首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight subjects, who were indoor workers and not habitually exposed to cold, spent 53 days in Antarctica. They did mainly geological field work often requiring the use of bare hands. The effects of the expedition on responses to a whole body cold exposure test, a finger blood flow test and a cold pressor test were studied. After the expedition, during whole-body cooling the time for the onset of shivering was delayed by 36 min (P<0.001) and forearm and thigh temperatures were 1.5°C higher (P<0.05) at the end of exposure. During local cooling of the finger with 10°C perfusion, finger vascular resistance was 14.9 (SEM 6.6) mmHg · ml–1 · min · 100 ml (P<0.05) lower and finger temperature 3.9 (SEM 0.8) °C higher (P< 0.01). However, the decrease in rectal temperature during wholebody cooling was unaltered and the response to a cold pressor test was unchanged. The data would indicate that partial acclimatization to cold had been developed. Changes in forearm temperature were correlated with the duration of cold exposure of the hands (P < 0.05) and finger vascular resistance and finger temperature were correlated with responses to cooling before the expedition (P<0.001 and P<0.01, respectively). Because the ambient temperature was not clearly lower in Antarctica in comparison to Finland, the reason for the changes developed seems to be the increased exposure to the outdoor climate in Antarctica.  相似文献   

2.
While heat acclimatization reflects the development of heat tolerance, it may weaken an ability to tolerate cold. The purpose of this study was to explore cold-induced vasodilation (CIVD) responses in the finger of tropical indigenes during finger cold immersion, along with temperate indigenes. Thirteen tropical male indigenes (subjects born and raised in the tropics) and 11 temperate male indigenes (subjects born and raised in Japan and China) participated. Subjects immersed their middle finger at 4.3±0.8 °C water for 30 min. Rectal temperature, skin temperatures, finger skin blood flow, blood pressure and subjective sensations were recorded during the test. The results showed that: (1) the tropical group demonstrated a lower minimum (Tmin), maximum (Tmax) and mean finger temperature (Tmean) compared to those of the temperate group (P<0.05); (2) seven tropical indigenes demonstrated a late-plateau type of CIVD pattern, which is characterized by a pronounced 1st vasoconstriction and a single CIVD with a faint and weak 2nd vasoconstriction, whereas no temperate indigene demonstrated the late-plateau type; and (3) the hand temperature at the end of finger immersion was 3 °C lower in the tropical than the temperate group (P<0.05). These results indicate that tropical indigenes have less active responses of arterio-venous anastomoses in the finger and weaker vasoconstrictions after the first CIVD response during finger cold immersion, which can be considered as being more vulnerable to cold injury of the periphery in severe cold.  相似文献   

3.
Effects of season on sleep and skin temperature in the elderly   总被引:2,自引:0,他引:2  
The effects of season on sleep and skin temperature (Tsk) in 19 healthy, elderly volunteers were investigated. Measurements were obtained in summer, winter, and fall, and activity levels were monitored using a wrist actigraph system for five consecutive days. The temperature and humidity of the bedrooms of the subjects’ homes were measured continuously for five days. During actigraphic measurement, Tsk during sleep was measured for two nights. The bedroom temperature and humidity significantly increased in summer compared to winter and fall. In summer, the total sleep time decreased (mean ± SE min; summer, 350.8 ± 15.7; winter, 426.5 ± 14.2; fall, 403.2 ± 16.4) and wakefulness increased (P < 0.003) compared to those in fall or winter. The sleep efficiency index that was derived from wrist actigraphy was significantly decreased (P < 0.001) in summer (81.4 ± 2.9%) compared with winter (91.6 ± 1.3%) or fall (90.2 ± 1.2%). The forehead Tsk significantly increased, while the chest and thigh Tsks were decreased in summer compared to those in fall or winter. These results suggest that, in the elderly, sleep is disturbed in summer more than in other seasons, and that this disturbance is related to fluctuations in Tsk.  相似文献   

