首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble guanylyl cyclase is a heterodimeric enzyme consisting of an alpha(1) and a beta(1) subunit and is an important target for endogenous nitric oxide and the guanylyl cyclase modulator YC-1. The activation of the enzyme by both substances is dependent on the presence of a prosthetic heme group. It has been unclear whether this prosthetic heme group is sandwiched between the alpha(1) and beta(1) subunits or whether it exclusively binds to the beta(1) subunit. Here we analyze progressive amino-terminal deletion mutants of the human alpha(1) subunit after co-expression with the human beta(1) subunit in the baculovirus/Sf9 system. Spectral, biochemical, and pharmacological analysis shows that the first 259 amino acids of the alpha(1) subunit can be deleted without loss of sensitivity to nitric oxide (NO) or YC-1 or loss of heme binding of the respective enzyme complex with the beta(1) subunit. This is in contrast to previous data indicating that NO sensitivity and a functional heme binding site requires full-length amino termini of bovine alpha(1) and beta(1) subunits. Further deletion of the first 364 amino acids of the alpha(1) subunit leads to an enzyme complex with preserved heme binding but loss of sensitivity to NO or YC-1 despite induction of the typical spectral shift by NO binding to the prosthetic heme group. We conclude that 1) the amino-terminal part of the alpha(1) subunit is not involved in heme binding and 2) amino acids 259-364 of the alpha(1) subunit represent an important functional domain for the transduction of the NO activation signal and likely represent the target for NO-sensitizing substances like YC-1.  相似文献   

2.
p-Cresol methylhydroxylase, a heterodimer consisting of one flavoprotein subunit and one cytochrome c subunit, may be resolved into its subunits, and the holoenzyme may then be fully reconstituted from the pure subunits. In the present study we have characterized the reduction kinetics of the intact enzyme and its subunits, by using exogenous 5-deazariboflavin semiquinone radical generated in the presence of EDTA by the laser-flash-photolysis technique. Under anaerobic conditions the 5-deazariboflavin semiquinone radical reacts rapidly with the native enzyme with a rate constant approaching that of a diffusion-controlled reaction (k = 2.8 X 10(9) M-1 X s-1). Time-resolved difference spectra at pH 7.6 indicate that both flavin and haem are reduced initially by the deazariboflavin semiquinone radical, followed by an additional slower intramolecular electron transfer (k = 220 s-1) from the endogenous neutral flavin semiquinone radical to the oxidized haem moiety of the native enzyme. During the steady-state photochemical titration of the native enzyme at pH 7.6 with deazariboflavin semiquinone radical generated by light-irradiation the haem appeared to be reduced before the protein-bound flavin and was followed by the formation of the protein-bound anionic flavin radical. This result suggests that the redox potential of the haem is higher than that of the flavin, and that deprotonation of the flavin neutral radical occurred during the photochemical titration. Reduction kinetics of the flavoprotein and cytochrome subunits were also investigated by laser-flash photolysis. The protein-bound flavin of the isolated flavin subunit was reduced rapidly by the deazariboflavin semiquinone radical (k = 2.2 X 10(9) M-1 X s-1), as was the haem of the pure cytochrome c subunit (k = 3.7 X 10(9) M-1 X s-1). Flash-induced difference spectra obtained for the flavoprotein and cytochrome subunits at pH 7.6 were consistent with the formation of neutral flavin semiquinone radical and reduced haem, respectively. Investigation of the kinetic properties of the neutral flavin semiquinone radical of the flavoprotein subunit at pH 7.6 and at longer times (up to 5s) were consistent with a slow first-order deprotonation reaction (k = 1 s-1) of the neutral radical to its anionic form.  相似文献   

