首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schüler W  Kloiber K  Matt T  Bister K  Konrat R 《Biochemistry》2001,40(32):9596-9604
The solution structure of quail CRP2(LIM2) was significantly improved by using an increased number of NOE constraints obtained from a 13C,15N-labeled protein sample and by applying a recently developed triple-resonance cross-correlated relaxation experiment for the determination of the backbone dihedral angle psi. Additionally, the relative orientation of the 15N(i)-1HN(i) dipole and the 13CO(i) CSA tensor, which is related to both backbone angles phi and psi, was probed by nitrogen-carbonyl multiple-quantum relaxation and used as an additional constraint for the refinement of the local geometry of the metal-coordination sites in CRP2(LIM2). The backbone dynamics of residues located in the folded part of CRP2(LIM2) have been characterized by proton-detected 13C'(i-1)-15N(i) and 15N(i)-1HN(i) multiple-quantum relaxation, respectively. We show that regions having cross-correlated time modulation of backbone isotropic chemical shifts on the millisecond to microsecond time scale correlate with residues that are structurally altered in the mutant protein CRP2(LIM2)R122A (disruption of the CCHC zinc-finger stabilizing side-chain hydrogen bond) and that these residues are part of an extended hydrogen-bonding network connecting the two zinc-binding sites. This indicates the presence of long-range collective motions in the two zinc-binding subdomains. The conformational plasticity of the LIM domain may be of functional relevance for this important protein recognition motif.  相似文献   

2.
An experiment is presented which allows for the quantitative measurement of the relaxation interference between the 1HN CSA and 15N CSA interactions in 15N labeled proteins. A constant-time buildup scheme is used to measure the differential relaxation rate, , between double-quantum (DQ) and zero-quantum (ZQ) 1HN-15N coherences. The CSA/CSA experiment was recorded at three different Bo field strengths. The CSA(1HN)/CSA(15N) cross-correlation rate was obtained from the linear fit of the measured rate, , versus Bo 2 for 77 residues of the EH2 domain from mouse Eps15.  相似文献   

3.
A new strategy of backbone resonance assignment is proposed based on a combination of the most sensitive TROSY-type triple resonance experiments such as TROSY-HNCA and TROSY-HNCO with a new 3D multiple-quantum HACACO experiment. The favourable relaxation properties of the multiple-quantum coherences and signal detection using the 13C antiphase coherences optimize the performance of the proposed experiment for application to larger proteins. In addition to the 1HN, 15N,13C and 13C chemical shifts the 3D multiple-quantum HACACO experiment provides assignment for the 1H resonances in constrast to previously proposed experiments for large proteins. The strategy is demonstrated with the 44 kDa uniformly 15N,13C-labeled and fractionally 35% deuterated trimeric B. subtilis Chorismate Mutase measured at 20°C and 9°C. Measurements at the lower temperature indicate that the new strategy can be applied to even larger proteins with molecular weights up to 80 kDa.  相似文献   

4.
A new method for backbone resonance assignment suitable for large proteins with the natural 1H isotope content is proposed based on a combination of the most sensitive TROSY-type triple-resonance experiments. These techniques include TROSY-HNCO, 13C-detected 3D multiple-quantum HACACO and the newly developed 3D TROSY multiple-quantum-HN(CA)HA and 4D TROSY multiple-quantum-HACANH experiments. The favorable relaxation properties of the multiple-quantum coherences, signal detection using the 13C antiphase coherences, and the use of TROSY optimize the performance of the proposed set of experiments for application to large protonated proteins. The method is demonstrated with the 44 kDa uniformly 15N,13C-labeled and fractionally (35%) deuterated trimeric B. Subtilis Chorismate Mutase and is suitable for proteins with large correlation times but a relatively small number of residues, such as membrane proteins embedded in micelles or oligomeric proteins.  相似文献   