4.
Since human thermoregulation at rest is altered by cold exposure, it was hypothesized that physical training under cold conditions would alter thermoregulation. Three groups (n = 8) of male subjects (mean age 24.3 +/- 0.9 years) were evaluated: group T (interval training at 21 degrees C), group CT (interval training at 1 degrees C), and group C (no training, equivalent exposure to 1 degrees C). Each group was submitted, before and after 4 weeks of interval training (5 d/week), to a cold air test at rest (SCAT) (dry bulb temperature (Tdb) = 1 degrees C) for a 2-h period for evaluation of the thermoregulatory responses. During SCAT, after the training/acclimation period, group T exhibited a higher rectal temperature (Tre) (P < 0.05) without significant change in mean skin temperature (Tsk) whereas metabolic heat production (M) was higher at the beginning of the SCAT (P < 0.05). For group CT, no thermoregulatory change was observed. Group C showed a lower Tre (P < 0.05) without significant change in either Tsk or in M, suggesting the development of a hypothermic general cold adaptation. This study showed, first, that the cold thermoregulatory responses induced by an interval training differed following the climatic conditions of the training and, second, that this training performed in the cold prevented the development of a general cold adaptation.  相似文献   

5.
There are several types of cold adaptation based on the alteration of thermoregulatory response. It has been thought that the temperature of repeated cold exposures during the adaptation period is one of the factors affecting the type of cold adaptation developed. This study tested the hypothesis that repeated mild cold immersions would induce an insulative cold adaptation but would not alter the metabolic response. Seven healthy male participants were immersed to their xiphoid process level repeatedly in 26°C water for 60 min, 3 days every week, for 4 weeks. During the first and last exposure of this cold acclimation period, the participants underwent body immersion tests measuring their thermoregulatory responses to cold. Separately, they conducted finger immersion into 5°C water for 30 min to assess their cold-induced vasodilation (CIVD) response before and after cold acclimation. During the immersion to xiphoid process, participants showed significantly lower mean skin temperature and skin blood flow in the forearm post-acclimation, while no adaptation was observed in the metabolic response. Additionally, blunted CIVD responses were observed after cold acclimation. From these results, it was considered that the participants showed an insulative-type of cold acclimation after the repeated mild cold immersions. The major finding of this study was the acceptance of the hypothesis that repeated mild cold immersion was sufficient to induce insulative cold adaptation but did not alter the metabolic response. It is suggested that the adaptation in the thermoregulatory response is specific to the response which is repeatedly stimulated during the adaptation process.  相似文献   

6.
We examined the effect of high local forearm skin temperature (Tloc) on reflex cutaneous vasodilator responses to elevated whole-body skin (Tsk) and internal temperatures. One forearm was locally warmed to 42 degrees C while the other was left at ambient conditions to determine if a high Tloc could attenuate or abolish reflex vasodilation. Forearm blood flow (FBF) was monitored in both arms, increases being indicative of increases in skin blood flow (SkBF). In one protocol, Tsk was raised to 39-40 degrees C 30 min after Tloc in one arm had been raised to 42 degrees C. In a second protocol, Tsk and Tloc were elevated simultaneously. In protocol 1, the locally warmed arm showed little or no change in blood flow in response to increasing Tsk and esophageal temperature (average rise = 0.76 +/- 1.18 ml X 100 ml-1 X min-1), whereas FBF in the normothermic arm rose by an average of 8.84 +/- 3.85 ml X 100 ml-1 X min-1. In protocol 2, FBF in the normothermic arm converged with that in the warmed arm in three of four cases but did not surpass it. We conclude that local warming to 42 degrees C for 35-55 min prevents reflex forearm cutaneous vasodilator responses to whole-body heat stress. The data strongly suggest that this attenuation is via reduction or abolition of basal tone in the cutaneous arteriolar smooth muscle and that at a Tloc of 42 degrees C a maximum forearm SkBF has been achieved. Implicit in this conclusion is that local warming has been applied for a duration sufficient to achieve a plateau in FBF.  相似文献   