3.
The caa3-oxidase from Thermus thermophilus has been studied with a combined electrochemical, UV/VIS and Fourier-transform infrared (FT-IR) spectroscopic approach. In this oxidase the electron donor, cytochrome c, is covalently bound to subunit II of the cytochrome c oxidase. Oxidative electrochemical redox titrations in the visible spectral range yielded a midpoint potential of -0.01 +/- 0.01 V (vs. Ag/AgCl/3m KCl, 0.218 V vs. SHE') for the heme c. This potential differs for about 50 mV from the midpoint potential of isolated cytochrome c, indicating the possible shifts of the cytochrome c potential when bound to cytochrome c oxidase. For the signals where the hemes a and a3 contribute, three potentials, = -0.075 V +/- 0.01 V, Em2 = 0.04 V +/- 0.01 V and Em3 = 0.17 V +/- 0.02 V (0.133, 0.248 and 0.378 V vs. SHE', respectively) could be obtained. Potential titrations after addition of the inhibitor cyanide yielded a midpoint potential of -0.22 V +/- 0.01 V for heme a3-CN- and of Em2 = 0.00 V +/- 0.02 V and Em3 = 0.17 V +/- 0.02 V for heme a (-0.012 V, 0.208 V and 0.378 V vs. SHE', respectively). The three phases of the potential-dependent development of the difference signals can be attributed to the cooperativity between the hemes a, a3 and the CuB center, showing typical behavior for cytochrome c oxidases. A stronger cooperativity of CuB is discussed to reflect the modulation of the enzyme to the different key residues involved in proton pumping. We thus studied the FT-IR spectroscopic properties of this enzyme to identify alternative protonatable sites. The vibrational modes of a protonated aspartic or glutamic acid at 1714 cm-1 concomitant with the reduced form of the protein can be identified, a mode which is not present for other cytochrome c oxidases. Furthermore modes at positions characteristic for tyrosine vibrations have been identified. Electrochemically induced FT-IR difference spectra after inhibition of the sample with cyanide allows assigning the formyl signals upon characteristic shifts of the nu(C=O) modes, which reflect the high degree of similarity of heme a3 to other typical heme copper oxidases. A comparison with previously studied cytochrome c oxidases is presented and on this basis the contributions of the reorganization of the polypeptide backbone, of individual amino acids and of the hemes c, a and a3 upon electron transfer to/from the redox active centers discussed.  相似文献   

4.
Soluble guanylate cyclase (sGC) is a heterodimeric, nitric oxide (NO)-sensing hemoprotein composed of two subunits, alpha1 and beta1. NO binds to the heme cofactor in the beta1 subunit, forming a five-coordinate NO complex that activates the enzyme several hundred-fold. In this paper, the heme domain has been localized to the N-terminal 194 residues of the beta1 subunit. This fragment represents the smallest construct of the beta1 subunit that retains the ligand-binding characteristics of the native enzyme, namely, tight affinity for NO and no observable binding of O(2). A functional heme domain from the rat beta2 subunit has been localized to the first 217 amino acids beta2(1-217). These proteins are approximately 40% identical to the rat beta1 heme domain and form five-coordinate, low-spin NO complexes and six-coordinate, low-spin CO complexes. Similar to sGC, these constructs have a weak Fe-His stretch [208 and 207 cm(-)(1) for beta1(1-194) and beta2(1-217), respectively]. beta2(1-217) forms a CO complex that is very similar to sGC and has a high nu(CO) stretching frequency at 1994 cm(-)(1). The autoxidation rate of beta1(1-194) was 0.073/min, while the beta2(1-217) was substantially more stable in the ferrous form with an autoxidation rate of 0.003/min at 37 degrees C. This paper has identified and characterized the minimum functional ligand-binding heme domain derived from sGC, providing key details toward a comprehensive characterization.  相似文献   

