首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The role of nitric oxide (NO) and ATP in the regulation of nonadrenergic, noncholinergic (NANC) inhibitory transmission in the pylorus remains unclear. In the presence of atropine and guanethidine, electric field stimulation induced NANC relaxations in a frequency-dependent manner (1-20 Hz) in the rat pylorus. NANC relaxations were significantly inhibited by N(G)-nitro-L-arginine methyl ester (L-NAME; 10(-4) M). P(2X) purinoceptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 3 x 10(-5) M) and P(2Y) purinoceptor antagonist reactive blue 2 (2 x 10(-5) M) had no effect on NANC relaxations. However, the combined administration of L-NAME and PPADS, but not reactive blue 2, evoked greater inhibitory effects on NANC relaxation than that evoked by L-NAME alone. alpha-Chymotrypsin and vasoactive intestinal polypeptide antagonist did not affect NANC relaxations. ATP (10(-5)-10(-3) M) and P(2X) purinoceptor agonist alpha, beta-methyleneadenosine 5'-triphosphate (10(-7)-10(-5) M), but not P(2Y) purinoceptor agonist 2-methylthioadenosine 5'-triphosphate (10(-7)-10(-5) M), induced muscle relaxations in a dose-dependent manner, and relaxations were significantly reduced by PPADS and unaffected by TTX. These studies suggest that NO and ATP act in concert to mediate NANC relaxation of the rat pylorus. ATP-induced relaxation appears to be mediated by P(2X) purinoceptors located on smooth muscle cells.  相似文献   

2.
Intracellular recordings were made from the circular smooth muscle cells of the canine jejunum to study the effect of exogenous ATP and to compare the ATP response to the nonadrenergic, noncholinergic (NANC) inhibitory junction potential (IJP) evoked by electrical field stimulation (EFS). Under NANC conditions, exogenous ATP evoked a transient hyperpolarization (6.5 +/- 0.6 mV) and EFS evoked a NANC IJP (17 +/- 0.4 mV). Omega-conotoxin GVIA (100 nM) and a low-Ca(2+), high-Mg(2+) solution abolished the NANC IJP but had no effect on the ATP-evoked hyperpolarization. The ATP-evoked hyperpolarization and the NANC IJP were abolished by apamin (1 microM) and N(G)-nitro-L-arginine (100 microM). Oxyhemoglobin (5 microM) partially (38.8 +/- 5.5%) reduced the amplitude of the NANC IJP but had no effect on the ATP-evoked hyperpolarization. Neither the NANC IJP nor the ATP-evoked hyperpolarization was affected by P2 receptor antagonists or agonists, including suramin, reactive blue 2, 1-(N, O-bis-[5-isoquinolinesulfonyl]-N-methyl-L-tyrosyl)-4-phenylpiperazine , pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, alpha, beta-methylene ATP, 2-methylthioadenosine 5'-triphosphate tetrasodium salt, and adenosine 5'-O-2-thiodiphosphate. The data suggest that ATP evoked an apamin-sensitive hyperpolarization in circular smooth muscle cells of the canine jejunum via local production of NO in a postsynaptic target cell.  相似文献   