7.
 Plasma luteinizing hormone (LH), follicle stimulating hormone (FSH), prolactin (PRL) and testosterone levels were measured in nine eugonadal men in New Delhi and during the 1st week of different months of their stay at Dakshin Gangotri in Antarctica. During their 12-month stay in Antarctica, they were exposed to a severely cold climate, long polar nights and polar days, high wind velocity, increased amounts of solar and ultraviolet radiation and geomagnetism, as well as physical and social isolation. Plasma testosterone tended to increase in March, but a significant increase (P<0.05) was not seen until April. The mean testosterone levels in May, June, September and November were also significantly higher than the March or New Delhi values. The absolute values of LH, FSH and PRL did not show any month-to-month changes in Antarctica. However, when the hormone levels were expressed as a percentage of the individual annual Antarctic mean, significant differences as a percentage of the individual annual Antarctic mean, significant differences were observed. The testosterone peak in April, May and June was associated with an increase in LH. The nadirs of testosterone, LH, FSH and PRL were seen in either July or August. FSH showed the highest values in March, whereas the highest PRL values were seen in November. These observations suggest the presence of circannual variations in gonadotropin, PRL and LH in Antarctica which are independent of polar days and polar nights. It appears that factors other than the duration of daylight might be involved in regulating these changes. The significance of maintenance of testosterone levels in the supra-physiological range in Antarctica remains unknown but may be important in acclimatization/habituation to the extreme polar cold by increasing basal metabolic rate, protein synthesis and erythropoiesis. Received: 13 October 1997 / Accepted: 13 February 1998  相似文献   

8.
Prokaryotes perform key functions in Antarctic ecosystems, and knowledge of the taxonomy of Antarctic prokaryotes is a prerequisite for the transfer of information between fields of scientific inquiry. The taxonomy of prokaryotes has been greatly revised and improved due to the refinements afforded by molecular techniques such as 16S rRNA sequencing. Past inventories of Antarctic microbial diversity are difficult to reconcile with the developing, phylogenetically-based taxonomy.Antarctic prokaryotes are considerably diverse and most evolutionary groups are represented, including representatives of both Archaea and Bacteria. The diversity appears unique due to the ease with which new species can be isolated; however, that may be a result of our vastly incomplete knowledge of both Antarctic and non-Antarctic prokaryotic diversity. Use of the 16S rRNA gene as a molecular clock would suggest that the majority of Antarctic prokaryotes diverged from their nearest known non-Antarctic relatives long before a stable ice-sheet developed in Antarctica. The time of colonization (or recolonization) of Antarctic environments by individual species may have been very recent in evolutionary time scales.  相似文献   

9.
Antarctic terrestrial ecosystems currently include very few non-native species, due to the continent’s extreme isolation from other landmasses. However, the indigenous biota is vulnerable to human-mediated introductions of non-native species. In December 2005, four construction vehicles were imported by contractors to the British Antarctic Survey’s (BAS) Rothera Research Station (Antarctic Peninsula) from the Falkland Islands and South Georgia (South Atlantic) on board RRS James Clark Ross. The vehicles were contaminated with >132 kg of non-Antarctic soil that contained viable non-native angiosperms, bryophytes, micro-invertebrates, nematodes, fungi, bacteria, and c. 40,000 seeds and numerous moss propagules. The incident was a significant contravention of BAS operating procedures, the UK Antarctic Act (1994) and the Protocol on Environmental Protection to the Antarctic Treaty (1998), which all prohibit the introduction of non-native species to Antarctica without an appropriate permit. The introduction of this diverse range of species poses a significant threat to local biodiversity should any of the species become established, particularly as the biota of sub-Antarctic South Georgia is likely to include many species with appropriate pre-adaptations facilitating the colonisation of more extreme Antarctic environments. Once the incident was discovered, the imported soil was removed immediately from Antarctica and destroyed. Vehicle cleaning and transportation guidelines have been revised to enhance the biosecurity of BAS operations, and to minimise the risk of similar incidents occurring.  相似文献   

