首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Ca on the polar movement of [3H]indoleacetic acid ([3H] IAA) in gravistimulated roots was examined using 3-day-old seedlings of maize (Zea mays L.). Transport of label was measured by placing an agar donor block containing [3H]IAA on one side of the elongation zone and measuring movement of label across the root into an agar receiver block on the opposite side. In vertically oriented roots, movement of label across the elongation zone into the receiver was slight and was not enhanced by incorporating 10 millimolar CaCl2 into the receiver block. In horizontally oriented roots, movement of label across the root was readily detectable and movement to a receiver on the bottom was about 3-fold greater than movement in the opposite direction. This polarity was abolished in roots from which the caps were removed prior to gravistimulation. When CaCl2 was incorporated into the receivers, movement of label across horizontally oriented intact roots was increased about 3-fold in both the downward and upward direction. The ability of Ca to enhance the movement of label from [3H]IAA increased with increasing Ca concentration in the receiver up to 5 to 10 millimolar CaCl2. With the inclusion of CaCl2 in the receiver blocks, gravity-induced polar movement of label into receiver blocks from applied [3H]IAA was detectable within 30 minutes, and asymmetric distribution of label within the tissue was detectable within 20 minutes. The results indicate that gravistimulation induces a physiological asymmetry in the auxin transport system of maize roots and that Ca increases the total transport of auxin across the root.  相似文献   

2.
Azaizeh H  Steudle E 《Plant physiology》1991,97(3):1136-1145
The root pressure probe was used to determine the effects of salinity on the hydraulic properties of primary roots of maize (Zea mays L. cv Halamish). Maize seedlings were grown in nutrient solutions modified by additions of NaCl and/or extra CaCl2 so that the seedlings received one of four treatments: Control, plus 100 millimolar NaCl, plus 10 millimolar CaCl2, plus 100 millimolar NaCl plus 10 millimolar CaCl2. The hydraulic conductivities (Lpr) of primary root segments were determined by applying gradients of hydrostatic and osmotic pressure across the root cylinder. Exosmotic hydrostatic Lpr for the different treatments were 2.8, 1.7, 2.8, and 3.4·10−7 meters per second per megapascals and the endosmotic hydrostatic Lpr were 2.4, 1.5, 2.7, and 2.3·10−7 meters per second per megapascals, respectively. Exosmotic Lpr of the osmotic experiments were 0.55, 0.38, 0.68, and 0.60·10−7 meters per second per megapascals and the endosmotic Lpr were 0.53, 0.21, 0.56, and 0.54·10−7 meters per second per megapascals, respectively. The osmotic Lpr was significantly smaller (4-5 times) than hydrostatic Lpr. However, both hydrostatic and osmotic Lpr experiments showed that salinization of the growth media at regular (0.5 millimolar) calcium levels decreased the Lpr significantly (30-60%). Addition of extra calcium (10 millimolar) to the salinized media caused ameliorative effects on Lpr. The low Lpr values may partially explain the reduction in root growth rates caused by salinity. High calcium levels in the salinized media increased the relative availability of water needed for growth. The mean reflection coefficients of the roots using NaCl were between 0.64 and 0.73 and were not significantly different for the different treatments. The mean values of the root permeability coefficients to NaCl of the different treatments were between 2.2 and 3.5·10−9 meters per second and were significantly different only in one of four treatments. Cutting the roots successively from the tip and measuring the changes in the hydraulic resistance of the root as well as staining of root cross-sections obtained at various distances from the root tip revealed that salinized roots had mature xylem elements closer to the tip (5-10 millimeters) compared with the controls (30 millimeters). Our results demonstrate that salinity has adverse effects on water transport and that extra calcium can, in part, compensate for these effects.  相似文献   

