首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of Na+/K+ ATPase by the preimplantation rabbit blastocyst   总被引:1,自引:0,他引:1  
The rates of incorporation of [35S]methionine into Na+/K+ ATPase, actin (beta- and gamma-isoforms), and total protein of the preimplantation rabbit blastocyst were determined between Days 4 and 7 of development. Blastocyst proteins were metabolically radiolabelled with [35S]methionine and subsequently analysed by co-isolation with purified Na+/K+ ATPase using two-dimensional polyacrylamide gel electrophoresis, immunoprecipitation, immunoblotting, fluorography, and liquid scintillation spectroscopy. The rate of [35S]methionine incorporation into acid-soluble total protein increased 24-fold between Days 4 and 6 post coitum (p.c.), then diminished approximately 79% on Day 7. In-vitro incorporation of [35S]methionine was linear at each stage of blastocyst development. [35S]methionine incorporation rates were unaffected by low free intracellular methionine concentration (less than 0.06 mM) and stage-related differences in blastocoele volume. Analysis of beta- and gamma-actin synthesis revealed patterns of [35S]methionine incorporation rates which were similar to those of total protein. In contrast, synthesis of blastocyst Na+/K+ ATPase was characterized by a 90-fold increase (P less than 0.001) in the rate of [35S]methionine incorporation between Days 4 and 6 p.c. The results demonstrate that Na+/K+ ATPase is actively synthesized at a high and increasing rate during preimplantation development in the rabbit at a period which is characterized by rapid fluid accumulation by the blastocyst.  相似文献   

2.
3.
The capacity of castor-bean endosperm tissue to incorporate [35S]methionine into proteins of the total particulate fraction increased during the first 3 days of germination and subsequently declined. At the onset of germination 66% of the incorporated 35S was found in the separated endoplasmic-reticulum fraction, with the remainder in mitochondria, whereas at later developmental stages an increasing proportion of 35S was recovered in glyoxysomes. The kinetics of [35S]methionine incorporation into the major organelle fractions of 3-day-old endosperm tissue showed that the endoplasmic reticulum was immediately labelled, whereas a lag period preceded the labelling of mitochondria and glyoxysomes. When kinetic experiments were interrupted by the addition of an excess of unlabelled methionine, incorporation of [35S]methionine into the endoplasmic reticulum rapidly ceased, but incorporation into mitochondia and glyoxysomes continued for a further 1h. Examination of isolated organelle membranes during this period showed that the addition of unlabelled methionine resulted in a stimulated incorporation of [35S]no methionine into the endoplasmic-reticulum membrane for 30 min, after which time the 35S content of this fraction declined, whereas that of the glyoxysomal membranes continued to increase slowly. The 35S-labelling kinetics of organelles and fractions derived therefrom are discussed in relation to the role of the endoplasmic reticulum in protein synthesis during glyoxysome biogenesis.  相似文献   

4.
The effects of inhibitors of protein synthesis and electron transport on the incorporation of [14C]leucine and [35S]methionine into protein by the filarial worm Brugia pahangi have been investigated. Cycloheximide inhibits the accumulation of both [14C]leucine and [35S]methionine by the worms and their incorporation into protein. In addition, inhibitors of electron transport and some anti-parasitic compounds also significantly inhibit filarial protein synthesis. Antimycin A and cyanide inhibit [14C]leucine incorporation into protein 63 and 72%, respectively, without affecting either motility or lactate production. Interestingly, the anti-malarial compounds chloroquine and quinacrine also significantly inhibit both accumulation and incorporation of [14C]leucine by B. pahangi. In addition, fluorographs of sodium dodecyl sulfate-polyacrylamide gels of homogenates from filariids incubated in [35S]methionine and cycloheximide with and without chloramphenicol indicate that there is a discrete population of proteins, possibly mitochondrial in origin, that are synthesized in the presence of cycloheximide and are not inhibited by chloramphenicol.  相似文献   

