首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assimilation of 14CO2 or 14C-acetate by the hydrocarbon producing alga Botryococcus braunii Kützing was investigated to determine the allocation of incorporated 14C among early metabolites of photosynthesis and secondary metabolites. When the cells were exposed to NaH14CO3 for 10 sec, over 90% of incorporated 14C was detected in phosphoglycerate, suggesting that this alga assimilates inorganic carbon by the C-3 pathway. The distribution pattern of 14C in the number of metabolites revealed that organic acids, neutral sugars and amino acids were first labelled with 14C, and, after lag periods of a few minutes, lipids including hydrocarbon were increasingly labelled. Addition of 5 mM acetate to the culture medium did not affect the growth of this alga but enhanced cellular respiration. The incorporation of 14CO2 into the lipid fraction was stimulated, but net photosynthesis was inhibited by the addition of acetate. 14C-acetate was incorporated into lipids at a very low rate in comparison with the rate of 14CO2 incorporation.  相似文献   

2.
The products of short time photosynthesis and of enhanced dark 14CO2 fixation (illumination in helium prior to addition of 14CO2 in dark) by Chlorella pyrenoidosa and Anacystis nidulans were compared. Glycerate 3-phosphate, phosphoenolpyruvate, alanine, and aspartate accounted for the bulk of the 14C assimilated during enhanced dark fixation while hexose and pentose phosphates accounted for the largest fraction of isotope assimilated during photosynthesis. During the enhanced dark fixation period, glycerate 3-phosphate is carboxyl labeled and glucose 6-phosphate is predominantly labeled in carbon atom 4 with lesser amounts in the upper half of the C6 chain and traces in carbon atoms 5 and 6. Tracer spread throughout all the carbon atoms of photosynthetically synthesized glycerate 3-phosphate and glucose 6-phosphate. During the enhanced dark fixation period, there was a slow formation of sugar phosphates which subsequently continued at 5 times the initial rate long after the cessation of 14CO2 uptake. To explain the kinetics of changes in the labelling patterns and in the limited formation of the sugar phosphates during enhanced dark CO2 fixation, the suggestion is made that most of the reductant mediating these effects did not have its origin in the preillumination phase.

It is concluded that a complete photosynthetic carbon reduction cycle operates to a limited extent, if at all, in the dark period subsequent to preillumination.

  相似文献   

3.
Chlorella pyrenoidosa were allowed to photosynthesize for short periods of time in the presence of 14CO2 and HTO. Analysis of tritium and 14C labeling of photosynthetic intermediate compounds showed that the T/14C ratio of glycolic acid was comparable to that of intermediate compounds of the photosynthetic carbon reduction cycle when photosynthesis was performed in nearly 100% oxygen and only slightly higher under steady-state conditions. It is concluded that formation of labeled glycolic acid as a consequence of its proposed hydrogen transport role in photosynthesis is quantitatively of limited importance compared to the net synthesis of glycolic acid from CO2.  相似文献   

4.
To study the effect of O2 on the photosynthetic and glycolate pathways, maize leaves were exposed to 14CO2 during steady-state photosynthesis in 21 or 1% O2. At the two O2 concentrations after a 14CO2 pulse (4 seconds) followed by a 12CO2 chase, there was a slight difference in CO2 uptake and in the total amount of 14C fixed, but there were marked changes in 14C distribution especially in phosphoglycerate, ribulose bisphosphate, glycine, and serine. The kinetics of 14C incorporation into glycine and serine indicated that the glycolate pathway is inhibited at low O2 concentrations. In 1% O2, labeling of glycine was reduced by 90% and that of serine was reduced by 70%, relative to the control in 21% O2. A similar effect has been observed in C3 plants, except that, in maize leaves, only 5 to 6% of the total 14C fixed under 21% O2 was found in glycolate pathway intermediates after 60 seconds chase. This figure is 20% in C3 plants. Isonicotinyl hydrazide did not completely block the conversion of glycine to serine in 21% O2, and the first carbon atom of serine was preferentially labeled during the first seconds of the chase. These results supported the hypothesis that the labeled serine not only derives from glycine but also could be formed from phosphoglycerate, labeled in the first carbon atom during the first seconds of photosynthesis.  相似文献   