5.
Previously characterized mammalian soluble guanylyl cyclases form alpha/beta heterodimers that can be activated by the gaseous messenger, nitric oxide, and the novel guanylyl cyclase modulator YC-1. Four mammalian subunits have been cloned named alpha(1), beta(1), alpha(2), and beta(2). The alpha(1)/beta(1) and alpha(2)/beta(1) heterodimeric enzyme isoforms have been rigorously characterized. The role of the beta(2) subunit has remained elusive. Here we isolate a novel variant of this subunit and show that the beta(2) subunit does not need to form heterodimers for catalytic activity because enzyme activity can be measured when it is expressed alone in Sf9 cells. In analogy to the beta(3) subunit recently isolated from the insect Manduca sexta, activity was dependent on the presence of 4 mm free Mn(2+). The EC(50) values for the NO-donor diethylamine/NO were shifted to the left by 1 order of magnitude as compared with the alpha(1)/beta(1) heterodimeric form. In the presence of the detergent Tween, NO sensitivity of beta(2) was abolished, but the enzyme could be activated by protoporphyrin IX, indicating removal of a prosthetic heme group and exchange for the heme precursor. We suggest that the beta(2) subunit is the first mammalian NO-sensitive guanylyl cyclase lacking a heterodimeric structure.  相似文献   

6.
The purified cytochrome aa3-type oxidase from Sulfolobus acidocaldarius (DSM 639) consists of a single subunit, containing one low-spin and one high-spin A-type hemes and copper [Anemüller, S. and Sch?fer, G. (1990) Eur. J. Biochem. 191, 297-305]. The enzyme metal centers were investigated by electron paramagnetic resonance spectroscopy (EPR), coupled to redox potentiometry. The low-spin heme EPR signal has the following g-values: gz = 3.02, gy = 2.23 and gx = 1.45 and the high-spin heme exhibits an almost axial spectrum (gy = 6.03 and gx = 5.97, E/D < 0.002). In the enzyme as isolated the low-spin resonance corresponds to 95 +/- 10% of the enzyme concentration, while the high-spin signal accounts for only 40 +/- 5%. However, taking into account the redox potential dependence of the high-spin heme signal, this value also rises to 95 +/- 10%. The high-spin heme signal of the Sulfolobus enzyme shows spectral characteristics distinct from those of the Paracoccus denitrificans one: it shows a smaller rhombicity (gy = 6.1 and gx = 5.9, E/D = 0.004 for the P. denitrificans enzyme) and it is easier to saturate, having a half saturation power of 148 mW compared to 360 mW for the P. denitrificans protein, both at 10 K. The EPR spectrum of an extensively dialyzed and active enzyme sample containing only one copper atom/enzyme molecule does not display CuA-like resonances, indicating that this enzyme contains only a CUB-type center. The EPR-redox titration of the high-spin heme signal, which is assigned to cytochrome a3, gives a bell shaped curve, which was simulated by a non-interactive two step redox process, with reduction potentials of 200 +/- 10 mV and 370 +/- 10 mV at pH = 7.4. The decrease of the signal amplitude at high redox potentials is proposed to be due to oxidation of a CUB(I) center, which in the CUB(II) state is tightly spin-coupled to the heme a3 center. The reduction potential of the low-spin resonance was determined using the same model as 305 +/- 10 mV at pH = 7.4 by EPR redox titration. Addition of azide to the enzyme affects only the high-spin heme signal, consistent with the assignment of this resonance to heme a3. The results are discussed in the context of the redox center composition of quinol and cytochrome c oxidases.  相似文献   

7.
A nitrate reductase was solubilized with Triton X-100 from the membranes of Pseudomonas chlororaphis DSM 50135 grown microaerobically in the presence of nitrate. Like other membrane-bound nitrate reductases, it contains three subunits, of 129, 66 (64) and 24 kDa, referred to in the literature as alpha, beta and gamma, respectively. Electrocatalytic studies revealed that only the membrane-bound, not the solubilized form of the enzyme, can accept electrons from a menaquinone analog, menadione, whereas both forms can accept electrons from methylviologen. The isolated enzyme possesses several iron-sulfur clusters and a molybdopterin guanine dinucleotide active center. The iron-sulfur clusters can be grouped in two classes according to their redox properties, the high-potential and low-potential clusters. In the as-isolated enzyme, two forms of the molybdenum center, high- and low-pH, are detectable by electron paramagnetic resonance spectroscopy. The low-pH form shows a hyperfine splitting due to a proton, suggesting the presence of an -OHx ligand. Dithionite reduces the Mo(V) center to Mo(IV) and subsequent reoxidization with nitrate originates a new Mo(V) signal, identical to the oxidized low-pH form but lacking its characteristic hyperfine splitting. The isolated preparation also contains heme c (in a sub-stoichiometric amount) with the ability to relay electrons to the molybdenum center, suggesting that this nitrate reductase may contain heme c instead of the heme b usually found in this class of enzymes.  相似文献   