3.
Cotton (Gossypium hirsutum L. cv Acala SJ-2) seedlings were grown in nutrient solutions with four combinations of NaCl (0.1 and 150 millimolar) and CaCl2 (1 and 10 millimolar) for 7 days, and then exposed to [14C]glucose for 5 hours. Uptake and incorporation of [14C]glucose into various cell wall fractions of the root tips were determined. At 1 millimolar Ca2+, treatment with 150 millimolar NaCl slightly stimulated uptake but considerably inhibited glucose incorporation into noncellulosic and cellulosic polysaccharides. Supplemental Ca2+ did not affect incorporation of glucose into the noncellulosic fraction (regardless of NaCl treatment) but completely alleviated the inhibitory effect of NaCl on glucose incorporation into cellulose. We suggest that high Na+ concentrations reduce synthesis of cellulose in cotton roots via disturbance of plasma membrane integrity and that supplemental Ca2+ counteracts this effect. The effects on cellulose biosynthesis are proposed to be related to Ca2+ displacement from the plasma membrane.  相似文献   

4.
Kruse T  Tallman G  Zeiger E 《Plant physiology》1989,91(4):1382-1386
A method for isolating guard cell protoplasts (GCP) from mechanically prepared epidermis of Vicia faba is described. Epidermis was prepared by homogenizing leaves in a Waring blender in a solution of 10% Ficoll, 5 millimolar CaCl2, and 0.1% polyvinylpyrrolidone 40 (PVP). Attached mesophyll and epidermal cells were removed by shaking epidermis in a solution of Cellulysin, mannitol, CaCl2, PVP, and pepstatin A. Cleaned epidermis was transferred to a solution of mannitol, CaCl2, PVP, pepstatin A, cellulase “Onozuka” RS, and pectolyase Y-23 for the isolation of GCP. Preparations made by this method included both adaxial and abaxial GCP and contained ≤0.017% mesophyll protoplasts, ≤0.6% mesophyll fragments, and no epidermal cell contaminants. Yields averaged 9 × 104 protoplasts/leaflet and 98 to 100% of the GCP excluded trypan blue, concentrated neutral red, and hydrolyzed fluorescein diacetate. Isolated GCP increased in diameter by 2.2 micrometers after incubation in darkness in 10 micromolar fusicoccin, 0.4 molar mannitol, 5 millimolar KCl, and 1 millimolar CaCl2. Illumination of GCP with 800 micromoles per square meter per second of red light resulted in alkalinization of their suspension medium. When 10 micromolar per square meter per second of blue light was superimposed onto the red light background, the medium acidified. Measurements of chlorophyll a fast fluorescence transients from isolated GCP indicated that GCP were capable of electron transport, and slow transients contained the “M” peak usually associated with a functional photosynthetic carbon reduction pathway.  相似文献   

5.
Sugar Efflux from Maize (Zea mays L.) Pedicel Tissue   总被引:9,自引:5,他引:4       下载免费PDF全文
Sugar release from the pedicel tissue of maize (Zea mays L.) kernels was studied by removing the distal portion of the kernel and the lower endosperm, followed by replacement of the endosperm with an agar solute trap. Sugars were unloaded into the apoplast of the pedicel and accumulated in the agar trap while the ear remained attached to the maize plant. The kinetics of 14C-assimilate movement into treated versus intact kernels were comparable. The rate of unloading declined with time, but sugar efflux from the pedicel continued for at least 6 hours and in most experiments the unloading rates approximated those necessary to support normal kernel growth rates. The unloading process was challenged with a variety of buffers, inhibitors, and solutes in order to characterize sugar unloading from this tissue.

Unloading was not affected by apoplastic pH or a variety of metabolic inhibitors. Although p-chloromercuribenzene sulfonic acid (PCMBS), a nonpenetrating sulfhydryl group reagent, did not affect sugar unloading, it effectively inhibited extracellular acid invertase. When the pedicel cups were pretreated with PCMBS, at least 60% of sugars unloaded from the pedicel could be identified as sucrose. Unloading was inhibited up to 70% by 10 millimolar CaCl2. Unloading was stimulated by 15 millimolar ethyleneglycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid which partially reversed the inhibitory effects of Ca2+. Based on these results, we suggest that passive efflux of sucrose occurs from the maize pedicel symplast followed by extracellular hydrolysis to hexoses.