3.
In women, during pregnancy, there is decreased motility of the gastrointestinal tract leading to a delay in gastric emptying and an increase in colonic transit time. Whether the rise in estradiol (E2) or progesterone (P4) is responsible for this effect is controversial. As the nitrergic component of the nonadrenergic, noncholinergic (NANC) nerves is responsible for modulating gastrointestinal motility in vivo, the purpose of this study was to evaluate whether the increased release of nitric oxide (NO) from the nitrergic component of the NANC nerves innervating the gastric fundus and colon that occurs during late pregnancy in rats is mediated by E2 or P4. Ovariectomized rats treated with E2 or P4 alone or in combination were used for our studies. We also wanted to assess the cellular and molecular mechanisms involved. The NANC activity was studied by assessing changes in tone after application of electric field stimulation (EFS). The role of NO was determined by observing the effects of EFS in the presence and absence of the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) and the reversibility of the effects of L-NAME by L-arginine. Our studies indicated that there was increased magnitude of relaxation of isolated strips of rat gastric fundus and rat colon after application of EFS to tissues obtained from animals treated with E2 alone or a combination of E2 + P4 but not from those treated with P4 alone. L-NAME attenuated relaxation responses in E2- and E2 + P4-treated animals. To elucidate whether the increased NO release may be due to an increase in neuronal NOS (nNOS) protein, we used both Western blot analysis and immunohistochemistry. We also used RT-PCR to determine whether there was an increase in nNOS mRNA after treatment with sex steroids. In nonpregnant animals, nNOS was detected by Western blot in the fundus and the colon and was barely detectable in the ileum. In pregnancy, there was an increase in nNOS in both the gastric fundus and the colon. The nNOS protein was also increased in ovariectomized animals treated with either E2 alone or E2 + P4 but not P4 alone when compared with ovariectomized animals receiving vehicle. Our results indicated that there was an increase in nNOS protein that was localized to the neurons of the myenteric plexus in the gastric fundus and colon in E2- and E2 + P4-treated animals, but this increase was not observed in animals treated with P4 alone. This increase in nNOS protein was accompanied by an increase in nNOS mRNA. These results suggest the possibility that E2, rather than P4, may be responsible for the delay in gastric emptying and increase in colonic transit time observed in pregnancy.  相似文献   

4.
Isolated rat duodenum shows spontaneous mechanical and electrical activities. Mechanical activity consists in changes both in endoluminal pressure and in isometric tension. Electrical activity is characterized by slow waves with superimposed bursts. This spontaneous activity is tetrodotoxin (TTX) resistant and therefore it is myogenic in origin. Indeed, TTX pretreatment, even in the presence of atropine and guanethidine, caused an increase in amplitude and in frequency of the electrical and mechanical activities. This finding indicates the presence of tonically active inhibitory intramural non adrenergic, non cholinergic (NANC) nerves. Duodenal longitudinal strips showed a spontaneous mechanical activity resembling that one recorded from isolated segment. Instead, circular strips are quiescent under resting condition and a contractile activity can be detected only after TTX pretreatment suggesting that: i) the circular smooth muscle layer is tonically inhibited by intramural NANC nerves and, ii) the contractions observed in the rat duodenum are due to the activity of the longitudinal one.  相似文献   

5.
The involvement of nitric oxide and ATP in both spontaneous and electrically-induced nonadrenergic noncholinergic (NANC) motor activity with special interest in the apamin-sensitive mechanisms was studied in a guinea pig ileum model. Depending on the concentration (0.1 or 1 micromol/l), apamin, a blocker of the calcium-activated potassium channels and antagonist of ATP action, induced either TTX (0.1 micromol/l)-resistant increase in tone or contractions. SNP, a nitric oxide donor, applied cumulatively (0.1-100 micromol/l) evoked a concentration-dependent relaxation, the EC50 value being 0.39 +/- 0.12 micromol/l. At concentrations of 0.1 or 1 micromol/l, apamin decreased the SNP effects and shifted the concentration-response curves for SNP to the right. The EC50 value for SNP in the presence of apamin at a concentration of 0.1 micromol/l increased to 59.34 +/- 36.53 micromol/l. ATP (1 or 50 micromol/l) induced TTX-resistant contractions. The effects of ATP were reduced by apamin (1 micromol/l). The contractile effect of ATP occurred in the presence of SNP. SNP provoked relaxation on the background of ATP. The NANC responses to electrical stimulation (0.8 ms, 40 V, 2 or 20 Hz, 20 s) consisted of an initial relaxation phase followed by a phase of contractions, twitch-like and tonic. L-NNA (0.5 mmol/l), an inhibitor of nitric oxide syntheses, abolished the relaxation phase. L-arginine (0.5 mmol/l) restored it. Apamin (0.1 or 1 micromol/l) completely eliminated the relaxation phase and concentration-dependently inhibited the tonic contraction of the phase of contractions. The present findings indicate that the apamin-sensitive nitric oxide-evoked relaxation could be realized by calcium-activated potassium channels and that the apamin-sensitive ATP-induced contraction is mediated via contraction-producing P2 purinoceptors.  相似文献   

