首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two isomeric cholesteryl galactosides, cholesteryl beta-D-galactofuranoside and -pyranoside, have been synthesized by the Koenigs-Knorr reaction. Glycosylation of cholesterol with 2,3,5,6-tetra-O-benzoyl-D-galactofuranosyl bromide, followed by Zemplén saponification with sodium methoxide, gave cholesteryl beta-D-galactofuranoside. By using 2,3,4,6-tetra-O-acetyl-D-galactopyranosyl bromide as the glycosyl donor, followed by alkaline hydrolysis, cholesteryl beta-D-galactopyranoside was obtained. The title compounds were characterized by their IR spectra and by their (1)H and (13)C NMR spectra. Structure considerations of the two cholesteryl galactosides correlated with data in the literature, thus confirming that cholesteryl beta-D-galactopyranoside is an antigenic lipid of Lyme disease agent, Borrelia burgdorferi.  相似文献   

2.
This study is the first report on the effectiveness and specificity of alpha-acarviosinyl-(1-->4)-alpha-D-glucopyranosyl-(1-->6)-D-glucopyranosylidene-spiro-thiohydantoin (PTS-G-TH) inhibitor on the 2-chloro-4-nitrophenyl-4-O-beta-D-galactopyranosyl-maltoside (GalG2CNP) and amylose hydrolysis catalysed by human salivary alpha-amylase (HSA). Synthesis of PTS-G-TH was carried out by transglycosylation using acarbose as donor and glucopyranosylidene-spiro-thiohydantoin (G-TH) as acceptor. This new compound was found to be a much more efficient HSA inhibitor than G-TH. The inhibition is a mixed-noncompetitive type on both substrates and only one molecule of inhibitor binds to the enzyme. Kinetic constants calculated from secondary plots are in micromolar range. Values of K(EI) and K(ESI) are very similar in the presence of GalG2CNP substrate; 0.19 and 0.24 microM, respectively. Significant difference can be found for K(EI) and K(ESI) using amylose as substrate; 8.45 and 0.5 microM, respectively. These values indicate that inhibition is rather uncompetitive than competitive related to amylose hydrolysis.  相似文献   

3.
This paper describes phosphorylase-catalyzed enzymatic alpha-glucosaminylation for the direct incorporation of a 2-amino-2-deoxy-alpha-d-glucopyranose unit into maltooligosaccharides. When the reaction of 2-amino-2-deoxy-alpha-d-glucopyranosyl 1-phosphate as the glycosyl donor with maltotetraose as a glycosyl acceptor was performed in the presence of phosphorylase, glucosaminylated oligosaccharides were produced, which were characterized by MALDI-TOF MS measurement after N-acetylation of the crude products. The N-acetylated derivative of the main product in this system was isolated by using HPLC, and its structure was confirmed by MS and (1)H NMR spectra. Furthermore, glucoamylase-catalyzed reaction of the isolated compound provided support that the alpha-glucosamine unit is positioned at the non-reducing end of the oligosaccharide.  相似文献   

4.
Six isomeric disaccharides allyl 2,3,5-tri-O-benzoyl-alpha-l-arabinofuranosyl-alpha-d-xylopyranosides and beta-d-xylopyranosides were synthetized by the stereoselective glycosylation of pure allyl alpha- or beta-d-xylopyranosides with 1-O-acetyl-2,3,5-tri-O-benzoyl-l-arabinofuranose as donor, catalyzed with BF(3).Et(2)O in DCM. Regio- and stereoselective glycosylation with excess of donor furnished almost exclusively the trisaccharides allyl 2,3-di-O-(2,3,5-tri-O-benzoyl-alpha-l-arabinofuranosyl)-alpha- or beta-d-xylopyranosides. Extension of the reaction to the triol beta-d-xylopyranosyl-(1-->4)-1,2,3-tri-O-acetyl-alpha-d-xylopyranose, obtained from the 4-hydroxyl penta-O-acetyl-alpha-xylobiose, gave in the same manner the tetrasaccharide [2,3-di-O-(2,3,5-tri-O-benzoyl-alpha-l-arabinofuranosyl)-beta-d-xylopyranosyl]-(1-->4)-1,2,3-tri-O-acetyl-alpha-d-xylopyranose. The protocol described herein should offer the possibility to produce branched oligosaccharides with a 2,3-di-O-(alpha-l-Ara(f))-beta-d-Xyl(p) block unit at the terminal non-reducing end.  相似文献   

