首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reductive evolution in mitochondria and obligate intracellular microbes has led to a significant reduction in their genome size and guanine plus cytosine content (GC). We show that genome shrinkage during reductive evolution in prokaryotes follows an exponential decay pattern and provide a method to predict the extent of this decay on an evolutionary timescale. We validated predictions by comparison with estimated extents of genome reduction known to have occurred in mitochondria and Buchnera aphidicola, through comparative genomics and by drawing on available fossil evidences. The model shows how the mitochondrial ancestor would have quickly shed most of its genome, shortly after its incorporation into the protoeukaryotic cell and prior to codivergence subsequent to the split of eukaryotic lineages. It also predicts that the primary rickettsial parasitic event would have occurred between 180 and 425 million years ago (MYA), an event of relatively recent evolutionary origin considering the fact that Rickettsia and mitochondria evolved from a common alphaproteobacterial ancestor. This suggests that the symbiotic events of Rickettsia and mitochondria originated at different time points. Moreover, our model results predict that the ancestor of Wigglesworthia glossinidia brevipalpis, dated around the time of origin of its symbiotic association with the tsetse fly (50-100 MYA), was likely to have been an endosymbiont itself, thus supporting an earlier proposition that Wigglesworthia, which is currently a maternally inherited primary endosymbiont, evolved from a secondary endosymbiont.  相似文献   

2.
A review on the evolutionary origin of the energy-yielding eukaryotic organelles is presented. Current autogenetic (endogenous compartmentalization) schemes, as well as different variants of symbiogenesis, are critically envisaged. A new symbiogenetic scheme is put forth, according to which mitochondria and chloroplasts originated divergently from a primordial photosynthetic organelle; the latter was acquired by endosymbiosis of ancient cyanobacteria in the cells of protoeukaryotes.  相似文献   

3.
The bacterial origin of eukaryotic mitochondria, specifically in Metazoa, as a mechanism of their basic (aerobic) respiration and the role of symbiotic bacteria during the supply of energy to the metazoan host is proved for the first time from the viewpoint of the monophyletic development of the organic world and the origin of eukaryotes as descendants of prokaryotes. Representatives of the hydrothermal bacteriochemosymbiotrophic bottom fauna of the open sea were used as examples.  相似文献   

4.
M C Shih  G Lazar  H M Goodman 《Cell》1986,47(1):73-80
We report nucleotide sequences of cDNAs for the nuclear genes encoding chloroplast (GapA and GapB) and cytosolic (GapC) glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from N. tabacum. Comparison of nucleotide sequences indicates that the GapA and GapB genes evolved following duplication of an ancestral gene about 450 million years ago. However, the divergence of GapA/B and GapC occurred much earlier in evolution than the divergence of GapC and GAPDH genes of animals and fungi, suggesting that chloroplast and cytosolic GAPDHs evolved from different lineages. Comparison of amino acid sequences shows that the chloroplast GAPDHs are related to GAPDHs found in thermophilic bacteria, while the cytosolic GAPDH is related to the GAPDH found in mesophilic prokaryotes. These results strongly support the symbiotic origin of chloroplasts.  相似文献   

5.
Mitochondria occur as aerobic, facultatively anaerobic, and, in the case of hydrogenosomes, strictly anaerobic forms. This physiological diversity of mitochondrial oxygen requirement is paralleled by that of free-living alpha-proteobacteria, the group of eubacteria from which mitochondria arose, many of which are facultative anaerobes. Although ATP synthesis in mitochondria usually involves the oxidation of reduced carbon compounds, many alpha-proteobacteria and some mitochondria are known to use sulfide (H2S) as an electron donor for the respiratory chain and its associated ATP synthesis. In many eubacteria, the oxidation of sulfide involves the enzyme sulfide:quinone oxidoreductase (SQR). Nuclear-encoded homologs of SQR are found in several eukaryotic genomes. Here we show that eukaryotic SQR genes characterized to date can be traced to a single acquisition from a eubacterial donor in the common ancestor of animals and fungi. Yet, SQR is not a well-conserved protein, and our analyses suggest that the SQR gene has furthermore undergone some lateral transfer among prokaryotes during evolution, leaving the precise eubacterial lineage from which eukaryotes obtained their SQR difficult to discern with phylogenetic methods. Newer geochemical data and microfossil evidence indicate that major phases of early eukaryotic diversification occurred during a period of the Earth's history from 1 to 2 billion years before present in which the subsurface ocean waters contained almost no oxygen but contained high concentrations of sulfide, suggesting that the ability to deal with sulfide was essential for prokaryotes and eukaryotes during that time. Notwithstanding poor resolution in deep SQR phylogeny and lack of a specifically alpha-protebacterial branch for the eukaryotic enzyme on the basis of current lineage sampling, a single eubacterial origin of eukaryotic SQR and the evident need of ancient eukaryotes to deal with sulfide, a process today germane to mitochondrial quinone reduction, are compatible with the view that eukaryotic SQR was an acquisition from the mitochondrial endosymbiont.  相似文献   