10.
Brown adipose tissue (BAT) can be identified by 18F‐fluorodeoxyglucose (FDG)‐positron emission tomography (PET) in adult humans. Thirteen healthy male volunteers aged 20–28 years underwent FDG‐PET after 2‐h cold exposure at 19 °C with light‐clothing and intermittently putting their legs on an ice block. When exposed to cold, 6 out of the 13 subjects showed marked FDG uptake into adipose tissue of the supraclavicular and paraspinal regions (BAT‐positive group), whereas the remaining seven showed no detectable uptake (BAT‐negative group). The BMI and body fat content were similar in the two groups. Under warm conditions at 27 °C, the energy expenditure of the BAT‐positive group estimated by indirect calorimetry was 1,446 ± 97 kcal/day, being comparable with that of the BAT‐negative group (1,434 ± 246 kcal/day). After cold exposure, the energy expenditure increased markedly by 410 ± 293 (P < 0.05) and slightly by 42 ± 114 kcal/day (P = 0.37) in the BAT‐positive and ‐negative groups, respectively. A positive correlation (P < 0.05) was found between the cold‐induced rise in energy expenditure and the BAT activity quantified from FDG uptake. After cold exposure, the skin temperature in the supraclavicular region close to BAT deposits dropped by 0.14 °C in the BAT‐positive group, whereas it dropped more markedly (P < 0.01) by 0.60 °C in the BAT‐negative group. The skin temperature drop in other regions apart from BAT deposits was similar in the two groups. These results suggest that BAT is involved in cold‐induced increases in whole‐body energy expenditure, and, thereby, the control of body temperature and adiposity in adult humans.  相似文献   

11.
The purpose of the present study was to investigate the effects of cold exposure discontinuation on local cold tolerance of older retired female haenyeos in Korea. A total of 30 older women participated in this study: older retired haenyeos (89 ± 4 y in age, N = 10), active haenyeos (current divers) (75 ± 4 y, N = 10), and age-matched non-divers (75 ± 6 y, N = 10). Our criterion for local cold tolerance was cold-induced vasodilation (CIVD) of the finger. Active haenyeos showed greater local cold tolerance in terms of higher minimum temperature of the left finger during immersion and recovery than the other two groups (P < 0.05). Furthermore, active haenyeos showed higher skin temperatures of the right finger and left foot as well (P < 0.05). Older retired haenyeos displayed the second best minimum finger temperature both during immersion and during recovery (15 min and 20 min), whereas their local cold tolerance was evaluated as inferior to active haenyeos and the age-matched non-divers in CIVD frequency, finger pain sensation, thermal comfort, and finger temperature during the earlier period of recovery (5 min and 10 min). These results suggested that older retired haenyeos’ cold tolerance in their extremities disappeared in terms of finger temperature in their initial recovery periods, but that they might still retain cold adaptation in terms of minimum finger temperature or later recovery responses, even though the attributes were not marked as much as those of active haenyeos.  相似文献   

12.
Previous research on Antarctic notothenioids has demonstrated that cells of cold-adapted Antarctic notothenioids lack a common cellular defense mechanism called the heat shock response (HSR), the induction of a family of heat shock proteins (Hsps) in response to elevated temperatures. The goal of this study was to address how widespread the loss of the HSR is within the Notothenioidei suborder and, specifically, to ask whether cold temperate non-Antarctic notothenioids possess the HSR. In general, Antarctic fish have provided an important opportunity for physiologists to examine responses to selection in the environment and to ask whether traits of the notothenioids represent cold adaptation, or whether the traits are related to history and are characteristics of the notothenioid lineage. Using in vivo metabolic labeling, results indicate that one of the two New Zealand notothenioids possess an HSR. The thornfish, Bovichtus variegatus Richardson, 1846, expressed heat shock proteins (Hsp) in response to heat stress, whereas the black cod, Notothenia angustata Hutton, 1875, did not display robust stress-inducible Hsp synthesis at the protein-level. However, further analysis using Northern blotting clearly demonstrated that mRNA for a common Hsp gene, hsp70, was present in cells of both New Zealand species following exposure to elevated temperatures. Overall, combined evidence on the HSR in notothenioid fishes from temperate New Zealand waters indicate that the loss of the HSR in Antarctic notothenioid fishes occurred after the separation of Bovichtidae from the other Antarctic notothenioid families, and that the HSR was most likely lost during evolution at cold and constant environmental temperatures.  相似文献   