  相似文献   

6.
The time-course of sucrose efflux from attached seedcoats (having their embryos surgically removed) into aqueous traps placed in the `empty ovules' had three phases. The first phase lasted 10 minutes and probably was a period of apoplastic flushing. The second lasted 2 to 3 hours and is thought to be a phase of equilibration of seed coat symplast with the frequently refreshed liquid. The third phase of relatively steady efflux was postulated to reflect the continued import of sucrose from the plant, and hence to reflect the rate of sieve tube unloading. The average steady state efflux was equal under most conditions to the estimated rate of sucrose import. Efflux and import were unaffected by 150 millimolar osmoticum (mannitol or polyethylene glycol [molecular weight about 400]), by 0.5 millimolar CaCl2, or by pretreatments up to 20 minutes with p-chloromercuribenzenesulfonic acid (PCMBS); they were enhanced by 40 micromolar abscisic acid, 40 micromolar indoleacetic acid, 20 micromolar fusicoccin, and 1 millimolar dithiothreitol (DTT) and were inhibited by 100 micromolar KCN, by 0.03% H2O2, by 20 micromolar and 5 micromolar trifluoromethoxy (carbonyl cyamide) phenylhydrazone, by repeated 5 minutes per hour treatments with 5 millimolar PCMBS, and by 5 millimolar DTT. The `steady state' sucrose efflux was able to account for about half the rate of dry weight growth of the embryo, but stabilization of the system with <1 millimolar DTT taken together with other considerations is likely to give good correspondence between experimental unloading rates and in vivo growth rates.  相似文献   

7.
The effect of salinity and calcium levels on water flows and on hydraulic parameters of individual cortical cells of excised roots of young maize (Zea mays L. cv Halamish) plants have been measured using the cell pressure probe. Maize seedlings were grown in one-third strength Hoagland solution modified by additions of NaCl and/or extra calcium so that the seedlings received one of four treatments: control; +100 millimolar NaCl; +10 millimolar CaCl2; +100 millimolar NaCl + 10 millimolar CaCl2. From the hydrostatic and osmotic relaxations of turgor, the hydraulic conductivity (Lp) and the reflection coefficient (σs) of cortical cells of different root layers were determined. Mean Lp values in the different layers (first to third, fourth to sixth, seventh to ninth) of the four different treatments ranged from 11.8 to 14.5 (Control), 2.5 to 3.8 (+NaCl), 6.9 to 8.7 (+CaCl2), and 6.6 to 7.2 · 10−7 meter per second per megapascal (+NaCl + CaCl2). These results indicate that salinization of the growth media at regular calcium levels (0.5 millimolar) decreased Lp significantly (three to six times). The addition of extra calcium (10 millimolar) to the salinized media produced compensating effects. Mean cell σs values of NaCl ranged from 1.08 to 1.16, 1.15 to 1.22, 0.94 to 1.00, and 1.32 to 1.46 in different root cell layers of the four different treatments, respectively. Some of these σs values were probably overestimated due to an underestimation of the elastic modulus of cells, σs values of close to unity were in line with the fact that root cell membranes were practically not permeable to NaCl. However, the root cylinder exhibited some permeability to NaCl as was demonstrated by the root pressure probe measurements that resulted in σsr of less than unity. Compared with the controls, salinity and calcium increased the root cell diameter. Salinized seedlings grown at regular calcium levels resulted in shorter cell length compared with control (by a factor of 2). The results demonstrate that NaCl has adverse effects on water transport parameters of root cells. Extra calcium could, in part, compensate for these effects. The data suggest a considerable apoplasmic water flow in the root cortex. However, the cell-to-cell path also contributed to the overall water transport in maize roots and appeared to be responsible for the decrease in root hydraulic conductivity reported earlier (Azaizeh H, Steudle E [1991] Plant Physiol 97: 1136-1145). Accordingly, the effect of high salinity on the cell Lp was much larger than that on root Lpr.  相似文献   