8.
Ravasio S  Curti B  Vanoni MA 《Biochemistry》2001,40(18):5533-5541
Glutamate synthase is a complex iron-sulfur flavoprotein that catalyzes the reductive transfer of the L-glutamine amide group to C(2) of 2-oxoglutarate, forming two molecules of L-glutamate. The bacterial enzyme is an alphabeta protomer, which contains one FAD (on the beta subunit, approximately 50 kDa), one FMN (on the alpha subunit, approximately 150 kDa), and three different Fe-S clusters (one 3Fe-4S center on the alpha subunit and two 4Fe-4S clusters at an unknown location). To address the problem of the intramolecular electron pathway, we have measured the midpoint potential values of the flavin cofactors and of the 3Fe-4S cluster of glutamate synthase in the isolated alpha and beta subunits and in the alphabeta holoenzyme. No detectable amounts of flavin semiquinones were observed during reductive titrations of the enzyme, indicating that the midpoint potential value of each flavin(ox)/flavin(sq) couple is, in all cases, significantly more negative than that of the corresponding flavin(sq)/flavin(hq) couple. Association of the two subunits to form the alphabeta protomer does not alter significantly the midpoint potential value of the FMN cofactor and of the 3Fe-4S cluster (approximately -240 and -270 mV, respectively), but it makes that of FAD some 40 mV less negative (approximately -340 mV for the beta subunit and -300 mV for FAD bound to the holoenzyme). Binding of the nonreducible NADP(+) analogue, 3-aminopyridine adenine dinucleotide phosphate, made the measured midpoint potential value of the FAD cofactor approximately 30-40 mV less negative in the isolated beta subunit, but had no effect on the redox properties of the alphabeta holoenzyme. This result correlates with the formation of a stable charge-transfer complex between the reduced flavin and the oxidized pyridine nucleotide in the isolated beta subunit, but not in the alphabeta holoenzyme. Binding of L-methionine sulfone, a glutamine analogue, had no significant effect on the redox properties of the enzyme cofactors. On the contrary, 2-oxoglutarate made the measured midpoint potential value of the 3Fe-4S cluster approximately 20 mV more negative in the isolated alpha subunit, but up to 100 mV less negative in the alphabeta holoenzyme as compared to the values of the corresponding free enzyme forms. These findings are consistent with electron transfer from the entry site (FAD) to the exit site (FMN) through the 3Fe-4S center of the enzyme and the involvement of at least one of the two low-potential 4Fe-4S centers, which are present in the glutamate synthase holoenzyme, but not in the isolated subunits. Furthermore, the data demonstrate a specific role of 2-oxoglutarate in promoting electron transfer from FAD to the 3Fe-4S cluster of the glutamate synthase holoenzyme. The modulatory role of 2-oxoglutarate is indeed consistent with the recently determined three-dimensional structure of the glutamate synthase alpha subunit, in which several polypeptide stretches are suitably positioned to mediate communication between substrate binding sites and the enzyme redox centers (FMN and the 3Fe-4S cluster) to tightly control and coordinate the individual reaction steps [Binda, C., et al. (2000) Structure 8, 1299-1308].  相似文献   