13.
The tight skin 2 (Tsk2) mouse model of systemic sclerosis (SSc) has many features of the human disease including tight skin, fibrosis, extracellular matrix abnormalities, and reported antinuclear antibodies (ANA). Here we report that Tsk2/+ mice develop excess dermal fibrosis with age, as skin is not significantly fibrotic until 10 weeks, a full eight weeks after the development of the physical tight skin phenotype. Concomitantly with the tight skin phenotype at two weeks of age, Tsk2/+ mice demonstrate increased levels of total transforming growth factor beta 1 (TGF-β1) and excessive accumulation of dermal elastic fibers. The increase in elastic fibers is not responsible for tight skin, however, because Tsk2/+ mice genetically engineered to lack skin elastic fibers nevertheless have tight skin and fibrosis. Finally, about two months after the first measurable increases of total collagen, a portion of Tsk2/+ mice produce ANAs, but at a similar level to wild-type littermates. The timeline of disease development in the Tsk2/+ mouse shows that fibrosis is progressive, with elastic fiber alterations and TGF-β1 over-production occurring at least two months before bona fide fibrosis, that is not dependent on ANA production.  相似文献   

14.
The relationship between body temperature and the hunting response (intermittent supply of warm blood to cold exposed extremities) was quantified for nine subjects by immersing one hand in 8°C water while their body was either warm, cool or comfortable. Core and skin temperatures were manipulated by exposing the subjects to different ambient temperatures (30, 22, or 15°C), by adjusting their clothing insulation (moderate, light, or none), and by drinking beverages at different temperatures (43, 37 and 0°C). The middle finger temperature (T fi) response was recorded, together with ear canal (T ear), rectal (T re), and mean skin temperature ( sk). The induced mean T ear changes were −0.34 (0.08) and +0.29 (0.03)°C following consumption of the cold and hot beverage, respectively. sk ranged from 26.7 to 34.5°C during the tests. In the warm environment after a hot drink, the initial finger temperature (T fi,base) was 35.3 (0.4)°C, the minimum finger temperature during immersion (T fi,min) was 11.3 (0.5)°C, and 2.6 (0.4) hunting waves occurred in the 30-min immersion period. In the neutral condition (thermoneutral room and beverage) T fi,base was 32.1 (1.0)°C, T fi,min was 9.6 (0.3)°C, and 1.6 (0.2) waves occurred. In the cold environment after a cold drink, these values were 19.3 (0.9)°C, 8.7 (0.2)°C, and 0.8 (0.2) waves, respectively. A colder body induced a decrease in the magnitude and frequency of the hunting response. The total heat transferred from the hand to the water, as estimated by the area under the middle finger temperature curve, was also dependent upon the induced increase or decrease in T ear and sk. We conclude that the characteristics of the hunting temperature response curve of the finger are in part determined by core temperature and sk. Both T fi,min and the maximal finger temperature during immersion were higher when the core temperature was elevated; sk seemed to be an important determinant of the onset time of the cold-induced vasodilation response. Accepted: 29 April 1997  相似文献   