8.
NaCl Induces a Na/H Antiport in Tonoplast Vesicles from Barley Roots   总被引:22,自引:10,他引:12       下载免费PDF全文
Evidence was found for a Na+/H+ antiport in tonoplast vesicles isolated from barley (Hordeum vulgare L. cv California Mariout 72) roots. The activity of the antiport was observed only in membranes from roots that were grown in NaCl. Measurements of acridine orange fluorescence were used to estimate relative proton influx and efflux from the vesicles. Addition of MgATP to vesicles from a tonoplast-enriched fraction caused the formation of a pH gradient, interior acid, across the vesicle membranes. EDTA was added to inhibit the ATPase, by chelating Mg2+, and the pH gradient gradually dissipated. When 50 millimolar K+ or Na+ was added along with the EDTA to vesicles from control roots, the salts caused a slight increase in the rate of dissipation of the pH gradient, as did the addition of 50 millimolar K+ to vesicles from salt-grown roots. However, when 50 millimolar Na+ was added to vesicles from salt-grown roots it caused a 7-fold increase in the proton efflux. Inclusion of 20 millimolar K+ and 1 micromolar valinomycin in the assay buffer did not affect this rapid Na+/H+ exchange. The Na+/H+ exchange rate for vesicles from salt-grown roots showed saturation kinetics with respect to Na+ concentration, with an apparent Km for Na+ of 9 millimolar. The rate of Na+/H+ exchange with 10 millimolar Na+ was inhibited 97% by 0.1 millimolar dodecyltriethylammonium.  相似文献   

9.
Kochian LV  Lucas WJ 《Plant physiology》1982,70(6):1723-1731
Influx isotherms were obtained for 86Rb+ uptake into 2-cm corn (Zea mays [A632 × (C3640 × Oh43)] root segments for both low- (0.2 millimolar CaSO4) and high-salt (0.2 millimolar CaSO4 + 5 millimolar KCl) grown roots. Unlike the discontinuous curves usually presented for K+ influx, our isotherms were smooth, nonsaturating curves that approached linearity at K+ (Rb+) concentrations above 1 millimolar. The kinetics for K+ transport could be resolved into saturable and linear components. The saturable components yielded Km values of 16 and 86 micromolar for low- and high-salt roots, respectively, while Vmax values were 5.62 and 1.85 moles per gram fresh weight per hour. Results of experiments with the penetrating sulfhydryl reagent, N-ethyl maleimide (NEM), and the impermeant reagent, p-chloromercuribenzene sulfonic acid (PCMBS) indicated that the saturable and linear components were independent mechanisms of K+ transport.

Short-term NEM exposures (30 seconds to 5 minutes) selectively inhibited the saturable system, but had little effect on the linear component. Increasing NEM exposures resulted in further inhibition and subsequent abolition of the saturable component; the linear component exhibited limited NEM sensitivity. PCMBS elicited the same general inhibitory trends, although it was less effective as a saturable component inhibitor.

The effects of NEM and PCMBS on K+ efflux were also studied. Short NEM exposures had no effect on cytoplasmic efflux, while inhibiting vacuolar efflux significantly. From these data, it is unclear at which site(s) NEM is acting. A more complex response was obtained with PCMBS, where a monophasic efflux curve was observed. Analysis indicated that the vacuolar efflux was stimulated, while the cytoplasmic component was abolished.

The nature of the linear component is discussed, and it is proposed that the mechanism may be more complex than simple facilitated diffusion.

  相似文献   

10.
An anion-sensitive ATP-dependent H+ transport in microsomal membranes from Zea mays L. coleoptiles was partially characterized using the pH gradient-dependent decrease of unprotonated neutral red. The following criteria strongly suggest a tonoplast origin of the H+ transport observed: strict dependence on Cl; inhibition by SO42− and NO3; insensitivity against vanadate, molybdate, and azide; reversible inhibition by CaCl2 (H+/Ca2+ antiport); inhibition by diethylstilbestrol. The substrate kinetics revealed simple Michaelis Menten kinetics for ATP in the presence of 1 millimolar MgCl2 with a Km value of 0.56 millimolar (0.38 millimolar for MgATP). AMP and c-AMP did not influence H+ transport significantly. However, ADP was a potent competitive inhibitor with a Ki value of 0.18 millimolar. The same inhibition type was found for membranes prepared from primary roots by the same procedure.  相似文献   