5.
Paired Y-organs secrete ecdysteroid hormones that control cycles of growth and molting in crustaceans. Y-Organs are regulated, at least in part, by molt-inhibiting hormone (MIH), a polypeptide produced and released by the X-organ/sinus gland complex of the eyestalks. In the present studies, crab (Callinectes sapidus) Y-organs were incubated in vitro in the presence of [(35)S]methionine, and cyclic nucleotide analogs or experimental agents that influence the cAMP signaling pathway. In 4-hr incubations, 8-Br-cAMP and db-cAMP (but not 8-Br-cGMP) suppressed incorporation of [(35)S]methionine into Y-organ proteins; the effect of 8-Br-cAMP was concentration-dependent. Autoradiograms of radiolabeled Y-organ proteins separated on SDS-PAGE gels indicated the effect of 8-Br-cAMP was general (as opposed to selective) suppression of protein synthesis. Addition of both forskolin (an adenylyl cyclase activator) and 3-isobutyl-1-methylxanthine (a phosphodiesterase inhibitor) likewise suppressed incorporation of [(35)S]methionine into Y-organ proteins. Cycloheximide (a protein synthesis inhibitor) suppressed incorporation of [(35)S]methionine into Y-organ proteins and secretion of ecdysteroids. The combined results suggest that cAMP is involved in regulation of protein synthesis in C. sapidus Y-organs. We are currently investigating the link of protein synthesis to ecdysteroid production, and the possibility of cross-talk between cAMP and other cellular signaling pathways in Y-organs.  相似文献   

6.
The influence of the Ca2+ ionophores, ionomycin and A23187 upon the incorporation of [35S]methionine into proteins of cultured chicken pectoralis muscle was studied during differentiation of myoblasts into multinucleated myotubes. Fusion was reversibly arrested by growing cells in low-calcium media from the time of plating. Exposure of normal and fusion blocked cultures to 10-6-10-5 M ionomycin or A23187 for 2-6 h on the second to fourth day of growth, resulted in a selective increase in the incorporation of [35S]methionine into two proteins of about 100 000 and 80 000 dalton. When 10-5 M ionomycin or A23187 were added to older cultures, all large myotubes contracted and detached from the plate. Only the adhering myoblasts and small myotubes incorporated [35s[methionine into the muscle proteins and showed increased incorporation of label into 100 000 and 80 000 proteins. After ionophore pulse, the adhering cells retained the ability to differentiate and accumulate myosin. The effect of Ca2+ ionophores upon the rate of protein synthesis is presumably related to increased influx of extracellular Ca2+ with a rise in the Ca2+ concentration of the cytoplasm. We conclude that Ca2+ sensitive mechanisms may regulate the synthesis of a select group of muscle proteins.  相似文献   

7.
Incubation of [35S]methionine and [35S]cysteine with bovine albumin, globulin, catalase, hemoglobin, or human globulin resulted in incorporation of the 35S label into each of these proteins. Trichloroacetic acid (TCA) precipitation revealed that the percentage of label incorporated ranged from 1 to 15%. The 35S labeling was resistant to dissociation by reducing SDS-PAGE, prolonged dialysis against 4 M urea, heating, TCA precipitation, and dilution by gel filtration. The labeling effect was more efficient with [35S]cysteine than [35S]methionine. Incubation of 35S label with proteins differing in methionine and cysteine content revealed no requirement for sulfur-containing amino acids in the target protein. Protein carboxymethylation reduced but did not prevent 35S label incorporation. Amino acid analysis of labeled proteins revealed that the radioactive label was not consistently associated with an individual amino acid. Differences in the ability of various proteins to spontaneously label with these amino acids suggest caution in the interpretation of metabolic labeling experiments and the necessity for inclusion of additional controls. Alternatively, our experience indicates a potentially useful method for labeling proteins in the absence of cells.  相似文献   