5.
Partitioning and transport of recently fixed photosynthate was examined following 14CO2 pulse-labeling of intact, attached leaves of Salvia splendens L. maintained in an atmosphere of 300 microliters per liter CO2 and 20, 210, or 500 milliliters per liter O2. Under conditions of increasing O2 (210, 500 milliliters per liter), a smaller percentage of the recently fixed 14C in the leaf was allocated to starch, whereas a greater percentage of the fixed 14C appeared in amino acids, particularly serine. The increase in 14C in amino acids was reflected in material exported from source leaves. A higher percentage of 14C in serine, glycine, and glutamate was recovered in petiole extracts when source leaves were maintained under elevated O2 levels. Although pool sizes of these amino acids were increased in both the leaves and petioles with increasing photorespiratory activity, no significant changes in either 14C distribution or concentration of transport sugars (i.e. stachyose, sucrose, verbascose) were observed. The data indicate that, in addition to being recycled intracellularly into Calvin cycle intermediates, amino acids produced during photorespiration may also serve as transport metabolites, allowing the mobilization of both carbon and nitrogen from the leaf under conditions of limited photosynthesis.  相似文献   

6.
A procedure for continuous measurement of 14CO2 production by cultured cells grown in Leighton tubes has been described. The apparatus developed also permits aliquots of the incubation medium to be taken during the experiments for analysis of labeled metabolites released into the solution. A simple method for determination of [14C]lactic acid in such aliquots has been described. The reproducibility and usefulness of the apparatus has been demonstrated by incubating fibroblasts with glucose labeled in the C-1 or C-6 position, and examining the effects of selected drugs on CO2 and lactic acid production.  相似文献   

7.
Abstract

On the metabolism of ethanol in the Pea stem tissues. — The average concentration of ethanol in the growing part of the etiolated pea internodes is of the order of 10-3M. Previous work showed that auxin at growth promoting concentration markedly lowers this level in the excised internodes. This finding prompted a series of investigations on C14 labeled ethanol utilization in this material.

The capacity of the segments to metabolize ethanol is remarkable: with an external ethanol concentration 5X10-3M the C14 labeled CO2 originated from 1-C14 ethanol accounted for about 10% of total CO2 produced during the first hour of treatment. Moreover, an amount of ethanol about 10 fold higher that that dissimilated to CO2 was metabolized to various yet unidentified compounds. The ratio between the contribution of ethanol to CO2 and that to other metabolites appeared maximal in the first period after feeding the labeled compound. This ratio was significantly higher then that found for 6-C14 glucose.

These preliminary results suggest the possibility that ethanol produced in glycolysis could represent an interesting metabolite in an anabolic pathway different from the one leading from pyruvate to the Krebs cycle acids.  相似文献   

8.
Rates and products of photosynthetic 14CO2 fixation by division synchronized cultures of Euglena gracilis strain Z were determined over the cycle. Rate of 14CO2 fixation doubled in a continuous manner throughout the light phase followed by a slight reduction of photosynthetic capacity in the dark phase. Greater 14C incorporation into the nucleic acid-polysaccharide fraction occurred with mature cells. Products of 14CO2 fixation varied markedly over the cycle: although with mature cells 14C-labeled sucrose was not detected, with dividing cells this was the main sugar labeled; in young cells 14C maltose was formed. Cells removed at end of dark phase accumulated 14C in glycolate, whereas at other stages over the cycle less 14C was present in glycolate, and this was accompanied by a rapid incorporation of 14C into glycine and serine. Glycerate was an early and major product of photosynthesis with cells at the mature stage of the cycle.  相似文献   