11.
Calcium Dependence of Rapid Auxin Action in Maize Roots   总被引:6,自引:2,他引:4       下载免费PDF全文
We investigated the interaction of Ca2+ and auxin on root elongation in seedlings of Zea mays L. The seedlings were raised either in the presence of Ca2+ (high calcium; HC = imbibed and raised in 10 millimolar CaCl2), in the absence of additional Ca2+ (intermediate calcium; IC = imbibed and raised in distilled H2O, calcium supply from seed only), or without additional Ca2+ and subsequently depleting them of Ca2+ (low calcium; LC = imbibed and raised in distilled H2O and subsequently treated with 1 millimolar ethyleneglycol-bis-[β-aminoethylether]-N,N,N′,N′ -tetraacetic acid [EGTA]). Exposure of roots of either HC or IC seedlings to auxin concentrations from 0.1 to 10 micromolar resulted in strong inhibition of elongation. In roots of LC seedlings, on the other hand, auxin concentrations as high as 10 micromolar caused only slight inhibition of elongation. Adding 0.5 millimolar Ca2+ to LC roots in the presence of IAA allowed normal expression of the inhibitory action of the hormone. Inhibition of elongation in IC roots by indoleacetic acid was reversible upon treatment of the roots with 1 millimolar EGTA. The inhibitory action of auxin could then be re-established by supplying 0.5 millimolar Ca2+. The data indicate that Ca2+ may be necessary to the growth-regulating action of auxin. The significance of this finding is discussed with respect to the potential role of Ca2+ as a second messenger of auxin action and the relevance of this model to recent evidence for gravi-induced redistribution of Ca2+ and its role in establishing gravitropic curvature.  相似文献   

12.
A mechanism by which intact potato (Solanum tuberosum) mitochondria may regulate the matrix NAD content was studied in vitro. If mitochondria were incubated with NAD+ at 25°C in 0.3 molar mannitol, 10 millimolar phosphate buffer (pH 7.4), 5 millimolar MgCl2, and 5 millimolar α-ketoglutarate, the NAD pool size increased with time. In the presence of uncouplers, net uptake was not only inhibited, but NAD+ efflux was observed instead. Furthermore, the rate of NAD+ accumulation in the matrix space was strongly inhibited by the analog N-4-azido-2-nitrophenyl-4-aminobutyryl-3′-NAD+. When suspended in a medium that avoided rupture of the outer membrane, intact purified mitochondria progressively lost their NAD+ content. This led to a slow decrease of NAD+-linked substrates oxidation by isolated mitochondria The rate of NAD+ efflux from the matrix space was strongly temperature dependent and was inhibited by the analog inhibitor of NAD+ transport indicating that a carrier was required for net flux in either direction. It is proposed that uptake and efflux operate to regulate the total matrix NAD pool size.  相似文献   

13.
Ouabain (0.05 millimolar) and low temperature (4 C) both caused the tissue Na+ content of excised 5-day-old corn roots to increase, indicating that there is an inhibition of the Na+ efflux pump. Na+ efflux was measured utilizing three different methods. Each method gave similar results in terms of rate and ouabain sensitivity. With one of these methods, the compartmental efflux method, it was demonstrated that rates for Na+ efflux increase as the external Na+ concentration is increased; e.g. the efflux rates are 0.529, 1.78, and 3.64 microequivalents per gram fresh weight per hour for external NaCl concentrations of 1, 10, and 30 millimolar, respectively. The data indicate that the Na+ efflux pump is located in the plasmalemma of root cells.  相似文献   

14.
A procedure was developed for the enzymic isolation of large quantities of protoplasts from the cortex of Zea mays L. WF9 × MO 17 roots. Cortex was separated from the primary root, sectioned, and the cell walls digested for 3.5 hours in 2% (w/v) Cellulysin, 0.1% Pectolyase Y-23, 1 millimolar CaCl2, 0.05% bovine serum albumin, 0.5 millimolar dithiothreitol in 0.6 molar mannitol (pH 5.6). Cortical cell protoplasts were collected by centrifugation and purified by flotation in a Ficoll step gradient. The yield of protoplasts was approximately 650 × 103/gram fresh tissue. To obtain maximum yield it was essential to include an effective pectinase (Pectolyase Y-23) and protectants (bovine serum albumin and dithiothreitol) in the digestion medium.