5.
This paper describes the phosphorylase-catalyzed enzymatic N-formyl-α-glucosaminylation of maltooligosaccharides for direct incorporation of 2-deoxy-2-formamido-α-d-glucopyranose units into maltooligosaccharides. When the reaction of 2-deoxy-2-formamido-α-d-glucopyranose-1-phosphate (GlcNF-1-P) as the glycosyl donor and maltotetraose as a glycosyl acceptor was performed in the presence of phosphorylase, the N-formyl-α-d-glucosaminylated pentasaccharide was produced, as confirmed by MALDI-TOF MS. Furthermore, the glucoamylase-catalyzed reaction of the crude products supported that the 2-deoxy-2-formamido-α-d-glucopyranoside unit was positioned at the non-reducing end of the pentasaccharide. The pentasaccharide was isolated from the crude products and its structure was further determined by the 1H NMR analysis. On the other hand, when the phosphorylase-catalyzed reactions of maltotriose and maltopentaose using GlcNF-1-P were conducted, no N-formyl-α-glucosaminylation took place in the former system, whereas the latter system gave N-formyl-α-d-glucosaminylated oligosaccharides with various degrees of polymerization. These results could be explained by the recognition behavior of phosphorylase toward maltooligosaccharides.  相似文献   

6.
The reaction conditions of galactose oxidase-catalyzed, targeted C-6 oxidation of galactose derivatives were optimized for aldehyde production and to minimize the formation of secondary products. Galactose oxidase, produced in transgenic Pichia pastoris carrying the galactose oxidase gene from Fusarium spp., was used as catalyst, methyl α-d-galactopyranoside as substrate, and reaction medium, temperature, concentration, and combinations of galactose oxidase, catalase, and horseradish peroxidase were used as variables. The reactions were followed by 1H NMR spectroscopy and the main products isolated, characterized, and identified. An optimal combination of all the three enzymes gave aldehyde (methyl α-d-galacto-hexodialdo-1,5-pyranoside) in approximately 90% yield with a substrate concentration of 70 mM in water at 4 °C using air as oxygen source. Oxygen flushing of the reaction mixture was not necessary. The aldehyde existed as a hydrate in water. The main secondary products, a uronic acid (methyl α-d-galactopyranosiduronic acid) and an α,β-unsaturated aldehyde (methyl 4-deoxy-α-d-threo-hex-4-enodialdo-1,5-pyranoside), were observed for the first time to form in parallel. Formation of uronic acid seemed to be the result of impurities in the galactose oxidase preparation. 1H and 13C NMR data of the products are reported for the α,β-unsaturated aldehyde for the first time, and chemical shifts in DMSO-d6 for all the products for the first time. Oxidation of d-raffinose (α-d-galactopyranosyl-(1-6)-α-d-glucopyranosyl-(1-2)-β-d-fructofuranoside) in the same optimum conditions also proceeded well, resulting in approximately 90% yield of the corresponding aldehyde.  相似文献   

7.
1,5-Anhydro-d-fructose (1,5AnFru) is a monoketosaccharide that can be prepared enzymatically from starch by α-1,4-glucan lyase or chemically from d-glucose or d-fructose in a few steps with high yields. The formed 1,5AnFru can be derivatized both enzymatically and chemically to interesting new carbohydrate derivatives, some with biological activities. For example dehydratases, isomerases and reductases can convert 1,5AnFru to enolones (as Ascopyrone P) and sugar alcohols with antimicrobial and antioxidant properties, while chemical modifications can give similar compounds as well as natural products like 1-deoxymannonojirimycin and Clavulazine. 1,5AnFru disaccharides (glycosyl 1→4 1,5AnFru) have been prepared as well as glycosyl 1→4 1,5-anhydro-d-tagatose.  相似文献   