9.
Manfred Kluge 《Planta》1969,88(2):113-129
Summary Detached phyllodia ofBryophyllum tubiflorum were fed under illumination with14CO2 at different times during the light/dark period (12:12 hours). After photosynthesis in presence of14CO2 during the intrinsic dark period the greatest part of soluble radioactivity was found in malate. When the same experiment was repeated during the light period, radioactivity was incorporated mainly into sucrose in the first hours while malate was labelled rather weakly. In the late afternoon (last third of the light period), malate became most heavily labelled again during photosynthesis with14CO2.Our results indicate that the synthesis of malate by PEP-carboxylase/malate dehydrogenase is inhibited at certain times during the night/day period by end product inhibition of PEP-carboxylase, as was demonstrated byQueiroz (1967, 1968) andTing (1968) in vitro.During inhibition of the PEP-carboxylase there is no competition between the synthesis of malate and CO2-fixation by the Calvin cycle. Thus radioactivity can flow into sucrose via the Calvin cycle during this time. When the malate content of the phyllodia is low, CO2-fixation by PEP-carboxylase is not inhibited. Now this pathway dominates over photosynthesis via the Calvin cycle, for PEP-carboxylase has a higher affinity for CO2 than carboxydismutase. Therefore malate now becomes more labelled than sucrose.  相似文献   

10.
A method for continuous measurement of export from a leaf   总被引:7,自引:5,他引:2       下载免费PDF全文
Export of labeled material derived by continuous photosynthesis in 14CO2 was monitored with a Geiger-Müller detector positioned next to an exporting leaf blade. Rate of export of labeled material was calculated from the difference between rates of retention and net photosynthesis of labeled carbon for the observed leaf. Given certain conditions, including nearly constant distribution of labeled material among minor veins and various types of cells, count rate data for the source leaf can be converted to rate of export of carbon. Changes in counting efficiency resulting from changes in leaf water status can be corrected for with data from a transducer which measures leaf thickness.  相似文献   

11.
The labeling of intermediate compounds and photosynthetic cofactors during photosynthesis and periods of darkness by Chlorella pyrenoidosa in the presence of 32P-labeled phosphate and 14CO2 have heen investigated. Algae adapted to photosynthesis in air were used, and the level of carbon dioxide was maintained at approximately 0.04 % and at constant specific radioactivity during the course of the experiments. The transient changes which occur in the levels of labeled fructose-1,6-diphosphate and in sedoheptulose-1,7-diphosphate, and in the corresponding monophosphates when the light is turned off suggest a light activation of the diphosphatase enzymes which decays after about 2 minutes of darkness. It is suggested that a light-dark switch in enzymic activities permits photosynthesis and glycolysis to occur in light and dark respectively with the same enzymic apparatus. The greatly diminished rate of disappearanec of the carboxylation substrate, ribulose-1,5-diphosphate, after about 2 minutes suggests that there is also a light activation of the carboxylation reaction in vivo. Large transient changes in the level of pyrophosphate between light and dark indicate that there may be an unstable cofactor which decomposes to give pyrophosphate during or alter killing of the algal cells. The possibility that this cofactor is involved in an activation of Carbon dioxide for the carboxylation reaction in vivo is suggested. Light-dark transient changes in labeling of other compounds of the photosynthetic carbon reduction cycle and related compounds were determined, and possible significance of these changes is discussed.(PDF DAMAGED)  相似文献   