9.
Tyrosine 43 is positioned parallel to the fifth heme axial ligand, His34, of heme 1 in the tetraheme cytochrome c(3). The replacement of tyrosine with leucine increased the redox potential of heme 1 by 44 and 35 mV at the first and last reduction steps, respectively; its effects on the other hemes are small. In contrast, the Y43F mutation hardly changed the potentials. It shows that the aromatic ring at this position contributes to lowering the redox potential of heme 1 locally, although this cannot be the major contribution to the extremely low redox potentials of cytochrome c(3). Furthermore, temperature-dependent line-width broadening in partially reduced samples established that the aromatic ring at position 43 participates in the control of the kinetics of intramolecular electron transfer. The rate of reduction of Y43L cytochrome c(3) by 5-deazariboflavin semiquinone under partially reduced conditions was significantly different from that of the wild type in the last stage of the reduction, supporting the involvement of Tyr43 in regulation of reduction kinetics. The mutation of Y43L, however, did not induce a significant change in the crystal structure.  相似文献   

10.
Hydroxylamine oxidoreductase [EC 1.7.3.4] of Nitrosomonas europaea was purified to an electrophoretically homogeneous state and some of its properties were studied. The molecular weight of the enzyme as determined by gel filtration on Sephadex G150 and by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate is 175,000-180,000, while the minimum molecular weight per heme determined from the dry weight and heme content is 17,500. The enzyme is a C-type cytochrome; its reduced form shows absorption peaks at 418 (gamma peak), 521 (beta peak), 553 (alpha peak), and 460 nm (due to an unidentified chromophore). Although the alpha peak at 553 nm has a shoulder at 559 nm, the enzyme does not posses protoheme or a cytochrome b subunit. It seems likely that the enzyme molecule possess heme c molecules in different states. The enzyme reacts rapidly with various eukaryotic cytochromes c, but does not react with "bacterial-type" cytochromes c. Although the enzyme does not react with cytochrome c-552 (N. europaea), another C-type cytochrome of the organism, cytochrome c-554 (N. europaea) acts as an electron acceptor for the enzyme.  相似文献   

11.
The cytochrome c domain of subunit II from the Rhodothermus marinus caa(3) HiPIP:oxygen oxidoreductase, a member of the superfamily of heme-copper-containing terminal oxidases, was produced in Escherichia coli and characterised. The recombinant protein, which shows the same optical absorption and redox properties as the corresponding domain in the holo enzyme, was crystallized and its structure was determined to a resolution of 1.3 A by the multiwavelength anomalous dispersion (MAD) technique using the anomalous dispersion of the heme iron atom. The model was refined to final R(cryst) and R(free) values of 13.9% and 16.7%, respectively. The structure reveals the insertion of two short antiparallel beta-strands forming a small beta-sheet, an interesting variation of the classical all alpha-helical cytochrome c fold. This modification appears to be common to all known caa(3)-type terminal oxidases, as judged by comparative modelling and by analyses of the available amino acid sequences for these enzymes. This is the first high-resolution crystal structure reported for a cytochrome c domain of a caa(3)-type terminal oxidase. The R.marinus caa(3) uses HiPIP as the redox partner. The calculation of the electrostatic potential at the molecular surface of this extra C-terminal domain provides insights into the binding to its redox partner on one side and its interaction with the remaining subunit II on the other side.  相似文献   

12.
P Hellwig  T Soulimane  G Buse  W M?ntele 《Biochemistry》1999,38(30):9648-9658
The ba3 cytochrome c oxidase from Thermus thermophilus has been studied with a combined electrochemical, UV/VIS, and FTIR spectroscopic approach. Oxidative electrochemical redox titrations yielded midpoint potentials of Em1= -0.02 +/- 0.01 V and Em2 = 0.16 +/- 0.04 V for heme b and Em1 = 0.13 +/- 0.04 V and Em2 = 0.22 +/- 0.03 V for heme a(3) (vs Ag/AgCl/3 M KCl). Fully reversible electrochemically induced UV/VIS and FTIR difference spectra were obtained for the full potential step from -0. 5 to 0.5 V as well as for the critical potential steps from -0.5 to 0.1 V (heme b is fully oxidized and heme a3 remains essentially reduced) and from 0.1 to 0.5 V (heme b remains oxidized and heme a3 becomes oxidized). The difference spectra thus allow to us distinguish modes coupled to heme b and heme a3. Analogous difference spectra were obtained for the enzyme in D2O buffer for additional assignments. The FTIR difference spectra reveal the reorganization of the polypeptide backbone, perturbations of single amino acids and of hemes b and a3 upon electron transfer to/from the four redox-active centers heme b and a3, as well as CuB and CuA. Proton transfer coupled to redox transitions can be expected to manifest in the spectra. Tentative assignments of heme vibrational modes, of individual amino acids, and of secondary structure elements are presented. Aspects of the uncommon electrochemical and spectroscopic properties of the ba3 oxidase from T. thermophilus are discussed.  相似文献   