6.
OBJECTIVES: Tachykinins are important mediators in neuromuscular signalling but have not been thoroughly characterised in the mouse gut. We investigated the participation of tachykinin receptors in contractility of circular muscle strips of the mouse ileum. RESULTS: Electrical field stimulation (EFS) of excitatory nonadrenergic noncholinergic (NANC) nerves induced frequency-dependent contractions which were mimicked by substance P (SP). Desensitisation of SP and NK(1), NK(2) or NK(3) receptors significantly reduced contractions to EFS. The NK(1) receptor blocker RP67580 significantly inhibited NANC contractions to EFS. The NK(2) and NK(3) receptor blockers nepadutant and SR142801 did not affect NANC contractions per se but increased the RP67580-induced inhibition of NANC contractions to EFS. Contractions to SP were significantly reduced by RP67580 but not affected by nepadutant or SR142801. The NK(1) and NK(2) receptor agonists, septide and [beta-ala(8)]-NKA 4-10 (beta-A-NKA), respectively, but not the NK(3) receptor agonist senktide-induced dose-dependent contractions. Atropine inhibited and l-NNA augmented contractions to septide. Contractions to beta-A-NKA were insensitive to atropine but augmented by l-NNA. CONCLUSIONS: Tachykinins mediate NANC contractions to EFS in the mouse small intestine. Endogenously released tachykinins activate mainly NK(1) receptors, located on cholinergic nerves and smooth muscle cells and, to a lesser degree, NK(2) and NK(3) receptors, most likely located presynaptically.  相似文献   

7.
In both parotid and submandibular glands a parasympathetic non-adrenergic, non-cholinergic (NANC) nerve-evoked secretion of saliva was demonstrated. Saliva evoked by exogenous substance P was poor in protein, while saliva evoked by VIP was protein-rich. In a subthreshold dose for fluid secretion VIP released protein and potentiated the responses elicited by substance P, particularly regarding the output of protein. The two neuropeptides may contribute to the parasympathetic NANC secretion of saliva in the mink. Further, agonists responsible for the secretory NANC response are also likely to contribute to the secretory response of the glands to parasympathetic stimulation in the absence of autonomic receptor blockade in this species.  相似文献   

8.
Bayer S  Crenner F  Aunis D  Angel F 《Life sciences》2002,71(8):911-925
GABAergic regulation of intestinal motility through the modulation of non-adrenergic non-cholinergic (NANC) neurons remains poorly understood especially in rat colon where very few studies have been undertaken. Therefore, the effects of GABA on circular preparations of rat distal colon were investigated using classical organ bath chambers to record spontaneous mechanical activities (SMA). SMA was characterized by the occurrence of rhythmic phasic contractions (type-I) or by spontaneously occurring large contractions superimposed on small rhythmic contractions (type-II). In the presence of atropine and guanethidine (NANC conditions), these large contractions were inhibited by bicuculline, a GABA(A)-receptor antagonist as well as by TTX, L-NAME and apamin together, or L 732-138, a NK1-receptor antagonist. In NANC conditions, GABA induced a transient monophasic relaxation or a biphasic effect characterized by a relaxation followed by a tonic contraction in both type-I and -II preparations. Both the inhibitory and excitatory effects of GABA were blocked by TTX and L-NAME + apamin; the GABA-induced contraction was also sensitive to L 732-138. The responses to GABA were mimicked by the GABA(A)-receptor agonist, muscimol, whereas baclofen and CACA, respectively GABA(B) and GABA(C)-receptors agonists showed no effect. These results demonstrated that only GABA(A)-receptors seem to be involved in the regulation of SMA in rat distal colon in NANC conditions. Release of NANC inhibitory transmitter (NO and probably ATP) and NANC excitatory transmitter (maybe substance P) might be involved.  相似文献   