Cortical cell protoplasts exhibited energy-dependent uptake of K+ (86Rb), H232PO4, and 36Cl as well as net H+ extrusion. Ion fluxes were sustained for at least 3 hours. Influx of K+ was highest between pH 7.5 and 8.0, whereas the influx of H2PO4 was greatest between pH 4.0 and 5.0. K+ and H2PO4 influx and net H+ efflux were inhibited by respiratory poisons such as cyanide (0.1 millimolar) and oligomycin (5 micrograms per milliliter), and by inhibitors of plasma membrane ATPase such as diethylstilbestrol (50 micromolar). Calculated flux for Cl was low, but not greatly different from that observed for other plant cells. K+ flux was somewhat high, probably because the K+ concentration in the cortical cells was below steady-state. The results indicate that isolated cortical cell protoplasts retain transport properties which are similar to those of root tissue.

  相似文献   

15.
Segments of oat (Avena sativa L.) roots which had been exposed to 1 millimolar CdSO4 in quarter-strength Hoagland No. 1 solution exhibited decreased respiratory rates, ATP levels, membrane-bound ATPase activity, and reduced K+ fluxes. Respiration and ATP levels were decreased after a 2-hour treatment with 1 millimolar CdSO4 to 65 and 75%, respectively, of control rates. A membrane-bound, Mg2+-dependent, K+-stimulated acid ATPase was rapidly inhibited to 12% of control activity in the presence of 1 millimolar CdSO4. Potassium uptake into root segments was inhibited to 80% of control values after 30 minutes in the presence of CdSO4. A 2-hour pretreatment of root segments with CdSO4 inhibited K+ uptake to 15% of control values. Cytoplasmic K+ efflux was inhibited with 1 millimolar CdSO4.

The rates and the degree of Cd2+ inhibition of the parameters listed above suggest that one of the first sites of Cd2+ action is the plasmalemma K+ carrier (ATPase) in oat roots.

  相似文献   

16.
Arora R  Palta JP 《Plant physiology》1986,82(2):625-629
Freezing injury, in onion bulb tissue, is known to cause enhanced K+ efflux accompanied by a small but significant loss of Ca2+ following incipient freezing injury and swelling of protoplasm during the postthaw secondary injury. The protoplasmic swelling of the cell is thought to be caused by the passive influx of extracellular K+ into the cell followed by water uptake. Using outer epidermal layer of unfrozen onion bulb scales (Allium cepa L. cv Big Red), we were able to stimulate the irreversible freezing injury symptoms, by bathing epidermal cells in 50 millimolar KCl. These symptoms were prevented by adding 20 millimolar CaCl2 to the extracellular KCl solution. Our results provide evidence that loss of cellular Ca2+ plays an important role in the initiation and the progression of freezing injury.  相似文献   

17.
Pulse-labeling of barley (Hordeum vulgare L. cv Himalaya) aleurone layers incubated for 13 hours in 2.5 micromolar gibberellic acid (GA3) with or without 5 millimolar CaCl2 shows that α-amylase isozymes 3 and 4 are not synthesized in vivo in the absence of Ca2+. A cDNA clone for α-amylase was isolated and used to measure α-amylase mRNA levels in aleurone layers incubated in the presence and absence of Ca2+. No difference was observed in α-amylase mRNA levels between layers incubated for 12 hours in 2.5 micromolar GA3 with 5 millimolar CaCl2 and layers incubated in GA3 alone. RNA isolated from layers incubated for 12 hours in GA3 with and without Ca2+ was translated in vitro and was found to produce the same complement of translation products regardless of the presence of Ca2+ in the incubation medium. Immunoprecipitation of translation products showed that the RNA for α-amylase synthesized in Ca2+-deprived aleurone layers was translatable. Ca2+ is required for the synthesis of α-amylase isozymes 3 and 4 at a step after mRNA accumulation and processing.  相似文献   

