fluid.  相似文献   

2.
Of the 54 strains of rumen bacteria examined for alkaline phosphatase (APase) production, 9 of 33 gram-negative strains and none of 21 gram-positive strains produced the enzyme. The APase of the cells of the three strains of Bacteroides ruminicola that produced significant amounts of the enzyme was located in the periplasmic area of the cell envelope, whereas the enzyme was located in the strains of Selenomonas ruminantium and Succinivibrio dextrinosolvens was associated with the outer membrane. The localization of APase production in the cells of natural populations of rumen bacteria from hay-fed sheep was accomplished by reaction product deposition, and both the proportion of APase-producing bacteria and the location of the enzyme in the cell envelope of the producing cells could be determined. We suggest that this procedure is useful in detecting shifts in the bacterial population and the release of cell-bound APase that accompany feedlot bloat and other sequelae of dietary manipulation in ruminants.  相似文献   

3.
Alkaline phosphatase activity of rumen bacteria.   总被引:5,自引:2,他引:3       下载免费PDF全文
Of the 54 strains of rumen bacteria examined for alkaline phosphatase (APase) production, 9 of 33 gram-negative strains and none of 21 gram-positive strains produced the enzyme. The APase of the cells of the three strains of Bacteroides ruminicola that produced significant amounts of the enzyme was located in the periplasmic area of the cell envelope, whereas the enzyme was located in the strains of Selenomonas ruminantium and Succinivibrio dextrinosolvens was associated with the outer membrane. The localization of APase production in the cells of natural populations of rumen bacteria from hay-fed sheep was accomplished by reaction product deposition, and both the proportion of APase-producing bacteria and the location of the enzyme in the cell envelope of the producing cells could be determined. We suggest that this procedure is useful in detecting shifts in the bacterial population and the release of cell-bound APase that accompany feedlot bloat and other sequelae of dietary manipulation in ruminants.  相似文献   

4.
Blocks of tissue were removed from various locations in the bovine digestive tract and fixed and processed for transmission and scanning electron microscopy by techniques that retained adherent bacteria. The distribution of bacteria on the surface of epithelial cells was examined by scanning electron microscopy. This showed intermittent colonization of the epithelia with the formation of occasional microcolonies of morphologically similar bacterial cells. Transmission electron microscopy of ruthenium red-stained material showed the presence of both the glycocalyx of the bovine epithelial cells and fibrous carbohydrate coats surrounding adherent bacteria. The carbohydrate coats appeared to mediate the attachment of bacteria to the epithelium, to food particles, and to each other so that microcolonies were formed. Careful examination of the bacterial colonization of keratinized cells in the process of being sloughed from the surface of the stratified squamous epithelium of the rumen showed that these dead cells were digested by adherent bacteria of a limited number of morphological types. The spatial relationship of this mixed, adherent, microbial population to living and dead epithelial cells and to food particles indicates that digestive processes of some importance may be accomplished by this stationary component of the microbial flora of the digestive tract.  相似文献   

5.
Blocks of tissue were removed from various locations in the bovine digestive tract and fixed and processed for transmission and scanning electron microscopy by techniques that retained adherent bacteria. The distribution of bacteria on the surface of epithelial cells was examined by scanning electron microscopy. This showed intermittent colonization of the epithelia with the formation of occasional microcolonies of morphologically similar bacterial cells. Transmission electron microscopy of ruthenium red-stained material showed the presence of both the glycocalyx of the bovine epithelial cells and fibrous carbohydrate coats surrounding adherent bacteria. The carbohydrate coats appeared to mediate the attachment of bacteria to the epithelium, to food particles, and to each other so that microcolonies were formed. Careful examination of the bacterial colonization of keratinized cells in the process of being sloughed from the surface of the stratified squamous epithelium of the rumen showed that these dead cells were digested by adherent bacteria of a limited number of morphological types. The spatial relationship of this mixed, adherent, microbial population to living and dead epithelial cells and to food particles indicates that digestive processes of some importance may be accomplished by this stationary component of the microbial flora of the digestive tract.  相似文献   