9.
This study examined the effect of schisandrin, one of the major lignans isolated from Schisandra chinensis, on spontaneous contraction in rat colon and its possible mechanisms. Schisandrin produced a concentration-dependent inhibition (EC50 = 1.66 μM) on the colonic spontaneous contraction. The relaxant effect of schisandrin could be abolished by the neuronal Na+ channel blocker tetrodotoxin (1 μM) but not affected by propranolol (1 μM), phentolamine (1 μM), atropine (1 μM) or nicotine desensitization, suggesting possible involvement of non-adrenergic non-cholinergic (NANC) transmitters released from enteric nerves. Nω-nitro-l-arginine methyl ester (100-300 μM), a nitric oxide synthase inhibitor, attenuated the schisandrin response. The role of nitric oxide (NO) was confirmed by an increase in colonic NO production after schisandrin incubation, and the inhibition on the schisandrin responses by soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-α]-quinoxalin-1-one (1-30 μM). Non-nitrergic NANC components may also be involved in the action of schisandrin, as suggested by the significant inhibition of apamin on the schisandrin-induced responses. Pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt hydrate (100 μM), a selective P2 purinoceptor antagonist, markedly attenuated the responses to schisandrin. In contrast, neither 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptors, nor chymotrypsin, a serine endopeptidase, affected the responses. All available results have demonstrated that schisandrin produced NANC relaxation on the rat colon, with the involvement of NO and acting via cGMP-dependent pathways. ATP, but not adenosine and VIP, likely plays a role in the non-nitrergic, apamin-sensitive component of the response.  相似文献   

10.
The purine nucleotide ATP mediates pulmonary vasodilation at birth by stimulation of P2Y purine receptors in the pulmonary circulation. The specific P2Y receptors in the pulmonary circulation and the segmental distribution of their responses remain unknown. We investigated the effects of purine nucleotides, ATP, ADP, and AMP, and pyrimidine nucleotides, UTP, UDP, and UMP, in juvenile rabbit pulmonary arteries for functional characterization of P2Y receptors. We also studied the expression of P2Y receptor subtypes in pulmonary arteries and the role of nitric oxide (NO), prostaglandins, and cytochrome P-450 metabolites in the response to ATP. In conduit size arteries, ATP, ADP, and AMP caused greater relaxation responses than UTP, UDP, and UMP. In resistance vessels, ATP and UTP caused comparable vasodilation. The response to ATP was attenuated by the P2Y antagonist cibacron blue, the NO synthase antagonist N(omega)-nitro-l-arginine methyl ester (l-NAME), and the cytochrome P-450 inhibitor 17-octadecynoic acid but not by the P2X antagonist alpha,beta-methylene ATP or the cyclooxygenase inhibitor indomethacin in conduit arteries. In the resistance vessels, l-NAME caused a more complete inhibition of the responses to ATP and UTP. Responses to AMP and UMP were NO and endothelium dependent, whereas responses to ADP and UDP were NO and endothelium independent in the conduit arteries. RT-PCR showed expression of P2Y(1), P2Y(2), and P2Y(4) receptors, but not P2Y(6) receptors, in lung parenchyma, pulmonary arteries, and pulmonary artery endothelial cells. These data suggest that distinct P2Y receptors mediate the vasodilator responses to purine and pyrimidine nucleotides in the juvenile rabbit pulmonary circulation. ATP appears to cause NO-mediated vasodilation predominantly through P2Y2 receptors on endothelium.  相似文献   

11.
Comparative studies of purinergic nerves.   总被引:7,自引:0,他引:7  
Purinergic nerves supply the gastrointestinal tract of vertebrates, including fish, amphibians, reptiles and birds, as well as mammals. Their cell bodies are located in Auerbach's plexus and their axons extend in an anal direction before innervating mainly the circular muscle coat. In the stomach they are controlled by preganglionic cholinergic fibres of parasympathetic origin. They are involved in "receptive relaxation" of the stomach, "descending inhibition" in peristalsis and reflex relaxation of oesophageal and internal anal sphincters. The terminal varicosities of purinergic nerves are characterised by a predominance of "large opaque vesicles," which can be distinguished from the "large granular vesicles" found in small numbers in both adrenergic and cholinergic nerves. Stimulation of purinergic nerves with single pulses produces hyperpolarisations of up to 25 mV (inhibitory junction potentials) in smooth muscle cells. These potentials are unaffected by atropine, adrenergic neuron blocking agents or sympathetic denervation, but are abolished by tetrodotoxin. The "rebound contraction" which characteristically follows cessation of purinergic nerve stimulation is probably due to prostaglandin. Evidence that ATP is the transmitter released from purinergic nerves includes: (1) synthesis and storage of ATP in nerves; (2) release of ATP from the nerves when they are stimulated; (3) exogenously applied ATP mimicking the action of nerve-released transmitter, both producing a specific increase in K+ conductance; (4) the presence of Mg-activated ATPase, 5'-nucleotidase and adenosine deaminase, enzymes which inactivate ATP; (5) drugs (including quinidine, some 2-substituted imidazolines, 2-2'pyridylisatogen and dipyridamole) which produce similar blocking or potentiating effects on the response to exogenously applied ATP and nerve stimulation. Speculations are made about the evolution and development of the nervous system, including the possibility that purinergic nerves are a primitive nerve type.  相似文献   