15.
Antarctic notothenioid fish display specializations related to cope with their chronically cold environment, such as high triacylglycerol (TAG) content in tissues. The metabolic fate of glycerol, a product of TAG mobilization, has not been studied in Antarctic fish. To assess the importance of glycerol as a substrate for gluconeogenesis and to determine whether this pathway is metabolically cold adapted (MCA), key hepatic enzyme activities were measured in Antarctic (Notothenia coriiceps, Gobionotothen gibberifrons, and Chionodraco rastrospinosus) and non-Antarctic (Dissostichus eleginoides, Patagonotothen ramsayi, and Eleginops maclovinus) notothenioid fish. Fructose 1,6-biphosphatase (FBP), phosphoenolpyruvate carboxykinase (PEPCK), and glycerol kinase (GK) activities were similar in both groups at common temperatures (1, 6, 11, or 21 °C). In particular, thermal sensitivity for the reactions catalyzed by FBP and PEPCK was analogous between Antarctic and non-Antarctic species, reflected by similar values for Arrhenius energy of activation (E a) and Q10. Additionally, hepatic glycerol, glucose, and glycogen contents together with plasma glycerol and glucose concentrations were similar for all of the species studied. Our results do not support the concept of MCA in hepatic gluconeogenesis and may indicate that the use of glycerol as a precursor for glucose synthesis by this pathway is of low physiological importance in Antarctic fish.  相似文献   

16.
The dispersal routes of taxa with transoceanic disjunctions remain poorly understood, with the potential roles of Antarctica not yet demonstrated. Mosses are suitable organisms to test direct intra‐Antarctic dispersal, as major component of the extant Antarctic flora, with the cosmopolitan moss Bryum argenteum as ideal target species. We analyzed the genetic structure of B. argenteum to provide an evolutionary time frame for its radiation and shed light into its historical biogeography in the Antarctic region. We tested two alternative scenarios: (a) intra‐Antarctic panmixia and (b) intra‐Antarctic genetic differentiation. Furthermore, we tested for evidence of the existence of specific intra‐Antarctic dispersal routes. Sixty‐seven new samples (40 collected in Antarctica) were sequenced for ITS nrDNA and rps4 cpDNA regions, and phylogenetic trees of B. argenteum were constructed, with a focus on its Southern Hemisphere. Combining our new nrDNA dataset with previously published datasets, we estimated time‐calibrated phylogenies based on two different substitution rates (derived from angiosperms and bryophytes) along with ancestral area estimations. Minimum spanning network and pairwise genetic distances were also calculated. B. argenteum was potentially distributed across Africa and Antarctica soon after its origin. Its earliest intra‐Antarctic dispersal and diversification occurred during a warming period in the Pliocene. On the same timescale, a radiation took place involving a dispersal event from Antarctica to the sub‐Antarctic islands. A more recent event of dispersal and diversification within Antarctica occurred during a warm period in the Pleistocene, creating favorable conditions also for its colonization outside the Antarctic continent worldwide. We provide evidence supporting the hypothesis that contemporary populations of B. argenteum in Antarctica integrate a history of both multiple long‐range dispersal events and local persistence combined with in situ diversification. Our data support the hypothesis that B. argenteum has been characterized by strong connectivity within Antarctica, suggesting the existence of intra‐Antarctic dispersal routes.  相似文献   

17.
This study investigated the physiological function of suppressed melatonin through thermoregulation in a cold environment. Interactions between thermoregulation directly affected by exposure to a cold environment and indirectly affected by endogenous melatonin suppression by bright-light exposure were examined. Ten male subjects were exposed to two different illumination intensities (30 and 5000 lux) for 4.5?h, and two different ambient temperatures (15 and 27°C) for 2?h before sleep under dark and thermoneutral conditions. Salivary melatonin level was suppressed by bright light (p?<?0.001), although the ambient temperature condition had no significant effect on melatonin. During sleep, significant effects of pre-sleep exposure to a cold ambient temperature (p?<?0.001) and bright light (p?<?0.01) on rectal temperature (Tre) were observed. Pre-sleep, bright-light exposure led to an attenuated fall in Tre during sleep. Moreover, Tre dropped more precipitously after cold exposure than thermoneutral conditions (cold: ?0.54?±?0.07°C/h; thermoneutral: ?0.16?±?0.03°C/h; p?<?0.001). Pre-sleep, bright-light exposure delayed the nadir time of Tre under thermoneutral conditions (p?<?0.05), while cold exposure masked the circadian rhythm with a precipitous decrease in Tre. A significant correlation between the Tre nadir and melatonin level (r?=??0.774, p?<?0.05) indicated that inter-individual differences with higher melatonin levels lead to a reduction in Tre after cold exposure. These results suggest that suppressed endogenous melatonin inhibits the downregulation of the body temperature set-point during sleep. (Author correspondence: )  相似文献   