12.
Prolonged inorganic nitrogen (NO3 +NH4 +) limitation of non-N2-fixing soybean plants affected leaflet photosynthesis rates, photosynthate accumulation rates and levels, and anaplerotic carbon metabolite levels. Leaflets of nitrogen-limited (N-Lim), 27–31-day-old plants displayed 15 to 23% lower photosynthesis rates than leaflets of nitrogen-sufficient (N-Suff) plants. In contrast, N-Lim plant leaflets displayed higher sucrose and starch levels and rates of accumulation, as well as higher levels of carbon metabolites associated with sucrose and starch synthesis, e. g., glycerate-3-phosphate and glucose phosphates, than N-Suff plant leaflets. Concurrently, levels of soluble protein, chlorophyll, and anaplerotic metabolites, e.g., malate and phosphoenolpyruvate, were lower in leaflets of N-Lim plants than N-Suff plants, suggesting that the enzymes of the anaplerotic carbon metabolite pathway were lower in activity in N-Lim plant leaflets. Malate net accumulation rates in the earliest part of the illumination period were lower in N-Lim than in N-Suff plant leaflets; however, by the midday period, malate accumulation rate in N-Lim plant leaflets exceeded that in leaflets of N-Suff plants. Further, soluble protein accumulation rates in leaflets of N-Suff and N-Lim plants were similar, and the rate of dark respiration, measured in the early part of the dark period, was higher in N-Lim plant leaflets than in N-Suff plant leaflets. It was concluded that during prolonged N-limitation, foliar metabolite conditions favored the channelling of a large proportion of the carbon assimilate into sucrose and starch, while assimilate flow through the anaplerotic pathway was diminished. However, in some daytime periods, there was a normal level of carbon assimilate channelled through the anaplerotic pathway for ultimate use in amino acid and protein synthesis.Abbreviations ADPG-PPiase ADPglucose pyrophosphorylase - Ce CO2 in the leaf photosynthesis measuring cuvette - Ci leaf internal CO2 during photosynthesis measurement - Chl chlorophyll - DHAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - Gsw stomatal conductance with units as mmol H2O m–2 s–1 - G1P glucose-1-phosphate - G6P glucose-6-phosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphate - FBPase-pH 8.1 chloroplastic fructose-1,6-bisP (C-1) phosphatase (pH 8.1) - MAL malate - N inorganic nitrogen, i.e. NO3 +NH4 + (at levels and molar ratios indicated) - PE post-emergence - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase - PGA 3-phosphoglycerate - PYR pyruvate - PYR kinase pyruvate kinase - Pn net CO2 photoassimilation in leaves - PPFD photosynthetic photon flux density - PPRC pentose phosphate reductive cycle - RuBP ribulose-1,5-bisphosphate; rubisco-ribulose-1,5-bisphosphate carboxylase/oxygenase - SLW specific leaf mass - SPS sucrose-6-phosphate synthase - TCA cycle tricarboxylic acid cycle; triose-P-DAP+GAP  相似文献   

13.
During photosynthesis by mesophyll protoplasts of wheat and tobacco, a linear efflux of sucrose and hexoses to the medium was observed, with the size of the intraprotoplast sugar pools remaining constant. Efflux of metabolites labeled by 14CO2 fixation was initially low because of dilution by internal pools, but increased exponentially with time. The results have significance both in terms of the mechanism of translocation and the use of isolated protoplasts in photosynthetic studies.  相似文献   

14.
To test the possibility of inorganic carbon limitation of the marine unicellular alga Emiliania huxleyi (Lohmann) Hay and Mohler, its carbon acquisition was measured as a function of the different chemical species of inorganic carbon present in the medium. Because these different species are interdependent and covary in any experiment in which the speciation is changed, a set of experiments was performed to produce a multidimensional carbon uptake scheme for photosynthesis and calcification. This scheme shows that CO2 that is used for photosynthesis comes from two sources. The CO2 in seawater supports a modest rate of photosynthesis. The HCO is the major substrate for photosynthesis by intracellular production of CO2 (HCO+ H+→ CO2+ H2O → CH2O + O2). This use of HCO is possible because of the simultaneous calcification using a second HCO, which provides the required proton (HCO+ Ca2+→ CaCO3+ H+). The HCO is the only substrate for calcification. By distinguishing the two sources of CO2 used in photosynthesis, it was shown that E. huxleyi has a K½ for external CO2 of “only” 1.9 ± 0.5 μM (and a Vmax of 2.4 ± 0.1 pmol·cell−1·d−1). Thus, in seawater that is in equilibrium with the atmosphere ([CO2]= 14 μM, [HCO]= 1920 μM, at fCO2= 360 μatm, pH = 8, T = 15° C), photosynthesis is 90% saturated with external CO2. Under the same conditions, the rate of photosynthesis is doubled by the calcification route of CO2 supply (from 2.1 to 4.5 pmol·cell−1·d−1). However, photosynthesis is not fully saturated, as calcification has a K½ for HCO of 3256 ± 1402 μM and a Vmax of 6.4 ± 1.8 pmol·cell−1·d−1. The H+ that is produced during calcification is used with an efficiency of 0.97 ± 0.08, leading to the conclusion that it is used intracellularly. A maximum efficiency of 0.88 can be expected, as NO uptake generates a H+ sink (OH source) for the cell. The success of E. huxleyi as a coccolithophorid may be related to the efficient coupling between H+ generation in calcification and CO2 fixation in photosynthesis.  相似文献   