5.
Summary Sequence-specific 1H and 15N resonance assignments have been made for 137 of the 146 nonprolyl residues in oxidized Desulfovibrio desulfuricans [Essex 6] flavodoxin. Assignments were obtained by a concerted analysis of the heteronuclear three-dimensional 1H-15N NOESY-HMQC and TOCSY-HMQC data sets, recorded on uniformly 15N-enriched protein at 300 K. Numerous side-chain resonances have been partially or fully assigned. Residues with overlapping 1HN chemical shifts were resolved by a three-dimensional 1H-15N HMQC-NOESY-HMQC spectrum. Medium-and long-range NOEs, 3JNH coupling constants, and 1HN exchange data indicate a secondary structure consisting of five parallel -strands and four -helices with a topology similar to that of Desulfovibrio vulgaris [Hidenborough] flavodoxin. Prolines at positions 106 and 134, which are not conserved in D. vulgaris flavodoxin, contort the two C-terminal -helices.Abbreviations CSI chemical shift index - DQF-COSY double-quantum-filtered correlation spectroscopy - DIPSI decoupling in the presence of scalar interactions - FMN flavin mononucleotide - GARP globally optimized alternating phase rectangular pulse - HMQC heteronuclear multiple-quantum coherence - HSQC heteronuclear single-quantum coherence - NOE nuclear Overhauser effect - NOESY nuclear Overhauser enhancement spectroscopy - TOCSY total correlation spectroscopy - TPPI time-proportional phase increments - TSP 3-(trimethylsilyl)propionic-2,2,3,3-d 4 acid, sodium salt  相似文献   

6.
Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743–1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent spin-systems as long as their transverse magnetization components relax with substantially different rates. The rate of this build-up is a reporter of the methyl-bearing side-chain mobility. Although the build-up of multiple-quantum 1H coherences is monitored in these experiments, the decay of the methyl signal during relaxation delays occurs when methyl proton magnetization is in a single-quantum state. We describe a relaxation violated coherence transfer approach where the relaxation of multiple-quantum 1H–13C methyl coherences during the relaxation delay period is quantified. The NMR experiment and the associated fitting procedure that models the time-dependence of the signal build-up, are applicable to the characterization of side-chain order in [13CH3]-methyl-labeled, highly deuterated protein systems up to ~100 kDa in molecular weight. The feasibility of extracting reliable measures of side-chain order is experimentally verified on methyl-protonated, perdeuterated samples of an 8.5-kDa ubiquitin at 10°C and an 82-kDa Malate Synthase G at 37°C.  相似文献   

7.
Dynamics and structure of (1–36)bacteriorhodopsin solubilized in chloroform/methanol mixture (1:1) were investigated by 1H-15N NMR spectroscopy under a hydrostatic pressure of 2000 bar. It was shown that the peptide retains its spatial structure at high pressure. 15N transverse and longitudinal relaxation times, 15N{1H} nuclear Overhauser effects, chemical shifts and the translation diffusion rate of the peptide at 2000 bar were compared with the respective data at ambient pressure [Orekhov et al. (1999) J. Biomol. NMR, 14, 345–356]. The model free analysis of the relaxation data for the helical 9–31 fragment revealed that the high pressure decreases the overall rotation and translation diffusion, as well as apparent order parameters of fast picosecond internal motions (S2 f) but has no effect on internal nanosecond motions (S2 s and s) of the peptide. The decrease of translation and overall rotation diffusion was attributed to the increase in solvent viscosity and the decrease of apparent order parameters S2 f to a compression of hydrogen bonds. It is suggested that this compression causes an elongation of H-N bonds and a decrease of absolute values of chemical shift anisotropy (CSA). In particular, the observed decrease of S2 f at 2000 bar can be explained by 0.001 nm increase of N-H bond lengths and 10 ppm decrease of 15N CSA values.  相似文献   