8.
Kim YW  Chen H  Kim JH  Withers SG 《FEBS letters》2006,580(18):4377-4381
The identity of the acid/base catalyst of the Family 35 beta-galactosidases from Xanthomonas manihotis (BgaX) has been confirmed as Glu184 by kinetic analysis of mutants modified at that position. The Glu184Ala mutant of BgaX is shown to function as an efficient thioglycoligase, which synthesises thiogalactosides with linkages to the 3 and 4 positions of glucosides and galactosides in high (>80%) yields. Kinetic analysis of the thioglycoligase reveals glycosyl donor K(m) values of 1.5-21 microM and glycosyl acceptor K(m) values from 180 to 500 microM. This mutant should be a valuable catalyst for the synthesis of metabolically stable analogues of this important glycosidic linkage.  相似文献   

9.
Ke W  Whitfield DM 《Carbohydrate research》2004,339(18):2841-2850
The selective silylation of monosaccharide building blocks is useful for preparing complex oligosaccharides. We now report that the diol, methyl (dimethylthexylsilyl 3-O-pivaloyl-beta-L-idopyranosyl)uronate, can be selectively silylated at the O-2 position by trialkylsilyl triflates. After protection of O-4, the O-2 silyl group can be selectively replaced by acetate by taking advantage of a trialkylsilyl-acetate exchange reaction catalyzed by Sc(OTf)3 in the presence of acetic anhydride. The high O-2 selectivity is shown for triethylsilyl (TES), tert-butyldimethylsilyl (TBS), and triisopropylsilyl (TIPS). The selective cleavage reaction only worked well for TES and TBS derivatives. A selection of silyl triflates and silyl chlorides were used as silylating reagents with ethyl 3,4-O-isopropylidene-1-thio-beta-D-galactopyranoside. In most cases, silylation afforded 2,6-di-O-silylated products in high yields. Studies on the cleavage reaction showed that only the primary silylated protecting groups were replaced by acetyl groups. This reaction worked with a variety of silyl protecting groups but not the tert-butyldiphenylsilyl (TBDPS) protecting group. Unfortunately, the 1-thioethyl group was also sensitive to the Sc(OTf)3, leading in these conditions to alpha/beta mixtures of the 1-acetates, which compromised the synthetic utility of this reaction for these compounds. The sequence presented here is a useful synthetic route to differentially protected L-iduronic acid building blocks.  相似文献   

10.
Gu G  Du Y  Hu H  Jin C 《Carbohydrate research》2003,338(15):1603-1607
An effective method to prepare the substrate of alpha-L-fucosidase (AFU) is described. Ethyl 1-thiofucoside with a free 2-OH group was used as the glycosyl donor, and there was found no self-condensed side product. The use of the HF.pyridine reagent to remove the silyl protecting group in the last step afforded a target molecule of high purity.  相似文献   

11.
6-O-(L-Tyrosylglycyl)- and 6-O-(L-tyrosylglycylglycyl)-D-glucopyranose were synthesized by condensation of the pentachlorophenyl esters of the respective di- and tripeptide with fully unprotected D-glucose. The intramolecular reactivity of the sugar conjugates was studied in pyridine-acetic acid and in dry methanol, at various temperatures and for various incubation times. The composition of the incubation mixtures was monitored by a reversed-phase HPLC method that permits simultaneous analysis of the disappearance of the starting material and the appearance of rearrangement and degradation products. To determine the influence of esterification of the peptide carboxy group on its amino group reactivity, parallel experiments were done in which free peptides were, under identical reaction conditions, incubated with D-glucose (molar ratios 1:1 and 1:5). Depending on the starting compound, different types of Amadori products (cyclic and bicyclic form), methyl ester of peptides, and Tyr-Gly-diketopiperazine were obtained.  相似文献   