12.
Effects of nonadrenergic and noncholinergic (NANC) inhibitory nerves on cholinergic neurotransmission were examined in isolated bronchial segments from cats in the presence of propranolol (10(-6) M) and indomethacin (10(-6) M) by use of electrical field stimulation (EFS) techniques. EFS caused contraction alone in tissues at the baseline tension and biphasic responses (contraction and relaxation) in tissues precontracted with 5-hydroxytryptamine. Contraction was abolished by atropine (10(-6) M), and relaxation was abolished by tetrodotoxin (10(-6) M). At the baseline tension, EFS at frequencies greater than 10 Hz inhibited the subsequent (4 min later) contraction induced by EFS at 1-5 Hz. EFS-induced inhibition was stimulus frequency dependent and reached maximum at 20 Hz. However, EFS at 20 Hz did not inhibit the subsequent contractile response to acetylcholine (10(-7) to 10(-3) M). Exogenously applied vasoactive intestinal peptide mimicked EFS-induced inhibitory effects, but substance P and calcitonin gene-related peptide did not. The inhibitory effect of EFS at 20 Hz was not altered by pyrilamine, cimetidine, naloxone, methysergide, phentolamine, BW755C, AF-DX 116, or removal of epithelium. These results imply that the NANC transmitter acts via presynaptic cholinergic receptors.  相似文献   

13.
OBJECTIVE: Nedocromil sodium (nedocromil) improves the clinical condition of asthmatic subjects but its mechanism of action is not fully understood. This study aimed to determine whether nedocromil alters the ability of contractile and relaxant non-adrenergic, non-cholinergic neural (NANC) responses to stabilise tone by inhibiting or potentiating these responses in bronchial smooth muscle and, if so, whether the action is on a pre- or postjunctional level. RESULTS: Nedocromil attenuated contractile but not relaxant NANC responses (elicited by electric field stimulation) significantly (P < 0.05) in guinea pig main bronchi in vitro. However, the ability of NANC responses to stabilise tone (convergence effect) was not significantly impaired by nedocromil. Furthermore, nedocromil did not significantly shift the concentration response curve (-log EC50) to neurokinin A (NKA), the dominating contractile NANC transmitter, or alter the maximum response to NKA (P > 0.05). Submaximum or maximum contractile responses to histamine were not markedly affected by nedocromil (P > 0.05). CONCLUSIONS: Nedocromil exerts selective neural inhibition of the contractile but not of the relaxant NANC responses on a pre-junctional level in bronchial smooth muscle. Nedocromil does not, however, markedly impair the ability of NANC response to stabilise bronchial smooth muscle tone.  相似文献   

14.
Effects of stimulation of intramural nerves in the circular smooth muscle layer of the porcine colon (Sus scrofa domestica) were studied using the sucrose-gap technique. Electrical field stimulation of the preparation, superfused with Krebs solution at 21 degrees C, induced a transient hyperpolarization of the smooth muscle cell membrane. This hyperpolarization was an inhibitory junction potential (IJP). The responses obtained from circular muscle originating from either the centripetal or centrifugal gyri of the ascending colon did not differ significantly. The IJP was characterized as being mediated by intramural, nonadrenergic, noncholinergic (NANC) nerves. The amplitude and latency of the IJP changed linearly with temperature (15-25 degrees C: +1 mV and -0.1 s per degree Celsius, respectively) reflecting a temperature-dependent synchronization of transmitter release. The membrane resistance decreased during the IJP. The IJP amplitude decreased or increased during conditioning hyperpolarizations or depolarizations, respectively, and reversed at membrane potentials about 30 mV more negative than the resting membrane potential. Potassium conductance blocking agents, barium (1 mM), tetraethylammonium chloride (TEA, 20 mM), 4-aminopyridine (4-AP, 5 mM), apamin (1 microM), and aminacrine (10(-4) M) added to the superfusion medium increased the membrane resistance. Only barium, TEA, and apamin depolarized the smooth muscle cell membrane. The IJP amplitude decreased in the presence of aminacrine and apamin to 75 and 35%, respectively, suggesting that apamin-sensitive Ca2+-activated K+ channels are involved in this response. ATP, adenosine, and related adenine nucleotides in concentrations up to 10(-3) M did not mimic the IJP. Superfusion with ATP for 15 min revealed a gradually increasing attenuation by up to 20% of the IJP. This might suggest that the release of neurotransmitter from intramural NANC nerves is modulated presynaptically via purinoceptors. Exogenously applied vasoactive intestinal polypeptide (VIP) in concentrations of 10(-9) to 10(-4) M did not affect the preparation. Also at elevated temperatures (up to 35 degrees C), VIP (10(-7) to 10(-4) M) did not cause measurable effects. It is concluded that the inhibitory mediator of the intramural NANC nerves present in the circular muscle layers of the porcine colon is neither a purine nor VIP.  相似文献   