8.
The presence of dipole-dipole cross-correlated relaxation as well as unresolved E.COSY effects adversely impacts the accuracy of 1 J NH splittings measured from gradient-enhanced IPAP-HSQC spectra. For isotropic samples, the size of the systematic errors caused by these effects depends on the values of 2 J NHα , 3 J NHβ and 3 J HNHα . Insertion of band-selective 1H decoupling pulses in the IPAP-HSQC experiment eliminates these systematic errors and for the protein GB3 yields 1 J NH splittings that agree to within a root-mean-square difference of 0.04 Hz with values measured for perdeuterated GB3. Accuracy of the method is also highlighted by a good fit to the GB3 structure of the 1H-15N RDCs extracted from the minute differences in 1JNH splitting measured at 500 and 750 MHz 1H frequencies, resulting from magnetic susceptibility anisotropy. A nearly complete set of 2 J NHα couplings was measured in GB3 in order to evaluate whether the impact of cross-correlated relaxation is dominated by the 15N–1H α or 15N–1H β dipolar interaction. As expected, we find that 2 J NHα  ≤ 2 Hz, with values in the α-helix (0.86 ± 0.52 Hz) slightly larger than in β-sheet (0.66 ± 0.26 Hz). Results indicate that under isotropic conditions, N–HN/N–H β cross-correlated relaxation often dominates. Unresolved E.COSY effects under isotropic conditions involve 3 J HNHα and J NHα , but when weakly aligned any aliphatic proton proximate to both N and HN can contribute. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The TROSY principle has been introduced into a HNCA experiment, which is designed for measurements of the intraresidual and sequential H-C/HN-N dipole/dipole and H-C/N dipole/CSA cross-correlated relaxation rates. In addition, the new experiment provides values of the 3,4 J H HN coupling constants measured in an E.COSY manner. The conformational restraints for the and angles are obtained through the use of the cross-correlated relaxation rates together with the Karplus-type dependencies of the coupling constants. Improved signal-to-noise is achieved through preservation of all coherence transfer pathways and application of the TROSY principle. The application of the [15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E.COSY experiment to the 16 kDa apo-form of the E. coli Heme Chaperon protein CcmE is described. Overall good agreement is achieved between and angles measured with the new experiment and the average values determined from an ensemble of 20 NMR conformers.  相似文献   

10.
Replacement of non-exchangeable protons by deuterons has become a standard tool in structural studies of proteins on the order of 30–40 kDa to overcome problems arising from rapid 1H and 13C transverse relaxation. However, 1H nuclei are required at exchangeable sites to maintain the benefits of proton detection. Protein expression in D2O-based media containing deuterated carbon sources yields protein deuterated in all positions. Subsequent D/H-exchange is commonly used to reintroduce protons in labile positions. Since this strategy may fail for large proteins with strongly inhibited exchange we propose to express the protein in fully deuterated algal lysate medium in 100% H2O. As a side-effect partial C protonation occurs in a residue-type dependent manner. Samples obtained by this protocol are suitable for complementary 1HN- and 1H-based triple resonance experiments allowing complete backbone resonance assignments in cases where back-exchange of amide protons is very slow after expression in D2O and refolding of chemically denatured protein is not feasible. This approach is explored using a 35-kDa protein as a test case. The degree of C protonation of individual amino acids is determined quantitatively and transverse relaxation properties of 1HN and 15N nuclei of the partially deuterated protein are investigated and compared to the fully protonated and perdeuterated species. Based on the deviations of assigned chemical shifts from random coil values its solution secondary structure can be established.  相似文献   

11.
A novel triple-resonance NMR method is presented for the measurement of the protein backbone dihedral angle based on differential multiple-quantum relaxation induced by relaxation interference between 1H(i)-13C(i) dipolar and 13C(i–1) (carbonyl) chemical shift anisotropy mechanisms. The method employs a simultaneous transfer of 15N magnetization to the inter- and intra-residue 13C carbons as well as the directly attached carbonyl carbon 13C. Results obtained on 13C,15N-labeled ubiquitin demonstrate the potential of the method.  相似文献   

12.
Summary The 15N relaxation rates of the -aminoisobutyric acid (Aib)-rich peptide alamethicin dissolved in methanol at 27°C and 5°C, and dissolved in aqueous sodium dodecylsulfate (SDS) at 27°C, were measured using inverse-detected one-and two-dimensional 1H–15N NMR spectroscopy. Measurements of 15N longitudinal (RN(Nz)) and transverse (RN(Nx,y)) relaxation rates and the {1H} 15N nuclear Overhauser enhancement (NOE) at 11.7 Tesla were used to calculate (quasi-) spectral density values at 0, 50, and 450 MHz for the peptide in methanol and in SDS. Spectral density mapping at 0, 50, 450, 500, and 550 MHz was done using additional measurements of the 1H–15N lingitudinal two-spin order, RNH(2H infZ supN NZ), two-spin antiphase coherence, RNH(2H infN supZ Nx,y), and the proton longitudinal relaxation rate, RH(H infN supZ ), for the peptide dissolved in methanol only. The spectral density of motions was also modeled using the three-parameter Lipari-Szabo function. The overall rotational correlation times were determined to be 1.1, 2.5, and 5.7 ns for alamethicin in methanol at 27°C and 5°C, and in SDS at 27°C, respectively. From the rotational correlation time determined in SDS the number of detergent molecules associated with the peptide was estimated to be about 40. The average order parameter was about 0.7 and the internal correlation times were about 70 ps for the majority of backbone amide 15N sites of alamethicin in methanol and in SDS. The relaxation data, spectral densities, and order parameters suggest that the peptide N-H vectors of alamethicin are not as highly constrained as the core regions of folded globular proteins. However, the peptide backbone is clearly not as mobile as the most unconstrained regions of folded proteins, such as those found in the frayed C-and N-termini of some proteins, or in randomcoil peptides. The data also suggest significant mobility at both ends of the peptide dissolved in methanol. In SDS the mobility in the middle and at the ends of the peptide is reduced. The implications of the results with respect to the sterically hindered Aib residues and the biological activities of the peptide are discussed.To whom correspondence should be addressed.  相似文献   