13.
Nitrate reductase A (NRA, NarGHI) is expressed in Escherichia coli by growing the bacterium in anaerobic conditions in the presence of nitrate. This enzyme reduces nitrate to nitrite and uses menaquinol (or ubiquinol) as the electron donor. The location of quinones in the enzyme, their number, and their role in the electron transfer mechanism are still controversial. In this work, we have investigated the spectroscopic and thermodynamic properties of a semiquinone (SQ) in membrane samples of overexpressed E. coli nitrate reductase poised in appropriate redox conditions. This semiquinone is highly stabilized with respect to free semiquinone. The g-values determined from the numerical simulation of its Q-band (35 GHz) EPR spectrum are equal to 2.0061, 2.0051, 2.0023. The midpoint potential of the Q/QH(2) couple is about -100 mV, and the SQ stability constant is about 100 at pH 7.5. The semiquinone EPR signal disappears completely upon addition of the quinol binding site inhibitor 2-n-nonyl-4-hydroxyquinoline N-oxide (NQNO). A semiquinone radical could also be stabilized in preparations where only the NarI membrane subunit is overexpressed in the absence of the NarGH catalytic dimer. Its thermodynamic and spectroscopic properties show only slight variations with those of the wild-type enzyme. The X-band continuous wave (cw) electron nuclear double resonance (ENDOR) spectra of the radicals display similar proton hyperfine coupling patterns in NarGHI and in NarI, showing that they arise from the same semiquinone species bound to a single site located in the NarI membrane subunit. These results are discussed with regard to the location and the potential function of quinones in the enzyme.  相似文献   

14.
Oxidation-reduction midpoint potentials for flavin, heme, and molybdenum-pterin prosthetic groups of assimilatory nitrate reductase (NR) from Chlorella vulgaris were measured at room temperature by using CD and EPR potentiometry. The CD changes accompanying reduction of each prosthetic group were determined by using enzyme fragments containing either FAD or heme and molybdenum prosthetic groups, obtained by limited proteolysis, and by poising the enzyme at various redox potentials in the presence of dye mediators. Limited proteolysis did not appear to alter the environment of the prosthetic groups, as judged by their CD spectra. Also, CD potentiometric titration of FAD in intact NR (Em' = -272 mV, n = 2) gave a similar value (Em' = -286 mV) to the FAD of the flavin-containing proteolytic domain, determined by visible spectroscopy. Less than 1% of the flavin semiquinone was detected by EPR spectroscopy, indicating that Em' (FAD/FAD.-) may be more than 200 mV lower than Em' (FAD.-/FADH-). Reduction of heme resulted in splitting of both Soret and alpha CD bands into couplets. The heme Em' was -162 mV (n = 1) determined by both CD and visible spectroscopy. Reduction of Mo-pterin was followed by CD at 333 nm, and Mo(V) was monitored by room temperature EPR spectroscopy. Most of the change in the Mo-pterin CD spectrum was due to the Mo(VI)/Mo(V) transition. The Em' values determined for Mo(VI)/Mo(V) were +26 mV by CD and +16 mV by EPR, whereas Mo(V)/Mo(IV) values were -40 mV by CD and -26 mV by EPR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Temperature-jump experiments on flavocytochrome b2 were carried out at different levels of heme reduction at pH 7.0 and 6.0, and as a function of pyruvate concentration. The relaxation, corresponding to an increase in the concentration of reduced heme, is in no case a simple process. AtpH 7.0 the mean reciprocal relaxation time is 1/tau* = 190 s-1, independent of enzyme concentration, wavelength of observation and percentage of heme reduction. Flavin semiquinone has been identified as the major electron donor to the heme in this process. At the same pH the presence of pyruvate in the millimolar concentration range increases the relaxation rate and affects its amplitude. The latter effect could be accounted for by a change in redox equilibria between heme and flavin upon pyruvate binding. At pH 6.0 the relaxation pattern depends more clearly on the level of heme reduction. A rapid process (tau-1 = 2500 s-1), predominant at high percentages of reduced heme, has been assigned to the reduction of heme by flavin hydroquinone, while the slower process (tau-1 = 350 s-1), essentially the only one present at or below 50% of heme reduction, has been ascribed to the reduction of heme by flavin semiquinone. These results are discussed in relation to the catalytic mechanism of the enzyme.  相似文献   