6.
Wallin (1927) first published the notion that the fusion of bacteria with host cells was the principal source of genetic novelty for speciation. He suggested that mitochondria are transitional elements in this process. While the significance that he attributed to symbiosis now seem excessive, he was one of the first authors to be aware of the evolutionary potential of symbiotic events and his view of mitochondria may not seem strange to many cell biologist today. The most significant evolutionary development which has been attributed to intracellular symbiosis is the origin of eukaryotic cellular organization. The current status of the 'serial endosymbiosis hypothesis' is briefly review. The case for the symbiotic origin of the chloroplast, based principally on 16 S RNA oligonucleotide cataloguing, is very strong. Mitochondrial origins are more obscure but also appear to be symbiotic due to recent 18 S cataloguing from wheat embryos. The probablility of the multiple origin of some eukaryotic organelles is also examined, the processes in question being the acquisition of distinct stocks of chloroplasts from disparate photosynthetic prokaryotes and the secondary donation of organelles from degenerate eukaryotic endosymbionts to their hosts, with specific reference to the dinoflagellates Peridinium balticum, Kryptoperidinium foliaceum and the ciliate Mesodinium rubrum. It is concluded that the evolutionary potential of intracellular symbiosis ('cytobiosis': a term introduced in this paper) is great, with the best established influence being on the origin of eukaryotic chloroplasts. Together with the potential effects of viral vectors, symbiosis serves as a supplementary speciation mechanism capable of producing directed evolutionary changes. It is likely that these processes will explain some of the apparent anomalies in evolutionary rates and direction which are not readily explicable by the conventional synthetic theory of evolution.  相似文献   

7.
Primitive atmosphere of the earth did not contain oxygen gas (O2) when the proto-cells were generated successfully as the resut of chemical evolution and then evolved. Therefore, they first had acquired anaerobic energy metabolism, fermentation. The cellular metabolisms have often been formed by reorganizing to combine or recombinate between pre-existing metabolisms and newly born bioreactions. Photosynthetic metabolism in eukaryotic chloroplast consists of an electron-transfer photosystem and a fermentative reductive pentose phosphate cycle. On the other hand, O2-respiration of eukaryotic mitochondrion is made of Embden-Meyerhof (EM) pathway and tricarboxylic acid cycle, which originate from a connection of fermentative metabolisms, and an electron-transfer respiratory chain, which has been derived from the photosystem. These metabolisms already are completed in some evolved prokaryotes, for example the cyanobacteriumChlorogloea fritschii and aerobic photosynthetic bacteriaRhodospirillum rubrum andErythrobacter sp. Therefore, it can be reasonably presumed that the eukaryotic chloroplast and mitochondrion have once been formed as the result of metabolic (and genetic) differentiations in most evolved cyanobacterium. Symbiotic theory has explained the origin of eukaryotic cell as that in which the mitochondrion and chloroplast have been derived from endosymbionts of aerobic bacterium and cyanobacterium, respectively, and has mentioned as one of the most potent supportive evidences that amino acid sequences of the photosynthetic and O2 -respiratory enzymes show similarities to corresponding prokaryotic enzymes. However, as will be shown in this discussion, many examples have shown currently that prokaryotic sequences of informative molecules are conserved well not only in those of the mitochondrial and chloroplast molecules but also in the nuclear molecules. In fact, the similarities in sequence of informative molecules are preserved well among the organisms not only in phylogenetically close relationships but also under highly selective pressure, that is under a physiological constraint for the species in their habitats. Therefore, the similarities in amino acid sequences of proteins between the prokaryotes and the organelles are not necessarily direct evidence for their phylogenetical closeness: it gives still less evidence for a symbiotic relationship between the prokaryotes and the organelles. The metabolic compartmentalization of the membranes is an important tendency in cellular evolution to guarantee high specificity and rate of the metabolisms. It is suggested from the data that the intracellular membranes are not static but undergo dynamic turnover. Furthermore, these facts strongly support the Membrane Evolution Theory which was proposed by one of the authors in 1975.  相似文献   