18.
Effects of acute exposure and acclimatisation to cold stress on respiratory functions were investigated in healthy tropical Indian men (n=10). Initial baseline recordings were carried out at Delhi and thereafter serially thrice at the arctic region and once on return to Delhi. For comparison the respiratory functions were also evaluated on Russian migrants (RM;n=7) and Russian natives (RN;n=6). The respiratory functions were evaluated using standard methodology on a Vitalograph: In Indians, there was an initial decrease in lung vital capacity (VC), forced vital capacity (FVC), forced expiratory volume 1st s (FEV1), peak expiratory flow rate (PEFR) and maximum voluntary ventilation (MVV) on acute exposure to cold stress, followed by gradual recovery during acclimatisation for 4 weeks and a further significant improvement after 9 weeks of stay at the arctic region. On return to India all the parameters reached near baseline values except for MVV which remained slightly elevated. RM and RN showed similar respiratory functions at the beginning of acute cold exposure at the arctic zone. RN showed an improvement after 10 weeks of stay whereas RM did not show much change. The respiratory responses during acute cold exposure are similar to those of initial altitude responses.  相似文献   

19.
We have investigated the immunoglobulin molecule and the genes encoding it in teleosts living in the Antarctic seas at the constant temperature of −1.86 °C. The majority of Antarctic teleosts belong to the suborder Notothenioidei (Perciformes), which includes only a few non-Antarctic species. Twenty-one Antarctic and two non-Antarctic Notothenioid species were included in our studies. We sequenced immunoglobulin light chains in two species and μ heavy chains, partially or totally, in twenty species. In the case of heavy chain, genomic DNA and the cDNA encoding the secreted and the membrane form were analyzed. From one species, Trematomus bernacchii, a spleen cDNA library was constructed to evaluate the diversity of VH gene segments. T. bernacchii IgM, purified from the serum and bile, was characterized. Homology Modelling and Molecular Dynamics were used to determine the molecular structure of T. bernacchii and Chionodraco hamatus immunoglobulin domains. This paper sums up the previous results and broadens them with the addition of unpublished data.  相似文献   

20.
Previous work has suggested that men (M) are more sensitive to cold stress than women. There have also been observations that suggest that amenorrheic women (AW) are less thermally responsive than eumenorrheic women (EW). We investigated the hypothesis that M, EW, and AW would have different responses to cold stress. The subjects (6/group) were tested four times: twice at rest for 60 min (5 and 22 degrees C) and twice in a progressive exercise test (5 and 22 degrees C). At rest at 22 degrees C AW had a lower O2 uptake (VO2) than M and lower rectal (Tre) and finger temperatures than EW. At rest at 5 degrees C both AW and EW had lower skin temperature (Tsk) than M, but there were no group differences in peripheral Tsk sites. M increased VO2 after 10 min and EW after 20 min of cold stress; however, AW did not increase metabolism until 60 min. In the two exercise tests Tre increased in proportion to relative work load; in the 5 degrees C test there was little evidence that exercise increased Tsk sites above rest levels. Few of the metabolic or thermal differences could be accounted for by body fatness, body surface area (BSA), or BSA/kg. The data support the hypothesis that M, EW, and AW have different responses to cold stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号