16.
In nitric-oxide synthase (NOS) the FMN can exist as the fully oxidized (ox), the one-electron reduced semiquinone (sq), or the two-electron fully reduced hydroquinone (hq). In NOS and microsomal cytochrome P450 reductase the sq/hq redox potential is lower than that of the ox/sq couple, and hence it is the hq form of FMN that delivers electrons to the heme. Like NOS, cytochrome P450BM3 has the FAD/FMN reductase fused to the C-terminal end of the heme domain, but in P450BM3 the ox/sq and sq/hq redox couples are reversed, so it is the sq that transfers electrons to the heme. This difference is due to an extra Gly residue found in the FMN binding loop in NOS compared with P450BM3. We have deleted residue Gly-810 from the FMN binding loop in neuronal NOS (nNOS) to give Delta G810 so that the shorter binding loop mimics that in cytochrome P450BM3. As expected, the ox/sq redox potential now is lower than the sq/hq couple. Delta G810 exhibits lower NO synthase activity but normal levels of cytochrome c reductase activity. However, unlike the wild-type enzyme, the cytochrome c reductase activity of Delta G810 is insensitive to calmodulin binding. In addition, calmodulin binding to Delta G810 does not result in a large increase in FMN fluorescence as in wild-type nNOS. These results indicate that the FMN domain in Delta G810 is locked in a unique conformation that is no longer sensitive to calmodulin binding and resembles the "on" output state of the calmodulin-bound wild-type nNOS with respect to the cytochrome c reduction activity.  相似文献   

17.
Luciferase, as isolated from Vibrio harveyi, is an alpha beta heterodimer. When allowed to fold in the absence of the alpha subunit, either in vitro or in vivo, the beta subunit of enzyme will form a kinetically stable homodimer that does not unfold even after prolonged incubation in 5 M urea at pH 7.0 and 18 degrees C. This form of the beta subunit, arising via kinetic partitioning on the folding pathway, appears to constitute a kinetically trapped alternative to the heterodimeric enzyme (Sinclair JF, Ziegler MM, Baldwin TO. 1994. Kinetic partitioning during protein folding yields multiple native states. Nature Struct Biol 1: 320-326). Here we describe the X-ray crystal structure of the beta 2 homodimer of luciferase from V. harveyi determined and refined at 1.95 A resolution. Crystals employed in the investigational belonged to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions of a = 58.8 A, b = 62.0 A, and c = 218.2 A and contained one dimer per asymmetric unit. Like that observed in the functional luciferase alpha beta heterodimer, the major tertiary structural motif of each beta subunit consists of an (alpha/beta)8 barrel (Fisher AJ, Raushel FM, Baldwin TO, Rayment I. 1995. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry 34: 6581-6586). The root-mean-square deviation of the alpha-carbon coordinates between the beta subunits of the hetero- and homodimers is 0.7 A. This high resolution X-ray analysis demonstrated that "domain" or "loop" swapping has not occurred upon formation of the beta 2 homodimer and thus the stability of the beta 2 species to denaturation cannot be explained in such simple terms. In fact, the subunit:subunit interfaces observed in both the beta 2 homodimer and alpha beta heterodimer are remarkably similar in hydrogen-bonding patterns and buried surface areas.  相似文献   