8.
从超氧化物歧化酶的分布和结构看其分子进化   总被引:51,自引:0,他引:51  
超氧化物歧化酶(SOD)是一种催化超氧化物阴离子自由基发生歧化反应, 生成氧和过氧化氢的金属酶. 按其结合的金属离子, 区分为Fe-SOD, Mn-SOD和CuZn-SOD三种. Fe-SOD主要存在于原核细胞中;Mn-SOD在原核和真核细胞中都存在;CuZn-SOD主要存在于真核细胞中. Fe, Mn-SOD的一级结构, 空间结构及其性质很相似, 来自一个共同的祖先; CuZn-SOD的结构与前两者相差较大, 是在以后的发展中单独进化的.  相似文献   

9.
Searcy DG 《Cell research》2003,13(4):229-238
Although mitochondria provide eukaryotic cells with certain metabolic advantages, in other ways they may be disadvantageous. For example, mitochondria produce reactive oxygen species that damage both nucleocytoplasm and mitochondria, resulting in mutations, diseases, and aging. The relationship of mito-chondria to the cytoplasm is best understood in the context of evolutionary history. Although it is clearthat mitochondria evolved from symbiotic bacteria, the exact nature of the initial symbiosis is a matter of continuing debate. The exchange of nutrients between host and symbiont may have differed from that be-tween the cytoplasm and mitochondria in modern cells. Speculations about the initial relationships includethe following. (1) The pre-mitochondrion may have been an invasive, parasitic bacterium. The host did notbenefit. (2) The relationship was a nutritional syntrophy based upon transfer of organic acids from host tosymbiont. (3) The relationship was a syntrophy based upon H2 transfer from symbiont to host, where thehost was a methanogen. (4) There was a syntrophy based upon reciprocal exchange of sulfur compounds.The last conjecture receives support from our detection in eukaryotic cells of substantial H2S-oxidizing activity in mitochondria, and sulfur-reducing activity in the cytoplasm.  相似文献   

10.
A theory of the origin of eukaryotic cells ("higher" cells which divide by classical mitosis) is presented. By hypothesis, three fundamental organelles: the mitochondria, the photosynthetic plastids and the (9+2) basal bodies of flagella were themselves once free-living (prokaryotic) cells. The evolution of photosynthesis under the anaerobic conditions of the early atmosphere to form anaerobic bacteria, photosynthetic bacteria and eventually blue-green algae (and protoplastids) is described. The subsequent evolution of aerobic metabolism in prokaryotes to form aerobic bacteria (protoflagella and protomitochondria) presumably occurred during the transition to the oxidizing atmosphere. Classical mitosis evolved in protozoan-type cells millions of years after the evolution of photosynthesis. A plausible scheme for the origin of classical mitosis in primitive amoeboflagellates is presented. During the course of the evolution of mitosis, photosynthetic plastids (themselves derived from prokaryotes) were symbiotically acquired by some of these protozoans to form the eukaryotic algae and the green plants. The cytological, biochemical and paleontological evidence for this theory is presented, along with suggestions for further possible experimental verification. The implications of this scheme for the systematics of the lower organisms is discussed.  相似文献   