15.
Analysis of steady state photosynthesis in alfalfa leaves   总被引:8,自引:8,他引:0       下载免费PDF全文
A method for carrying out kinetic tracer studies of steady state photosynthesis in whole leaves has been developed. An apparatus that exposes whole leaves to 14CO2 under steady state conditions, while allowing individual leaf samples to be removed as a function of time, has been constructed. Labeling data on the incorporation of 14C into Medicago sativa L. metabolite pools are reported. A carbon dioxide uptake rate of 79 micromoles 14CO2 per milligram chlorophyll per hour was observed at a CO2 level slightly below that of air. Several actively turning over pools of early and intermediate metabolites, including 3-phosphoglyceric acid, glycerate, citrate, and uridine diphosphoglucose, showed label saturation after approximately 10 to 20 minutes of photosynthesis with 14CO2 under steady state conditions. Alanine labeling increased more rapidly at first, and then at a lower rate as saturation was approached. Sucrose was a major product of photosynthesis and label saturation of the sucrose pool was not observed. Labeled carbon appeared rapidly in secondary metabolites. The steady state apparatus used has numerous advantages, including leaf temperature control, protection against leaf dehydration, high illumination, known 14CO2 specific radioactivity, and provision for control and adjustment of 14CO2 concentration. The apparatus allows for experiments of long duration and for sufficient sample points to define clearly the metabolic steady state.  相似文献   

16.
Rate of photosynthesis and activities of photosynthetic carbon reduction cycle enzymes were determined in pods (siliqua), whereas rate of dark CO2 fixation, oil content and activities of enzymes involved in dark CO2 metabolism were measured in seeds ofBrassica campestris L. cv. Toria at different stages of pod/seed development. The period between 14 and 35 days after anthesis corresponded to active phase of seed development during which period, seed dry weight and oil content increased sharply. Rate of pod photosynthesis and activities of photosynthetic carbon reduction cycle enzymes were maximum in younger pods but sufficiently high levels were retained up to 40 days after anthesis. The rate of dark14CO2 fixation in seeds increased up to 21 days after anthesis and declined thereafter but maintaining sufficiently high rates till 35 days after anthesis. Similarly various enzymes viz., phosphoenolpyruvate carboxylase, NAD+-malate dehydrogenase and NADP+-malic enzyme, involved in dark CO2 metabolism retained sufficient activities during the above period. These enzyme activities were more than adequate to maintain the desired supply of malate which mainly arises from dark CO2 fixation in seeds and further translocated to leucoplasts for onward synthesis of fatty acids. Enzyme localization experiments revealed phosphoenolpyruvate carboxylase and enzymes of sucrose metabolism to be present only in cytosol, whereas enzymes of glycolysis were present both in cytosolic and leucoplastic fractions. These results indicated that oil synthesis in developingBrassica seeds is supported by pod photosynthesis and dark CO2 fixation in seeds as the former serves as the source of sucrose and the latter as a source of malate  相似文献   