6.
In experiments on 18 sheep with a differentiated nitrogen intake (3.7, 6.2 and 21 g N/day), it was found that different enzyme activities--glutamate dehydrogenase (GDH) (NADH- and NADPH-dependent) and glutamine synthetase (GS)--of bacteria adhering to the rumen wall and to food particles and the rumen fluid bacteria altered in correlation to the nitrogen intake. With a nitrogen intake of 3.7-6.2 g/day there was a significant increase, and of 6.2-21 g/day a decrease, in NADH- and NADPH-dependent GDH activity in the three given bacterial fractions, with the exception of NADPH-dependent GDH activity of the rumen fluid bacteria of sheep given 3.7-6.2 g N/day, in which the difference was nonsignificant. GS activity was significantly higher only in adherent rumen wall bacteria in the presence of a nitrogen intake of 3.7-6.2-21 g/day. The results show that the effect of the nitrogen intake on the given enzyme activities is strongest in the case of bacteria adhering to the rumen wall. The high GS activity and low GDH activities in these bacteria during lower nitrogen intakes (3.7 g/day) as well as lower rumen ammonia concentration (2.39 +/- 0.98 mmol.l-1) indicate that bacteria adhering to the rumen wall utilize ammonia at an increased rate by means of CS catalyzed reactions. Reduced GDH activity in the presence of a high nitrogen intake (21 g/day) and the relatively high rumen ammonia concentration (36.63 +/- 5.28 mmol.l-1) indicate that ammonia inhibits this enzyme in the rumen bacteria in question.  相似文献   

7.
In experiments on 6 sheep the authors found the following enzyme activities in bacteria in the rumen fluid, bacteria adhering to the epithelium of the rumen wall and bacteria adhering to food particles in the rumen (given in nkat X g-1 bacterial dry weight): GDH (NADH): 725 +/- 165, 558 +/- 127, 661 +/- 153; GDH (NADPH): 558 +/- 338, 255 +/- 88, 565 +/- 139; GOAT (NADH): 46 +/- 23, 67 +/- 31, 66 +/- 14; GOGAT/NADPH: 58 +/- 27, 56 +/- 15, 65 +/- 29; GS: 153 +/- 65, 69 +/- 35, 71 +/- 32; ALT: 71 +/- 25, 43 +/- 20, 52 +/- 11; AST: 52 +/- 12, 33 +/- 16, 28 +/- 15. The results show that, except for GDH (NADPH), there were no significant differences between the given enzyme activities in the rumen fluid and in bacteria adhering to the rumen wall and to food. Adherent rumen bacteria have the same potential possibilities as the rumen fluid bacteria for the utilization of ammonia, particularly for the synthesis of glutamic acid, glutamine, alanine and aspartic acid, with the above enzymes as catalysts. By means of the GS/GOGAT system, adherent rumen bacteria can probably synthesize glutamic acid in the presence of a limited NH3 concentration in the rumen.  相似文献   

8.
The location and level of activity of the principal polysaccharidases and glycoside hydrolases involved in the degradation of plant structural and storage polysaccharides were monitored in microbial populations isolated from liquid and particulate phases of bovine rumen digesta. The three principal subpopulations, and their constituent subgroups studied, all contained polysaccharide depolymerizing enzymes; however, the specific activities of the enzymes that degraded the plant cell wall structural polymers were highest within the adherent particle-associated populations. Separate functional groups of organisms could be recongnized in the particle-associated population by their distinctive enzyme profiles.  相似文献   

9.
Formation of Bacterial Microcolonies on Feed Particles in the Rumen   总被引:2,自引:0,他引:2       下载免费PDF全文
Examination of particulate feed that had been digested in vivo in the rumen, and of the leaves of specific legumes that had been digested in vitro by a mixed population of rumen bacteria, showed that very extensive glycocalyx-enclosed bacterial microcolonies developed on many of the available surfaces. Some of these adherent bacteria colonized a surface almost exclusively and attracted another specific type of bacteria as the second members of a distinct morphological consortium. The true extent of the exopolysaccharide glycocalyces of these adherent rumen bacteria was seen in cases where the fibers were attached at multiple points, and their role in microcolony formation and adhesion could be unequivocally ascribed.  相似文献   