11.
Sacchi L 《Parassitologia》2004,46(1-2):19-24
This paper reviews the Author's contribution to the knowledge of the ultrastructural basis of the prokaryote-eukaryote interactions in different models assessed by an ultrastructural approach. In agreement with the hypothesis of the origin of eukaryotic cells, which are chimeras of several prokaryotes with different morpho-functional specializations, symbiosis had major consequence for evolution of life. In Arthropods, one of the most successful lifestyles, the presence of endosymbiotic prokaryotes, plays an important role in their metabolism. In some cases, genome integration has occurred in the endosymbiotic relationships with the host, proving that intracellular symbiosis is not merely a nutritional supplement. Intracellular symbiotic bacteria are also described in nematodes. In particular, the presence of intracellular Wolbachia in filariae, even if its function is not yet completely known, influences positively the reproductive biology and the survival of the host, as proved by antibiotic treatment against this bacterium. The ultrastructural images reported in this review were obtained using different species of cockroaches, termites, ticks and filarial nematodes. The traditional methods of transmission (TEM), scansion (SEM) and immuno electron microscopy were used. In addition, also freeze-fracture and deep-etching techniques were employed. The cockroaches and the primitive termite Mastotermes darwiniensis host symbiotic bacteria in the ovary and in specialized cells (bacteriocytes) of the fat body. These bacteria have the typical cell boundary profile of gram-negative bacteria and are enveloped in a vacuolar membrane produced by the host cell. Molecular sequence data of 16S rDNA of endosymbionts of five species of cockroaches and M. darwiniensis indicate that they are members of the Flavobacteria-bacteroides group and that the infection occurred in an ancestor common to cockroaches and termites probably after the end of the Paleozoic (250 Ma BP). The symbiotic bacteria are transmitted transovarially and, during embryogenesis, they are integrated into the morphogenetic processes. In particular, we were able to demonstrate that the origin of the bacteriocyte should be looked for in the cells of the haemocyte line (embryonic plasmatocytes). The eggs are infected by the bacteria emerging from the bacteriocytes of the ovaric fat body and, at the end of the vitellogenesis, they are actively phagocytized by the egg membrane. In filarial nematodes, intracellular bacteria belonging to the genus Wolbachia have been described: they have evolved an obligatory mutualistic association with their host. In fact, antibiotic treatments lead to the clearance of bacteria and this loss produces a negative impact on reproduction and survival of the filarial host. We evidenced, by TEM, the degenerative events occurring during the embriogenesis of Brugia pahangi and Dirofilaria immitis after tetracycline treatment. The data suggest that the Wolbachia play a direct role in worm metabolism. Finally, a new additional model of the prokaryote-eukaryote interaction has been described: we have recently discovered a new intracellular alpha-proteobacterium, named Iric ES1, which resides in the ovarian tissues of the tick Ixodes ricinus. The intriguing characteristic of this bacterium is its ability to invade and consume the ovaric mitochondria. From an evolutionary perspective, it is interesting to note that Iric ES1 enters mitochondria in a similar way to that employed by the "predatory" bacterium Bdellovibrio bacteriovorus.  相似文献   

12.
L N Seravin 《Tsitologiia》1986,28(7):659-669
The exogenous (symbiotic) conception of the eukaryotic cell origin is unable to explain satisfactory the structure of mitochondria and chloroplasts. Either of these organelles possess its genome that can be compared with the viral one rather than with the bacterial one, judging by the dimensions and quantity of coding genes. The mitochondria resemble a little prokaryotes in the number of their proteins, chemical composition of their inner membrane and peculiarities of the protein-synthesizing apparatus. The primitive structure of mt DNA, the lesser quantity and greater unspecifity of the mitochondrial tRNA prove, additionally, the non-bacterial origin of this organelles. The deflexion of the genetic code from the universal one in the mitochondrial nucleoids also testify in favour of this point of view. The results of micropaleontological and paleobiochemical investigations evidence towards initial ability of the primary eukaryotes (primary protists) to photosynthesis. In this case, they did not need to acquire plastids from outside by symbiotic way. The autogenous origin of the flagellum of the primary protists was reported earlier (Seravin, 1985). The accumulated data permit us to consider that the cell organelles formed endogenously in the process of evolution of the cell.  相似文献   