8.
Previous studies have indicated that thyrotropin may induce general increases in RNA and protein synthesis in calf thyroid tissue slices. In this report, we show that thyrotropin selectively stimulates [35S]methionine incorporation into small numbers of specific cytoplasmic and nuclear proteins. We provide data on the time course of stimulation and on relative molecular masses and isoelectric points of hormone-response proteins. Calf thyroid tissue slices were incubated for 3 h, 6 h or 9 h in the presence or absence of thyrotropin (50 mU/ml); [35S]methionine (50-75 microCi/ml) was added for the final 3 h of incubation. Cytoplasmic and nuclear fractions were then prepared, and analyzed by two-dimensional polyacrylamide gel electrophoresis and fluorography. Thyrotropin increased [35S]methionine incorporation into two cytoplasmic and four nuclear proteins within 3 h; hormonal effects on the labeling of five of these six proteins were transient, and no longer evident after 6-9 h. In contrast, a second group of two cytoplasmic and four nuclear proteins exhibited increased labeling after a delay of 6-9 h. Our results suggest that thyrotropin selectively stimulates the synthesis of specific cytoplasmic and nuclear proteins in calf thyroid tissue slices, and that stimulation involves at least two mechanisms (one rapid, the other delayed).  相似文献   

9.
The method previously developed for the measurement of rates of methionine incorporation into brain proteins assumed that methionine derived from protein degradation did not recycle into the precursor pool for protein synthesis and that the metabolism of methionine via the transmethylation pathway was negligible. To evaluate the degree of recycling, we have compared, under steady-state conditions, the specific activity of L-[35S] methionine in the tRNA-bound pool to that of plasma. The relative contribution of methionine from protein degradation to the precursor pool was 26%. Under the same conditions, the relative rate of methionine flux into the transmethylation cycle was estimated to be 10% of the rate of methionine incorporation into brain proteins. These results indicate the following: (a) there is significant recycling of unlabeled methionine derived from protein degradation in brain; and (b) the metabolism of methionine is directed mainly towards protein synthesis. At normal plasma amino acid levels, methionine is the amino acid which, to date, presents the lowest degree of dilution in the precursor pool for protein synthesis. L-[35S]-Methionine, therefore, presents radiobiochemical properties required to measure, with minimal underestimation, rates of brain protein synthesis in vivo.  相似文献   

10.
V L Richmond 《Life sciences》1986,39(3):263-268
Methionine, an essential amino acid, and cysteine are the major sulfur-containing amino acids in the body and both are thought to be synthesized predominantly in plants and micro-organisms. Methylsulfonylmethane (MSM) is a natural constituent of the environment in which it is found in plants, in milk and urine of both bovines and humans, is a normal oxidation product of dimethyl sulfoxide (DMSO) also in the natural environment and may be part of the natural global sulfur cycle. To determine whether sulfur from methylsulfonylmethane (MSM) is incorporated into sulfur amino acids, I fed 35S-MSM to guinea pigs. 35S was incorporated into peptidyl methionine and cysteine of guinea pig serum proteins. The specific activity of 35S-methionine was 30% greater than for 35S-cysteine, suggesting a precursor-product relationship. Total specific activity of serum proteins was increased by only 30% with a 100% increase of administered 35S-MSM, suggesting a limiting step in synthesis. Approximately 1% of the radioactivity was recovered in serum proteins, none in the feces and most was excreted in the urine. Microorganisms of intestinal lumen may be responsible for the incorporation of the 35S of MSM into sulfur amino acids. MSM may provide a source of sulfur for essential animal methionine by mechanisms not yet elucidated in either animals or micro-organisms.  相似文献   

11.
Effect of Phencyclidine on the Metabolism of Individual Brain Proteins   总被引:1,自引:0,他引:1  
The effect of phencyclidine on the metabolism of a selected number of rat brain proteins was determined using two-dimensional gel electrophoresis and quantitative fluorography. When rats were injected with phencyclidine, modulation of individual protein metabolism occurred in the pituitary and cortex. That is, a few proteins showed increased and others decreased incorporation of [35S]methionine, whereas total protein metabolism was unaltered. In contrast, in vitro treatment of brain tissue with phencyclidine inhibited incorporation of radiolabel into all proteins by approximately 50%, as shown by quantitative fluorography of individual proteins.  相似文献   