15.
16.
It is not clear how the increase in intraluminal pressure behind an obstructing ureteric calculus causes an increase in action potential frequency in ureteric sensory nerves so the pain messages are transmitted to the brain. It has been proposed that ureteric distension causes urothelial release of ATP, which activates purinoceptors on suburothelial nociceptive sensory nerves. The purpose of this study was to determine whether distension of the human ureter results in the release of ATP and whether the nociceptive P2 receptor, P2X(3), is expressed on suburothelial sensory nerves in the human ureter. Human ureter segments were perfused with Krebs solution and intermittently distended to a range of pressures. Samples of perfusate were collected throughout and the ATP concentration ([ATP]) was determined using a luciferin-luciferase assay. Sections of ureter were stained using antibodies against P2X(3) and capsaicin receptors (TRPV1). [ATP] rose to more than 10 times baseline levels after distension beyond a threshold of 25-30 cmH(2)O. Immunofluorescence studies on consecutive frozen sections showed that suburothelial nerves stained positively for P2X(3) and capsaicin receptors, with no staining in controls. These findings are consistent with the hypothesis that purinergic signalling is involved in human ureteric mechanosensory transduction, leading to nociception.  相似文献   

17.
Brief, spatially localized Ca(2+) transients occur in the smooth muscle adjacent to perivascular nerves of small arteries during neurogenic contractions. We named these "junctional Ca(2+) transients" (jCaTs) and postulated that they arose from Ca(2+) entering smooth muscle cells through P2X(1) receptors activated by neurally released ATP. Nevertheless, the lack of potent, subtype-selective P2X-receptor antagonists made determining the exact molecular identity of the channels difficult. Here we used small, pressurized mesenteric arteries from P2X(1)-receptor-deficient mice (KO) to test the hypothesis that jCaTs arise from Ca(2+) entering the smooth muscle cell via P2X(1) receptors. In wild-type (WT) arteries, confocal microscopy of fluo-4 fluorescence during electrical field stimulation (EFS) of perivascular sympathetic nerves revealed jCaTs in the smooth muscle cells adjacent to the perivascular nerves, similar to those reported previously in rat arteries, and alpha-latrotoxin (2.5 nM) markedly increased the frequency of "spontaneous" jCaTs. In the KO arteries, however, neither EFS nor alpha-latrotoxin elicited any jCaTs. A potent P2X-receptor agonist, alpha,beta-methylene ATP (10.0 microM), elicited strong contractions and increased intracellular Ca(2+) concentration in WT arteries but elicited neither in KO arteries. A biphasic vasoconstriction in response to EFS was observed in WT arteries. In KO arteries, however, the initial rapid, transient component of the biphasic vasoconstriction was absent. The data support the hypothesis that jCaTs represent Ca(2+) that enters the smooth muscle cells through P2X(1) receptors activated by neurally released ATP and that this Ca(2+) is involved in the initial rapid component of the sympathetic neurogenic contraction.  相似文献   