18.
Chlorite dismutase from Ideonella dechloratans   总被引:1,自引:0,他引:1  
Chlorite dismutase has been purified from the chlorate-metabolizing bacterium Ideonella dechloratans. The purified enzyme is tetrameric, with a relative molecular mass of 25,000 for the subunit, and contains about 0.6 heme/subunit as isolated. Its catalytic properties are similar, but not identical, to those found for a similar enzyme purified earlier from the bacterium GR-1. The heme group in Ideonella chlorite dismutase is readily reduced by dithionite, in contrast to the GR-1 enzyme, and redox titration gave a value of -21 mV for the midpoint potential at pH 7. The heme group has been characterized by optical and EPR spectroscopy. It is high-spin ferric at neutral pH, with spectroscopic properties similar to those found for cytochrome c peroxidase. In the alkaline pH range, a low-spin compound is formed. A 22-residue N-terminal amino acid sequence has been determined and no homologue has been found in the protein sequence databases.  相似文献   

19.
The alpha and beta subunits of the acetyl-CoA:acetoacetate-CoA transferase were purified by isoelectric focusing of the enzyme in the presence of 6 M urea. The purified beta subunit, in which the active center of the enzyme is located, exhibits low catalytic activity (2% of the specific activity of the native enzyme) which is stimulated 5-6-fold in the presence of an equimolar concentration of alpha subunit. The presence of the substrate,acetoacetyl-CoA, is required to recover the catalytic activity of the beta subunit and mixtures containing purified alpha and beta subunits. When the enzyme is dissociation in the presence of 6 M urea and the subunits are not fractioned, removal of the urea by dialysis results in the recovery of 88-98% of enzymic activity and the native alpha2beta2 subunit structure. However, analysis of this renatured enzyme by immunochemical techniques shows that the enzyme does not refold to a completely native conformation. This renatured enzyme exhibits an immunological reactivity more closely resembling the isolated alpha subunit. The results indicate that the alpha subunit serves as a structural subunit, or possible a maturation subunit, imposing a conformation on the beta subunit that is catalytically more competent.  相似文献   

20.
The pH dependence of the redox behavior of salicylate hydroxylase from Pseudomonas cepacia as well as the effects of salicylate, benzoate, and chloride binding is described. At pH 7.6 in 0.02 M potassium phosphate buffer E1(0')(EFl ox/EFl.-) is -0.150 V and E2(0')(EFl.-/EFl red H-) is -0.040 V versus the standard hydrogen electrode (SHE). A maximum of 5% of FAD anion semiquinone is thermodynamically stabilized under these conditions. However, in coulometric and dithionite titrations more semiquinone is kinetically formed, indicating slow transfer of the second electron. The potential/pH dependence is consistent with a two-electron, one-proton transfer. Upon salicylate binding the midpoint potential is shifted 0.020 V negative from -0.094 to -0.114 V vs SHE at pH 7.6. A maximum of 7% of the neutral semiquinone is stabilized both in potentiometric and coulometric titrations. This small potential shift indicates that the substrate is bound nearly to the same extent to all three oxidation states of the enzyme. It is clear that the substrate binding does not make the reduction of the flavin thermodynamically more favorable. In contrast to salicylate, the potential shift caused by the effector, benzoate, is much more significant. (A maximum potential shift of -0.07 V is calculated.) Benzoate binds most tightly to the oxidized form and is least tightly bound to the two-electron-reduced form of the enzyme. For the reduction of the free enzyme the transfer of the second electron or the transfer of the proton is rate limiting, as is shown by the kinetic formation of the anionic semiquinone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号