12.
In order to determine the sites of synthesis of the proteins of the mammalian mitochondrial ribosome (mitoribosome), bovine (MDBK) cells were labeled with [35S]methionine in the presence of inhibitors of mitochondrial and cytoplasmic protein synthesis. Labeling in the absence of cytoplasmic protein synthesis produced a "blank" fluorogram, indicating that there is no mitochondrial product. Additionally, incorporation of [35S]methionine into the enumerated mitoribosomal proteins continued in the absence of mitochondrial protein synthesis. Finally, it was demonstrated that mitoribosomal proteins can be both translated and assembled into complete mitoribosomes in the absence of mitochondrial protein synthesis. These results indicate that in mammals, as opposed to lower eukaryotes, all of the mitoribosomal proteins are products of cytoplasmic protein synthesis.  相似文献   

13.
We examined the effect of monolayer culture on surfactant phospholipids and proteins of type II cells isolated from human adult and fetal lung. Type II cells were prepared from cultured explants of fetal lung (16-24 weeks gestation) and from adult surgical specimens. Cells were maintained for up to 6 days on plastic tissue culture dishes. Although incorporation of [methyl-3H]choline into phosphatidylcholine (PC) by fetal cells was similar on day 1 and day 5 of culture, saturation of PC fell from 35 to 26%. In addition, there was decreased distribution of labeled acetate into PC, whereas distribution into other phospholipids increased or did not change. The decrease in saturation of newly synthesized PC was not altered by triiodothyronine (T3) and dexamethasone treatment or by culture as mixed type II cell/fibroblast monolayers. The content of surfactant protein SP-A (28-36 kDa) in fetal cells, as measured by ELISA and immunofluorescence microscopy, rose during the first day and then fell to undetectable levels by the fifth. Synthesis of SP-A, as measured by [35S]methionine labeling and immunoprecipitation, was detectable on day 1 but not thereafter. Levels of mRNAs for SP-A and for the two lipophilic surfactant proteins SP-B (18 kDa) and SP-C (5 kDa) fell with half-times of maximally 24 h. In contrast, total protein synthesis measured by [35S]methionine incorporation increased and then plateaued. In adult cells, the content of SP-A and its mRNA decreased during culture, with time-courses similar to those for fetal cells. We conclude that in monolayer culture on plastic culture dishes, human type II cells lose their ability to synthesize both phospholipids and proteins of surfactant. The control of type II cell differentiation under these conditions appears to be at a pretranslational level.  相似文献   

14.
Effect of phenylalanine on protein synthesis in the developing rat brain   总被引:12,自引:7,他引:5  
1. Inhibition of the rate of incorporation of [(35)S]methionine into protein by phenylalanine was more effective in 18-day-old than in 8-day-old or adult rat brain. 2. Among the subcellular fractions incorporation of [(35)S]methionine into myelin proteins was most inhibited in 18-day-old rat brain. 3. Transport of [(35)S]methionine and [(14)C]leucine into the brain acid-soluble pool was significantly decreased in 18-day-old rats by phenylalanine (2mg/g body wt.). The decrease of the two amino acids in the acid-soluble pool equalled the inhibition of their rate of incorporation into the protein. 4. Under identical conditions, entry of [(14)C]glycine into the brain acid-soluble pool and incorporation into protein and uptake of [(14)C]acetate into lipid was not affected by phenylalanine. 5. It is proposed that decreased myelin synthesis seen in hyperphenylalaninaemia or phenylketonuria may be due to alteration of the free amino acid pool in the brain during the vulnerable period of brain development. Amyelination may be one of many causes of mental retardation seen in phenylketonuria.  相似文献   

15.
Adaptation to moderate duration of physical loading causes identical levels of increase in threshold fibrillation of ventricles in wide range of their intensity. Rise of contractile heart function increases with prolonged adaptation regimen of heavy loading exercise. With hypokinesia and excessive physical load the sinking of threshold of fibrillation of ventricles occurs in lacking of alterations and with high contractile function of the heart respectively.  相似文献   

16.
The pulse-chase technique was employed to determine the synthesis of the subunits of ligandin (glutathione S-transferase 1–2) by isolated hepatocytes. Ligandin comprised 2.5–3% of the total proteins synthesized. A slightly higher incorporation of [35S]methionine into the 22 k than the 25 k subunit was observed. However, the ratio of [35S]methionine incorporation into the subunits remained constant throughout the chase period, suggesting that, in spite of the considerable sequence homology, the conversion of 25 k to 22 k subunit does not occur in vivo  相似文献   