10.
By anaerobic procedures, the total number of adherent bacteria was determined on tissue samples obtained from the roof of the dorsal rumen of three sheep. After four washings, 1.91 × 107, 0.34 × 107, and 1.23 × 107 bacteria per cm2 were still attached to the rumen epithelium in sheep 1, 2, and 3, respectively. A total of 95 strains of bacteria were isolated from these three samples. Based on morphology, Gram stain, anaerobiosis, motility, and fermentation end products, they were presumptively identified as follows: Butyrivibrio fibrisolvens, 30 strains; atypical Butyrivibrio, 5 strains; Bacteroides ruminicola, 22 strains; Lactobacillus, 1 strain; and unknown Bacteroides species, 37 strains. For sheep 3, washing the rumen epithelium a total of 10 times reduced the adherent bacterial population by 93% (8.4 × 105 bacteria per cm2). Of 30 strains isolated from this sample, 22 were presumptively identified as Butyrivibrio and Bacteroides types. These results suggest that the epithelium on the roof of the dorsal rumen is primarily colonized by two genera of bacteria, Butyrivibrio and Bacteroides. Most Butyrivibrio and Bacteroides ruminicola strains appeared to be similar to previously isolated rumen strains. However, the unknown Bacteroides species differed considerably from the three species of this genus which are commonly isolated from rumen contents.  相似文献   

11.
The effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes in microbial populations from the digesta solids and liquor fractions of rumen contents was examined after the refaunation of ciliate-free sheep with an A-type rumen protozoal population. Although the culturable rumen bacterial population was reduced after refaunation the number of fibrolytic micro-organisms detected was higher; the xylanolytic bacterial population and numbers of fungal zoospores were increased after refaunation. The proportion of propionic acid was lower in the refaunated animals, whereas the concentration of ammonia and the acidic metabolites acetate, butyrate and valerate were all increased. The range of enzyme activities present in the digesta subpopulations were the same in defaunated and refaunated animals. The activities of the polysaccharide-degrading enzymes, however, were increased in the microbial populations associated with the digesta solids after refaunation, and at 16 h after feeding the activities were 4–8 times (β-d-xylosidase 20 times) higher than the levels detected in the adherent population from defaunated sheep. The protozoa, either directly through their own enzymes or indirectly as a consequence of their effects on the population size and activity of the other fibrolytic micro-organisms present, have an important role in determining the level of activity of polysaccharide-degrading enzymes in the rumen ecosystem. Although the extent of ryegrass ( Lolium perenne ) hay digestion was similar after 24 h in the absence or presence of protozoa, the initial ruminal degradation was higher in refaunated sheep.  相似文献   

12.
16S rRNA sequences of ruminal uncultured bacterial clones from public databases were phylogenetically examined. The sequences were found to form two unique clusters not affiliated with any known bacterial species: cluster of unidentified sequences of free floating rumen fluid uncultured bacteria (FUB) and cluster of unidentified sequences of bacteria associated with rumen epithelium (AUB). A set of PCR primers targeting 16S rRNA of ruminal free uncultured bacteria and rumen epithelium adhering uncultured bacteria was designed based on these sequences. FUB primers were used for relative quantification of uncultured bacteria in ovine rumen samples. The effort to increase the population size of FUB group has been successful in sulfate reducing broth and culture media supplied with cellulose.  相似文献   