13.
Cells are of only two kinds: bacteria, with DNA segregated by surface membrane motors, dating back approximately 3.5Gy; and eukaryotes, which evolved from bacteria, possibly as recently as 800-850My ago. The last common ancestor of eukaryotes was a sexual phagotrophic protozoan with mitochondria, one or two centrioles and cilia. Conversion of bacteria (=prokaryotes) into a eukaryote involved approximately 60 major innovations. Numerous contradictory ideas about eukaryogenesis fail to explain fundamental features of eukaryotic cell biology or conflict with phylogeny. Data are best explained by the intracellular coevolutionary theory, with three basic tenets: (1) the eukaryotic cytoskeleton and endomembrane system originated through cooperatively enabling the evolution of phagotrophy; (2) phagocytosis internalised DNA-membrane attachments, unavoidably disrupting bacterial division; recovery entailed the evolution of the nucleus and mitotic cycle; (3) the symbiogenetic origin of mitochondria immediately followed the perfection of phagotrophy and intracellular digestion, contributing greater energy efficiency and group II introns as precursors of spliceosomal introns. Eukaryotes plus their archaebacterial sisters form the clade neomura, which evolved from a radically modified derivative of an actinobacterial posibacterium that had replaced the ancestral eubacterial murein peptidoglycan by N-linked glycoproteins, radically modified its DNA-handling enzymes, and evolved cotranslational protein secretion, but not the isoprenoid-ether lipids of archaebacteria. I focus on this phylogenetic background and on explaining how in response to novel phagotrophic selective pressures and ensuing genome internalisation this prekaryote evolved efficient digestion of prey proteins by retrotranslocation and 26S proteasomes, then internal digestion by phagocytosis, lysosomes, and peroxisomes, and eukaryotic vesicle trafficking and intracellular compartmentation.  相似文献   

14.
Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryotic groups and the roughly six new eukaryotic supergroups that are currently at the focus of much attention. From the standpoint of energy metabolism (the biochemical means through which eukaryotes gain their ATP, thereby enabling any and all evolution of other traits), understanding of mitochondria among eukaryotic anaerobes has improved. The mainstream formulations of endosymbiotic theory did not predict the ubiquity of mitochondria among anaerobic eukaryotes, while an alternative hypothesis that specifically addressed the evolutionary origin of energy metabolism among eukaryotic anaerobes did. Those developments in biology have been paralleled by a similar upheaval in the Earth sciences regarding views about the prevalence of oxygen in the oceans during the Proterozoic (the time from ca 2.5 to 0.6 Ga ago). The new model of Proterozoic ocean chemistry indicates that the oceans were anoxic and sulphidic during most of the Proterozoic. Its proponents suggest the underlying geochemical mechanism to entail the weathering of continental sulphides by atmospheric oxygen to sulphate, which was carried into the oceans as sulphate, fueling marine sulphate reducers (anaerobic, hydrogen sulphide-producing prokaryotes) on a global scale. Taken together, these two mutually compatible developments in biology and geology underscore the evolutionary significance of oxygen-independent ATP-generating pathways in mitochondria, including those of various metazoan groups, as a watermark of the environments within which eukaryotes arose and diversified into their major lineages.  相似文献   

15.
We have determined the nucleotide sequences of thirteen rat mt tRNA genes. The features of the primary and secondary structures of these tRNAs show that those for Gln, Ser, and f-Met resemble, while those for Lys, Cys, and Trp depart strikingly from the universal type. The remainder are slightly abnormal. Among many mammalian mt DNA sequences, those of mt tRNA genes are highly conserved, thus suggesting for those genes an additional, perhaps regulatory, function. A simple evolutionary relationship between the tRNAs of animal mitochondria and those of eukaryotic cytoplasm, of lower eukaryotic mitochondria or of prokaryotes, is not evident owing to the extreme divergence of the tRNA sequences in the two groups. However, a slightly higher homology does exist between a few animal mt tRNAs and those from prokaryotes or from lower eukaryotic mitochondria.  相似文献   