17.
ABSTRACT. The fate of methionine in eukaryotic cells is divided between protein synthesis and the branched pathway encompassing polyamine synthesis, methylation of proteins and lipids, and transsulphuration reactions. Aside from protein synthesis, the first step to all other uses of methionine is conversion to S-adenosylmethionine. Blockade of polyamine synthesis in African trypanosomes by the ornithine decarboxylase inhibitor DL-α-difluoromethylomithine (Ornidyl, DFMO) the AdoMet decarboxylase inhibitor 5′-{[(Z)-4-amino-2-butenyl]-methylamino}-5′-deoxyadenosine or the protein methylase inhibitor sinefungin induces dramatic increases in intracellular AdoMet. In a previous study, distribution and pool sizes of [15S] or [U-14C]methionine were followed in bloodform trypanosomes as incorporation into the total TCA precipitable fraction. In the present study, the effects of pretreatment with DFMO (1 mM), MDL 73811 (1 μM) and sinefugin (2 nM) on [35S] and [U-14C]methionine incorporation were studied in blood forms. DFMO or MDL 73811 pretreatment increased protein methylation 1.5-fold through incorporation of [U14C]methionine, while sinefungin caused a 40% reduction of incorporation. The increases in incorporation of [U-14C]methionine due to DFMO and MDL 73811 were reduced 40% to 70% by including cold AdoMet (1 mM) in the incubation medium, an indication of AdoMet transport by bloodform trypanosomes and the utilization of [U-14C]methionine as AdoMet. Exogenous AdoMet had no effect on [35S]methionine incorporation. The agents studied are curative for African trypnosomiasis infections, either clinically (DFMO) or in model infections (MDL 73811, sinefungin) and thus highlight interference with AdoMet metabolism and methylation reactions as biochemical consequences of these agents.  相似文献   

18.
The synthesis of contractile protein mRNAs has been studied during the differentiation of quail skeletal muscle myoblasts in culture. Eight contractile protein mRNAs were identified by translation of total cellular RNA isolated from differentiated myofibers in wheat germ and reticulocyte lysates. Products of the translation systems were fractionated by two-dimensional gel electrophoresis, and incorporation of [35S]methionine into individual contractile proteins was quantitated by computerized densitometry of autoradiograms. These translation assay systems were used to quantitate levels of contractile protein mRNAs in cultures of myoblasts undergoing highly synchronous differentiation. Our results show that dividing myoblasts contain very little, if any, translatable contractile protein mRNA. The mRNAs coding for myosin heavy chain, the musclespecific actin, three myosin light chains, two tropomyosin subunits, and one troponin subunit begin to coordinately accumulate at fusion, when contractile protein synthesis is activated. Their levels increase 50- to 200-fold during the next 30 hr, paralleling increases in the rates of contractile protein synthesis. These results indicate that the contractile protein mRNAs accumulate coordinately during myoblast differentiation and that contractile protein synthesis is regulated by changes in the levels of these mRNAs.  相似文献   

19.
Treatment of human monocyte U937 and promyelocyte HL-60 cultures with agents known to induce differentiation (12-O-tetra-decanoylphorbol 13-acetate, calcitriol and dimethylsulfoxide) accelerates the maturation of cathepsin D and enhances the incorporation of [35S]methionine into cathepsin D. The most pronounced effects are obtained with calcitriol, which at a concentration of 10(-7) M increases the incorporation of [35S]methionine into cathepsin D from 0.08% to 0.4% of the detergent-soluble radioactivity. In addition, this treatment enhances the secretion of cathepsin D from about 8% to greater than or equal to 16% of the newly synthesized enzyme. In the presence of 10mM NH4Cl approximately half of the produced cathepsin D is secreted in both control and calcitriol-treated cells. It appears that in U937 cells two mechanisms are involved in sorting of cathepsin D. One of these is sensitive to NH4Cl and its efficiency is selectively decreased in cells pretreated with calcitriol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号