13.
AIMS: To detect Proteobacteria, including methanotrophs, from the rumen fluid and the bacteria inhabiting the rumen epithelium. METHODS AND RESULTS: Proteobacteria inhabiting the rumen were detected by PCR using methanotroph-specific primers. The detected Proteobacteria were divided into clusters A, B, and C in addition to one clone, which was distinct from the clusters and closely related to Nitrosomonas sp. The clusters A, B, and C were close to Succinivibrio dextrinosolvens, Enterobacter cloacae, and Actinobacillus minor, respectively. The clones obtained from the rumen fluid each belonged to cluster A or B. The clones obtained from the rumen epithelium belonged to cluster B or C or to Nitrosomonas sp. CONCLUSIONS: It has been assumed that the rumen fluid and the rumen epithelium host different populations of Proteobacteria. Moreover, detection of Nitrosomonas from the rumen epithelium would indicate the possibility that the bacterium oxidizes ammonia and methane on the rumen surface. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings suggest that the rumen fluid and the epithelium support different microbial populations, which would play specific roles in rumen function. Future study should focus on the relationship between these communities and physiological functions in the rumen.  相似文献   

14.
Alkaline phosphatase (APase) was present in the bovine rumen in both cell-free and cell-associated states and levels of the enzyme varied with dietary regime. Reaction product deposition showed that the enzyme was associated with the mixed bacterial population. No enzyme was observed to be associated with protozoa. Trace activity of APase was also detected in the saliva. The presence of large amounts of APase in cell-free rumen fluid of cattle fed fine concentrate feed is believed to be due, in part, to the breakage of bacterial cells that occurs in the rumen.  相似文献   

15.
The effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes in microbial populations from the digesta solids and liquor fractions of rumen contents was examined after the refaunation of ciliate-free sheep with an A-type rumen protozoal population. Although the culturable rumen bacterial population was reduced after refaunation the number of fibrolytic micro-organisms detected was higher; the xylanolytic bacterial population and numbers of fungal zoospores were increased after refaunation. The proportion of propionic acid was lower in the refaunated animals, whereas the concentration of ammonia and the acidic metabolites acetate, butyrate and valerate were all increased. The range of enzyme activities present in the digesta subpopulations were the same in defaunated and refaunated animals. The activities of the polysaccharide-degrading enzymes, however, were increased in the microbial populations associated with the digesta solids after refaunation, and at 16 h after feeding the activities were 4-8 times (beta-D-xylosidase 20 times) higher than the levels detected in the adherent population from defaunated sheep. The protozoa, either directly through their own enzymes or indirectly as a consequence of their effects on the population size and activity of the other fibrolytic micro-organisms present, have an important role in determining the level of activity of polysaccharide-degrading enzymes in the rumen ecosystem. Although the extent of ryegrass (Lolium perenne) hay digestion was similar after 24 h in the absence or presence of protozoa, the initial ruminal degradation was higher in refaunated sheep.  相似文献   

16.
The diurnal variations in the specific activities of polysaccharide-degrading enzymes after feeding were monitored in adherent and non-adherent microbial populations separated from bovine rumen liquor and digesta solids. There were marked differences in the activity profiles of the enzymes within the subpopulations. Enzymes involved in the degradation of soluble carbohydrates were more active in the non-adherent populations, and in the liquor phase subpopulation activities increased in the 1–2 h post-feed period. The muralytic enzymes were most active in the adherent population. Specific activities increased by up to 20-fold over the 24 h period, with an initial five-fold increase occurring between 8 h and 12 h after feeding. Enzyme levels in the three non-adherent populations were similar at the end of the postprandial period. In the population recovered from the liquid associated with the digesta particles, however, the activities did not increase until the latter stages of the period, whereas in the non-adherent population from the digesta solids the activities varied little during the diurnal cycle. The numbers of micro-organisms associated with the digesta solids were similar at 2 h and 20 h after feeding; the variations in enzyme levels did not occur as a result of a population increase but were due to increased activities in an established population. The plant cell wall structural polysaccharides were degraded at different rates. There was no appreciable cellulose digestion during the first 8 h of the postprandial period and although hemicellulosic constituents were removed continuously the rate of loss of both polymers was increased in the later stages of the diurnal cycle when enzyme activities were maximal.  相似文献   