13.
A new experiment allows the identification of residues that feature slow conformational exchange in macromolecules. Rotations about dihedral angles that are slower than the global correlation time tau(c) cause a modulation of the isotropic chemical shifts of the nuclei. If these fluctuations are correlated they induce a differential line broadening between three-spin single-quantum and triple-quantum coherences involving three nuclei such as the carbonyl C', the neighbouring amide nitrogen N and the amide proton H(N) belonging to a pair of consecutive amino acids. A cross-correlated relaxation rate R (CS/CS)(C'N) can be determined that corresponds to the sum of the isotropic and anisotropic contributions to the chemical shift modulations of the carbonyl carbon and nitrogen nuclei. Only the isotropic contributions depend on the pulse repetition rate of a multiple-refocusing sequence. An attenuation of the relaxation rate with increasing pulse repetition rate can therefore be attributed to slow motions. The asparagine N25 residue of ubiquitin, located in the first alpha-helix, is shown to feature significant slow conformational exchange.  相似文献   

14.
We investigated correlated µs-ms time scale motions of neighboring 13C′–15N and 13Cα13Cβ nuclei in both protonated and perdeuterated samples of GB3. The techniques employed, NMR relaxation due to cross-correlated chemical shift modulations, specifically target concerted changes in the isotropic chemical shifts of the two nuclei associated with spatial fluctuations. Field-dependence of the relaxation rates permits identification of the parameters defining the chemical exchange rate constant under the assumption of a two-site exchange. The time scale of motions falls into the intermediate to fast regime (with respect to the chemical shift time scale, 100–400 s?1 range) for the 13C′–15N pairs and into the slow to intermediate regime for the 13Cα13Cβ pairs (about 150 s?1). Comparison of the results obtained for protonated and deuterated GB3 suggests that deuteration has a tendency to reduce these slow scale correlated motions, especially for the 13Cα13Cβ pairs.  相似文献   

15.
Three new tetranuclear nickel(II) complexes of general formula [Ni4(L)2(N3)2(CH3COO)2(CH3O)2]2·xCH3OH·yH2O (HL = HL1, HL2 and HL3; x = 0, y = 1 for 1; x = 2, y = 0 for 2 and x = 2, y = 4 for 3) were synthesized and characterized by single crystal X-ray diffraction and magnetic measurements. Single crystal X-ray studies reveal that all three complexes exhibit similar tetranuclear face-shared defective double-cubane structure, having azido-, alk/phenoxido- and acetato-bridges. Magnetic susceptibility measurements on the complexes in the range of 300-2 K indicate ferromagnetic coupling between the metal ions. The slightly different magnetic behaviors observed are probably caused by subtle structural differences between the respective [Ni4O4N2] cores induced by ligand variation.  相似文献   

16.
A fuzzy expert system was developed to allow the effective use of semi-quantitative or imprecise information in the determination of the optimal operating conditions of a fermentation process. The system incorporated fuzzy relations representing both the trends of experimental data and semi-quantitative information obtained from the literature. The inference method used consisted primarily of search and reasoning based on fuzzy set theory. The resulting expert system incorporated a generalized inference engine designed to deal with various types of fermentation processes, it only being necessary to alter the knowledge database in order to adapt the system to process modifications. The construction of the knowledge database from experimental data or semi-quantitative information was designed to be carried out semi-automatically using a graphic computer tool.The expert system was applied to the optimization of glutamic acid production by fermentation. The optimal conditions predicted by the expert system were found experimentally to give maximum production.List of Symbols A, B names of objects - A i , B i linguistic level of A and B, respectively - E1, E2 ordinary sets - I depth of search for inference - I M maximum of I - M, X, Y names of sets - R 1, R 2 fuzzy relations - Ptotal g amount of glutamic acid production - Pen+ h penicillin addition time - Svp1 h–1 specific rate of glutamic acid production in 1st production phase - Svp2 h–1 specific rate of glutamic acid production in 2nd production phase - T growth h growth period - T lag h lag time - T plag h lag time of production defined in Fig. 6 - T p1 h period of 1st production - T p2 h period of 2nd production - T total h total production time - X p g average cell mass of production phase - x, y, z real numbers - max(x, y) or x y maximum of x and y - min(x, y) or x y minimum of x and y  相似文献   