16.
Two deep-sea hydrothermal vent organisms, the tube worm Riftia pachyptila and the clam Calyptogena magnifica, contain superoxide dismutase, dianisidine peroxidase, and glutathione peroxidase. The tube worm trophosome exhibits an iron-containing superoxide dismutase, ordinarily associated with prokaryotes and not previously seen in an animal tissue, in accord with the presence of symbiotic bacteria in this tissue. The enzymes which provide a defense against oxygen toxicity are thus present in these animals.  相似文献   

17.
Phylogenetic data support an origin of mitochondria from the alpha-proteobacterial order Rickettsiales. This high-rank taxon comprises exceptionally obligate intracellular endosymbionts of eukaryotic cells, and includes family Rickettsiaceae and a group of microorganisms termed Rickettsia-like endosymbionts (RLEs). Most detailed phylogenetic analyses of small subunit rRNA and chaperonin 60 sequences consistently show the RLEs to have emerged before Rickettsiaceae and mitochondria sister clades. These data suggest that the origin of mitochondria and Rickettsiae has been preceded by the long-term mutualistic relationship of an intracellular bacterium with a pro-eukaryote, in which an invader has lost many dispensable genes, yet evolved carrier proteins to exchange respiration-derived ATP for host metabolites as envisaged in classic endosymbiont theory.  相似文献   

18.
The maximum degree of hierarchical structure of organisms hasrisen over the history of life, notably in three transitions:the origin of the eukaryotic cell from symbiotic associationsof prokaryotes; the emergence of the first multicellular individualsfrom clones of eukaryotic cells; and the origin of the firstindividuated colonies from associations of multicellular organisms.The trend is obvious in the fossil record, but documenting itusing a high-resolution hierarchy scale reveals three puzzles:1) the rate of origin of new levels accelerates, at least untilthe early Phanerozoic; 2) after that, the trend may slow oreven stop; and 3) levels may sometimes arise out of order. Thethree puzzles and their implications are discussed; a possibleexplanation is offered for the first.  相似文献   

19.
20.
The amino acid sequences of 47 P-type ATPases from several eukaryotic and bacterial kingdoms were divided into three structural segments based on individual hydropathy profiles. Each homologous segment was (1) multiply aligned and functionally evaluated, (2) statistically analyzed to determine the degrees of sequence similarity, and (3) used for the construction of parsimonious phylogenetic trees. The results show that all of the P-type ATPases analyzed comprise a single family with four major clusters correlating with their cation specificities and biological sources as follows: cluster 1: Ca2+-transporting ATPases; cluster 2: Na+- and gastric H+-ATPases; cluster 3: plasma membrane H+-translocating ATPases of plants, fungi, and lower eukaryotes; and cluster 4: all but one of the bacterial P-type ATPases (specific for K+, Cd2+, Cu2+ and an unknown cation). The one bacterial exception to this general pattern was the Mg2+-ATPase of Salmonella typhimurium, which clustered with the eukaryotic sequences. Although exceptions were noted, the similarities of the phylogenetic trees derived from the three segments analyzed led to the probability that the N-terminal segments 1 and the centrally localized segments 2 evolved from a single primordial ATPase which existed prior to the divergence of eukaryotes from prokaryotes. By contrast, the C-terminal segments 3 appear to be eukaryotic specific, are not found in similar form in any of the prokaryotic enzymes, and are not all demonstrably homologous among the eukaryotic enzymes. These C-terminal domains may therefore have either arisen after the divergence of eukaryotes from prokaryotes or exhibited more rapid sequence divergence than either segment 1 or 2, thus masking their common origin. The relative rates of evolutionary divergence for the three segments were determined to be segment 2 < segment 1 < segment 3. Correlative functional analyses of the most conserved regions of these ATPases, based on published site-specific mutagenesis data, provided preliminary evidence for their functional roles in the transport mechanism. Our studies define the structural and evolutionary relationships among the P-type ATPases. They should provide a guide for the design of future studies of structure-function relationships employing molecular genetic, biochemical, and biophysical techniques. Correspondence to: M.H. Saier, Jr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号