18.
Stems of Vicia faba plants were used to study phloem unloading because they are hollow and have a simple anatomical structure that facilitates access to the unloading site. After pulse labeling of a source leaf with 14CO2, stem sections were cut and the efflux characteristics of 14C-labeled sugars into various buffered solutions were determined. Radiolabeled sucrose was shown to remain localized in the phloem and adjacent phloem parenchyma tissues after a 2-hour chase. Therefore, sucrose leakage from stem segments prepared following a 75-minute chase period was assumed to be characteristic of phloem unloading. The efflux of 14C assimilates from the phloem was enhanced by 1 millimolar p-chloromercuribenzene sulfonic acid (PCMBS) and by 5 micromolar carbonyl cyanide m-chlorophenly hydrazone (CCCP). However, PCMBS inhibited and CCCP enhanced general leakage of nonradioactive sugars from the stem segments. Sucrose at concentrations of 50 millimolar in the free space increased efflux of [14C]sucrose, presumably through an exchange mechanism. This exchange was inhibited by PCMBS and abolished by 0.2 molar mannitol. Increasing the osmotic concentration of the efflux medium with mannitol reduced [14C]sucrose efflux. However, this inhibition seems not to be specific to sucrose unloading since leakage of total sugars, nonlabeled sucrose, glucose, and amino acids from the bulk of the tissue was reduced in a similar manner. The data suggest that phloem unloading in cut stem segments is consistent with passive efflux of sucrose from the phloem to the apoplast and that sucrose exchange via a membrane carrier may be involved. This is consistent with the known conductive function of the stem tissues, and contrasts with the apparent nature and function of unloading in developing seeds.  相似文献   

19.
Schwartz A 《Plant physiology》1985,79(4):1003-1005
Ca2+ (0.1-1.0 millimolar) accelerated dark-induced stomatal closure and reduced stomatal apertures in the light in epidermal peels of Commelina communis L. In contrast, ethyleneglycol-bis-(β-aminoethyl ether) N,N′tetraacetic acid (EGTA) (2 millimolar), a Ca2+ chelator, prevented closure in the dark and accelerated opening in the light. EGTA did not promote significant opening in the dark. It is therefore concluded that EGTA does not increase ion uptake into guard cells, but rather prevents ion efflux. Addition of EGTA to incubating solutions with 10 millimolar KCl resulted in steady state apertures of 15.6 micrometers, whereas in the absence of EGTA similar apertures required 55 millimolar KCl and 150 millimolar KCl was needed in the presence of 1 millimolar CaCl2. The results demonstrate the importance of Ca2+ in the regulation of stomatal closure and point to a role of Ca2+ in the regulation of K+ efflux from stomatal guard cells.  相似文献   

20.
Isolation of amyloplasts from developing maize endosperm   总被引:3,自引:3,他引:0  
Methods for the formation of protoplasts from developing maize endosperm and for the aqueous isolation of intact amyloplasts from such protoplasts are described. Protoplasts were obtained after incubating endosperm slices in a medium containing cellulase and pectolyase for 5 days at 4°C or 5 hours at 30°C. After purification in a Ficoll density gradient, the protoplasts were reptured by forcing the suspension through a Nitex mesh (20 micrometer) positioned at the lower end of a modified disposable syringe. The resulting filtrate was layered on a discontinuous Ficoll density gradient of 30, 15, and 10%. Each Ficoll solution contained 0.7 molar sucrose, 10 millimolar arginine, 10 millimolar dl-dithiothreitol, 50 millimolar 2-(N-morpholino)ethanesulfonic acid (pH 5.6), and 2 millimolar CaCl2. After 3 hours in the cold, an amyloplast fraction 50 to 93% intact and free from cytoplasmic, mitochondrial, and glyoxysomal contamination was recovered in the 15% Ficoll layer. Amyloplast intactness was estimated by fluorescent microscopy and activity of certain amyloplast marker enzymes before and after rupture of the amyloplast membrane. Starch branching enzyme, ADPG-pyrophosphorylase, and nitrite reductase were used as amyloplast marker enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号