17.
The diurnal variations in the specific activities of polysaccharide-degrading enzymes after feeding were monitored in adherent and non-adherent microbial populations separated from bovine rumen liquor and digesta solids. There were marked differences in the activity profiles of the enzymes within the subpopulations. Enzymes involved in the degradation of soluble carbohydrates were more active in the non-adherent populations, and in the liquor phase subpopulation activities increased in the 1-2 h post-feed period. The muralytic enzymes were most active in the adherent population. Specific activities increased by up to 20-fold over the 24 h period, with an initial five-fold increase occurring between 8 h and 12 h after feeding. Enzyme levels in the three non-adherent populations were similar at the end of the postprandial period. In the population recovered from the liquid associated with the digesta particles, however, the activities did not increase until the latter stages of the period, whereas in the non-adherent population from the digesta solids the activities varied little during the diurnal cycle. The numbers of micro-organisms associated with the digesta solids were similar at 2 h and 20 h after feeding; the variations in enzyme levels did not occur as a result of a population increase but were due to increased activities in an established population. The plant cell wall structural polysaccharides were degraded at different rates. There was no appreciable cellulose digestion during the first 8 h of the postprandial period and although hemicellulosic constituents were removed continuously the rate of loss of both polymers was increased in the later stages of the diurnal cycle when enzyme activities were maximal.  相似文献   

18.
One hundred sixty-one strains of adherent bacteria were isolated under anaerobic conditions from four sites on the rumen epithelial surface of sheep fed hay or a hay-grain ration. Before isolation of bacteria, rumen tissue was washed six times in an anaerobic dilution solution, and viable bacteria suspended in the washings were counted. Calculation indicated that unattached bacteria would have been removed from the tissue by this procedure, but a slow and progressive release of attached bacteria also occurred. Nevertheless, a wide range of characteristic morphological types remained associated with the epithelium as demonstrated by scanning electron microscopy. Most of these types were represented among the isolates. Characterization and presumptive identification of the isolates showed that 95.0% belonged to previously described genera of functionally significant rumen bacteria, including Butyrivibrio sp. (31.1%), Bacteroides sp. (22.4%), Selenomonas ruminantium (9.9%), Succinivibrio dextrinosolvens (8.7%), Streptococcus bovis (8.1%), Propionibacterium sp. (4.3%), Treponema sp. (3.1%), and Eubacterium sp., Lachnospira multiparus, and Ruminococcus flavefaciens (2.5% each). Eight isolates (5.0%) were not identified. L. multiparus was recovered only from hay-fed animals; all other genera were obtained from animals fed either ration. All S. bovis strains and two strains each of Bacteroides sp. and Butyrivibrio sp. were aerotolerant; all other strains were strictly anaerobic. Bacteria representing the gram-positive, facultatively anaerobic flora associated with rumen wall tissue (R. J. Wallace, K.-J. Cheng, D. Dinsdale, and E. R. Ørskov, Nature (London) 279:424-426, 1979) were therefore not recovered by the techniques used; instead a different fraction of the adherent population was isolated. The term “epimural” is proposed to describe the flora associated with the rumen epithelium.  相似文献   

19.
Examination of the rumen epithelium of sheep by scanning electron microscopy revealed bacteria associated with the epithelial surface. Comparison of epithelial surfaces from 10 sheep revealed areas that were consistently densely covered with bacteria and other areas where the cover was consistently light. The bacterial populations were frequently of mixed morphological types, but areas populated with a single type were also observed. This finding, together with the discovery of bacterial forms not previously described in rumen contents, suggests that a specific flora may exist on the rumen epithelial surface. The functional significance of such a population is discussed.  相似文献   

20.
Fourteen tissue sites from the bovine reticulo-rumen were examined by scanning electron microscopy to determine the distribution patterns of bacterial populations adhering to the epithelium. Although diet variations did not appear to influence the total number of tissue-adherent bacteria present in adult Herefords, diet affected their distribution. It appeared that the distribution of the bacterial populations may be directly affected by the physical state of the digesta. The digesta may be mechanically removing adherent bacteria from the tissue surface by abrasive action. The total adherent population consisted of subpopulations with separate distribution patterns, and macropopulations of morphologically similar bacteria were occasionally observed at specific sites on the epithelial surface. Ureolytic organisms on the epithelium followed a distribution pattern considerably different from the general bacterial distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号