12.
1,6-Anhydro-3,4-O-isopropylidene-1-thio-D-mannitol was converted into its sulfoxide which after hydrolysis, acetylation and subsequent Pummerer rearrangement gave the penta-O-acetyl-1-thio-D-mannoseptanose anomers in excellent yield. This anomeric mixture was used as donor for the glycosylation of 4-nitro- and 4-cyanobenzenethiol in the presence of boron trifluoride etherate and trimethylsilyl triflate, respectively, to yield the corresponding thioseptanosides in high yield. The same strategy was applied for the synthesis of the corresponding L-idothioseptanosides using 1,6-anhydro-3,4-O-isopropylidene-1-thio-L-iditol as starting material. The penta-O-acetyl-D-glucothioseptanose donors could not be synthesised the same way, as the Pummerer reaction of the corresponding tetra-O-acetyl-1,6-thioanhydro-1-thio-D-glucitol sulfoxides led to an inseparable mixture of the corresponding L-gulo- and D-glucothioseptanose anomers. Therefore, D-glucose diethyl dithioacetal was converted via its 2,3,4,5-tetra-O-acetyl-6-S-acetyl derivative into an anomeric mixture of its 6-thio-septanose and -furanose peracetates which could be separated by column chromatography. Condensation of the 6-thio-glucoseptanose peracetates with 4-cyano- and 4-nitrobenezenethiol in the presence of boron trifluoride etherate afforded anomeric mixtures of the corresponding thioseptanosides. The D-manno-, L-ido- and D-glucothioseptanosides obtained after Zemplén deacetylation of these mixtures were tested for their oral antithrombotic activity.  相似文献   

13.
An improved synthesis of 5-thio-D-ribose from D-ribono-1,4-lactone   总被引:1,自引:0,他引:1  
5-Thio-D-ribopyranose was synthesized from D-ribono-1,4-lactone (1) by two approaches: (i) 5-bromo-5-deoxy-D-ribono-1,4-lactone (2) was successively transformed into 5-bromo-5-deoxy, 5-S-acetyl-5-thio or 5-thiocyanato-D-ribofuranose derivatives; appropriate treatment then lead to 5-thio-D-ribopyranose (7) in 46-48% overall yield and; (ii) 2 was transformed into the 5-S-acetyl-5-thio-D-ribono-1,4-lactone derivative (11). Reduction and deprotection of 11 afforded 5-thio-D-ribopyranose (7) in 57% overall yield.  相似文献   

14.
The substrate specificity of N-acetylhexosaminidase (E.C. 3.2.1.51) from Aspergillus oryzae was examined using p-nitrophenyl 6-O-sulfo-N-acetyl-beta-D-glucosaminide (6-O-sulfo-GlcNAc-O-pNP) as the glycosyl donor and a series of beta-d-glucopyranosides and N-acetyl-beta-D-glucosaminides with variable aglycons at the anomeric positions as the acceptors. When beta-D-glucopyranosides with methyl (CH(3)), allyl (CH(2)CHCH(2)), and phenyl (C(6)H(5)) groups at the reducing end were used as the acceptors, this enzyme transferred the 6-O-sulfo-GlcNAc moiety in the donor to the location of O-4 in these glycosyl acceptors with a high regioselectivity, producing the corresponding 6-O-sulfo-N-acetylglucosaminyl beta-D-glucopyranosides. However, beta-D-glucopyranose lacking aglycon was a poor substrate for transglycosylation. This A. oryzae enzyme could also accept various N-acetyl-beta-D-glucosaminides carrying hydroxyl (OH), methyl (CH(3)), propyl (CH(2)CH(2)CH(3)), allyl (CH(2)CHCH(2)) and p-nitrophenyl (pNP; C(6)H(4)-NO(2)) groups at their aglycons, yielding 6-O-sulfo-N-acetylglucosaminyl-beta(1-->4)-disaccharide products.  相似文献   

15.
Glucose-O-omega-palmitic acid is an amphipathic molecule that is useful as a tool for studying the mechanism of mitochondrial uncoupling proteins. The synthesis of this glycolipid is described herein. The study of the reaction of a series of glycosyl donors with appropriate acceptors derived from 16-hydroxyhexadecanoic acid showed that a glycosyl trichloroacetimidate donor was more efficient than thioglycoside, glycosyl halide and glycosyl acetate donors for synthesis of this glycolipid.  相似文献   

16.
2-Amino-2,3-dideoxy-D-manno-heptonic acid (7) has been synthesized from 2,5,6,7-tetra-O-acetyl-3-deoxy-D-gluco-heptono-1,4-lactone (1), which was readily prepared from D-glycero-D-gulo-heptono-1,4-lactone. O-Deacetylation of 1 followed by treatment with 13:1 (v/v) 2,2-dimethoxypropane/acetone in the presence of p-toluenesulfonic acid gave methyl 3-deoxy-4,5:6,7-di-O-isopropylidene-D-gluco-heptonate (3) as a crystalline product (80% yield). The free hydroxyl group (OH-2) of 3 was mesylated and substituted by azide to give the corresponding azide derivative 5. Hydrogenolysis and further hydrolysis of the ester function of 5 afforded alpha-amino acid 7 (43% overall yield from 1). Compound 7 is an analog of L-alanine having a polyhydroxy chain attached to C-3. The diastereoisomer of 7 at C-2, 2-amino-2,3-dideoxy-D-gluco-heptonic acid (12) was also prepared from 3, by a route that involved 2,3-dideoxy-2-iodo derivative 8 as a key intermediate.  相似文献   