17.
A neural network which can determine both amino acid class andsecondary structure using NMR data from 15N-labeled proteinsis described. We have included nitrogen chemical shifts,3JHNH coupling constants, -protonchemical shifts, and side-chain proton chemical shifts as input to athree-layer feed-forward network. The network was trained with 456 spinsystems from several proteins containing various types of secondarystructure, and tested on human ubiquitin, which has no sequence homologywith any of the proteins in the training set. A very limited set of data,representative of those from a TOCSY-HSQC and HNHA experiment, was used.Nevertheless, in 60% of the spin systems the correct amino acid classwas among the top two choices given by the network, while in 96% ofthe spin systems the secondary structure was correctly identified. Theperformance of this network clearly shows the potential of the neuralnetwork algorithm in the automation of NMR spectral analysis.  相似文献   

18.
Based on the HSQC scheme, we have designed a 2D heterocorrelated experiment which combines constant time (CT) 13C and variable time (VT) 15N chemical shift labelling. Although applicable to all carbons, this mode is particularly suitable for simultaneous recording of methyl-carbon and nitrogen chemical shifts at high digital resolution. The methyl carbon magnetisation is in the transverse plane during the whole CT period (1/JCC=28.6 ms). The magnetisation originating from NH protons is initially stored in the 2HzNz state, then prior to the VT chemical shift labelling period is converted into 2HzNy coherence. The VT -15N mode eliminates the effect of 1 J N,CO and 1,2 J N,CA coupling constants without the need for band-selective carbon pulses. An optional editing procedure is incorporated which eliminates signals from CH2 groups, thus removing any potential overlap with the CH3 signals. The CT-13CH3,VT-15N HSQC building block is used to construct two 3D experiments: 3D NOESY-CH3NH and 3D 13C,15N HSQC-NOESY-CH3NH. Combined use of these experiments yields proton and heteronuclear chemical shifts for moieties experiencing NOEs with CH3 and NH protons. These NOE interactions are resolved as a consequence of the high digital resolution in the carbon and nitrogen chemical shifts of CH3 and NH groups, respectively. The techniques are illustrated using a double labelled sample of the CH domain from calponin.  相似文献   

19.
Summary For methine sites the relaxation rate of 13C-1H two-spin coherence is generally slower than the relaxation rate of the individual 13C and 1H single spin coherences. The slower decay of two-spin coherence can be used to increase the sensitivity and resolution in heteronuclear experiments, particularly those that require correlation of H and C chemical shifts. To avoid dephasing of the two-spin coherence caused by 1H-1H J-couplings, the 1H spin is locked by the application of a weak rf field, resulting in a spin-locked multiple quantum coherence. For a sample of calcium-free calmodulin, use of the multiple quantum approach yields significant signal enhancement over the conventional constant-time 2D HSQC experiment. The approach is applicable to many multidimensional NMR experiments, as demonstrated for a 3D 13C-separated ROESY CT-HMQC spectrum.  相似文献   

20.
Summary A set of three 3D (1H, 13C, 15N) triple-resonance correlation experiments has been designed to provide H1-H8 intraresidue sugar-to-base correlations in purines in an unambiguous and efficient manner. Together, the HsCsNb, HsCs(N)bCb, and HbNbCb experiments correlate the H1 sugar proton to the H8 proton of the attached base by means of the {H1, C1, N9, C8, H8} heteronuclear scalar coupling network. The assignment strategy presented here allows for unambiguous H1-H8 intraresidue correlations, provided that no two purines have both the same H1 and C1 chemical shifts and the same C8 and N9 chemical shifts. These experiments have yielded H1-H8 intraresidue sugar-to-base correlations for all five guanosines in the [13C, 15N] isotopically labeled RNA duplex r(GGCGCUUGCGUC)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号