18.
Diabetes mellitus is a major cause of neuropathy, leading to adverse effects including autonomic gastrointestinal dysfunction. Oxidative stress contributes to the etiology of diabetic neuropathy. The aim was to examine whether treatment with the antioxidant, alpha-lipoic acid (LA), could prevent or correct diabetic functional defects in the gastric fundus non-adrenergic, non-cholinergic (NANC) nerves, which use nitric oxide as their major neurotransmitter. LA (100 mg/kg/d) was given in a prevention study for 8 weeks following streptozotocin-diabetes induction, and in an intervention study for 4 weeks after 4 weeks of untreated diabetes. Fundus strips were studied in vitro after precontraction with 5-hydroxytryptamine in the presence of guanethidine and atropine to isolate NANC relaxation to electrical field stimulation. After 4 and 8 weeks of diabetes, there were 26% and 48% deficits in maximum relaxation, respectively. Prevention LA treatment gave 83% protection; intervention LA prevented the deterioration between 4 and 8 weeks of diabetes and corrected the initial 4 week deficit by 56%. Diabetes also resulted in a failure to maintain relaxation for prolonged stimulation, which was prevented by LA. Thus, LA prevented and reversed the development of impaired gastric fundus NANC responses in diabetic rats, which has potential therapeutic implications for gastrointestinal autonomic neuropathy.  相似文献   

19.
Functional innervation of cat airways smooth muscle was examined in isolated segments of trachea and bronchi using electrical field stimulation (EFS) techniques. Field stimulation caused contraction in tissues at resting tone and biphasic responses (contraction followed by relaxation) in tissues precontracted with 5-hydroxytryptamine (5-HT). Contractions were abolished by 10(-6) M atropine. Inhibitory responses were dependent on impulse voltage, duration, and frequency. At low voltages (less than or equal to 10 V) and pulse durations (less than or equal to 0.3 ms), EFS induced relaxations were abolished by 3 X 10(-6) M tetrodotoxin (TTX). Greater stimulus parameters elicited TTX-resistant relaxations. Pretreatment of the tissues with 10(-6) M propranolol and 10(-5) M guanethidine caused rightward shifts in relaxation frequency-response curves. These findings indicate that cat airways are innervated by excitatory cholinergic, inhibitory adrenergic, and inhibitory nonadrenergic noncholinergic (NANC) nerves. Pretreatment of the tissues with hexamethonium, cimetidine, indomethacin, or nordihydroguaiaretic acid did not affect NANC relaxation responses. It is concluded that NANC inhibitory responses in cat airway smooth muscle are mediated through intrinsic postganglionic nerve fibers and occur independently of histamine H2-receptor activation and without involvement of cyclooxygenase or lipoxygenase products of arachidonic acid metabolism.  相似文献   

20.
Vasoconstriction via alpha(2)-receptors is known to be sensitive to acidic pH, but little is known about the pH sensitivity of P2X receptors. ATP is a cotransmitter released with norepinephrine from the sympathetic nerves and causes vasoconstriction via P2X purinergic receptors on vascular smooth muscle. We hypothesized that reductions in pH would attenuate P2X-mediated vasoconstriction in iliofemoral artery rings. Twenty-five rats were killed, and the iliac and femoral arteries were dissected out and placed in modified Krebs-Henseleit buffer. The arteries were cut into 2-mm sections and mounted in an organ tissue bath. Tension (g) was measured during a potassium chloride and norepinephrine challenge (maximal tension). The arteries were then exposed to alpha,beta-methylene ATP (10(-7)-10(-3) M; n = 13) or phenylephrine (10(-7)-10(-4) M; n = 6) with a tissue bath pH of 7.8, 7.4, and 7.0. Dose-response curves were fit with nonlinear regression analysis to calculate the EC(50) and slope. The peak tension with alpha,beta-methylene ATP was lower during pH 7.0 (1.37 +/- 0.09 g) compared with pH 7.8 (1.90 +/- 0.12 g). EC(50) was highest with pH 7.4 (-5.38 +/- 0.18 log M alpha,beta-methylene ATP) and lowest with pH 7.0 (-4.9 +/- 0.10 log M alpha,beta-methylene ATP). The slopes of the dose-response curves were not different. Pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) abolished contraction caused by the addition of alpha,beta-methylene ATP (n = 6). There was no effect of pH on phenylephrine dose-response curves. These data indicate that the vasoconstrictor response to alpha,beta-methylene ATP is sensitive to pH and that lower pH attenuates the response of P2X purinergic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号