17.
An extract from 50 kinds of fruits and vegetables was fermented to produce a new beverage. Natural fermentation of the extract was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). Two new saccharides were found in this fermented beverage. The saccharides were isolated using carbon-Celite column chromatography and preparative high performance liquid chromatography. Gas liquid chromatography analysis of methylated derivatives as well as MALDI-TOF MS and NMR measurements were used for structural confirmation. The (1)H and (13)C NMR signals of each saccharide were assigned using 2D-NMR including COSY, HSQC, HSQC-TOCSY, CH(2)-HSQC-TOCSY, and CT-HMBC experiments. The saccharides were identified as beta-D-fructopyranosyl-(2-->6)-beta-D-glucopyranosyl-(1-->3)-D-glucopyranose and beta-D-fructopyranosyl-(2-->6)-[beta-D-glucopyranosyl-(1-->3)]-D-glucopyranose.  相似文献   

18.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.  相似文献   

19.
1-O-Acetyl-beta-D-galactopyranose (AcGal), a new substrate for beta-galactosidase, was synthesized in a stereoselective manner by the trichloroacetimidate procedure. Kinetic parameters (K(M) and k(cat)) for the hydrolysis of 1-O-acetyl-beta-D-galactopyranose catalyzed by the beta-D-galactosidase from Penicillium sp. were compared with similar characteristics for a number of natural and synthetic substrates. The value for k(cat) in the hydrolysis of AcGal was three orders of magnitude greater than for other known substrates. The beta-galactosidase hydrolyzes AcGal with retention of anomeric configuration. The transglycosylation activity of the beta-D-galactosidase in the reaction of AcGal and methyl beta-D-galactopyranoside (1) as substrates was investigated by 1H NMR spectroscopy and HPLC techniques. The transglycosylation product using AcGal as a substrate was beta-D-galactopyranosyl-(1-->6)-1-O-acetyl-beta-D-galactopyranose (with a yield of approximately 70%). In the case of 1 as a substrate, the main transglycosylation product was methyl beta-D-galactopyranosyl-(1-->6)-beta-D-galactopyranoside. Methyl beta-D-galactopyranosyl-(1-->3)-beta-D-galactopyranoside was found to be minor product in the latter reaction.  相似文献   

20.
A quantitative evaluation of 20 second-generation carbohydrate force fields was carried out using ab initio and density functional methods. Geometry-optimized structures (B3LYP/6-31G(d)) and relative energies using augmented correlation consistent basis sets were calculated in gas phase for monosaccharide carbohydrate benchmark systems. Selected results are: (i). The interaction energy of the alpha-d-glucopyranose.H(2)O heterodimer is estimated to be 4.9 kcal/mol, using a composite method including terms at highly correlated (CCSD(T)) level. Most molecular mechanics force fields are in error in this respect; (ii). The (3)E envelope (south) pseudorotational conformer of methyl 5-deoxy-beta-d-xylofuranoside is 0.66 kcal/mol more stable than the (3)E envelope (north) conformer and the alpha-anomer of methyl d-glucopyranoside is 0.82 kcal/mol more stable than the beta-anomer; (iii). The relative energies of the (gg, gt and tg) rotamers of methyl alpha-d-glucopyranoside and methyl alpha-d-galactopyranoside are (0.13, 0.00, 0.15) and (0.64, 0.00, 0.77) kcal/mol, respectively. The results of the quantum mechanical calculations are compared with the results of calculations using the 20 second-generation carbohydrate force fields. No single force field is consistently better than the others for all the test cases. A statistical assessment of the performance of the force fields indicates that CHEAT(95), CFF, certain versions of Amber and of MM3 have the best overall performance, for these gas phase monosaccharide systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号