17.
Aminooxyacetate (1 millimolar) did not inhibit photosynthetic 14CO2 fixation by Chlamydomonas reinhardtii Dangeard, (−) strain (N.90) but greatly stimulated the biosynthesis and excretion of glycolate. Similar results were obtained from cells grown with 5% CO2 or low CO2 (air). After 2 minutes with air-grown cells, [14C]glycolate increased from 0.3% of the total 14C fixed by the control to 11.7% in the presence of aminooxyacetate and after 10 minutes from 3.8% to 41.1%. Ammonium nitrate (0.2 millimolar) in the media blocked the aminooxyacetate stimulation of glycolate excretion. Chromatographic analyses of the labeled products in the cells and supernatant media indicated that aminooxyacetate also completely inhibited the labeling of alanine while some pyruvate accumulated and was excreted. A high percentage (35%) of initial 14CO2 fixation was into C4 acids. Initial products of 14CO2 fixation included phosphate esters as well as malate, aspartate, and glutamate in treated or untreated cells. Lactate was also a major early product of photosynthesis, and its labeling was reduced by aminooxyacetate. Inasmuch as lactate was not excreted, glycolate excretion seemed to be specific. When photosynthesis was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, labeled organic and amino acids but not phosphate esters were lost from the cells. Aminooxyacetate did not inhibit the enzymes associated with glycolate synthesis from ribulose bisphosphate.  相似文献   

18.
In vivo tracer studies with 14C have been performed to help determine pathways of incorporation of newly assimilated nitrogen into N2-fixing cells of Anabaena cylindrica. After photosynthesis in Ar:O2:14CO2 for 30 min, the addition of N2 or NH 4 + resulted in increased rates of 14CO2-incorporation both in the light and dark, and in increased incorporation of 14C into amino acids at the expense of sucrose and sugar phosphates. Evidence of enhanced sucrose catabolism and increased pyruvate kinase activity was obtained on adding nitrogen, and, of the 14C-labelling entering the tricarboxylic acid cycle, more appeared in citrate and 2-oxoglutarate than in malate and oxaloacetate. The kinetics of 14C-incorporation into various amino acids suggest that in the light and dark the most important route of primary ammonia assimilation involves glutamine synthetase and that glutamate, aspartate, glycine and probably alanine are formed secondarily from glutamine.  相似文献   

19.
METABOLISM OF MALONIC ACID IN RAT BRAIN AFTER INTRACEREBRAL INJECTION   总被引:4,自引:4,他引:0  
Labeled malonic acid ([1-14C] and [2-14C]) was injected into the left cerebral hemisphere of anesthetized adult rats in order to determine the metabolic fate of this dicarboxylic acid in central nervous tissue. The animals were allowed to survive for 2, 5, 10. 15 or 30min. Blood was sampled from the torcular during the experimental period and labeled metabolites were extracted from the brain after intracardiac perfusion. There was a very rapid efflux of unreacted malonate in the cerebral venous blood. Labeled CO2 was recovered from the venous blood and the respired air after the injection of [1-14C]malonate but not after [2-14C]malonate. The tissue extracts prepared from the brain showed only minimal labeling of fatty acids and sterols. Much higher radioactivity was present in glutamate, glutamine, aspartate, and GABA. The relative specific activities (RSA) of glutamine never rose above 1.00. Aspartate was labeled very rapidly and revealed evidence of 14CO2 fixation in addition to labeling through the Krebs cycle. GABA revealed higher RSA after [1-14C]malonate than after [2-14C]malonate. Sequential degradations of glutamate and aspartate proved that labeling of these amino acids occurred from [1-14C] acetyl-CoA and [2-14C] acetyl-CoA, respectively, via the Krebs cycle. Malonate activation and malonyl-CoA decarboxylation in vivo were similar to experiments with isolated mitochondria. However, labeled malonate was not incorporated into the amino acids of free mitochondria. The results were compared to data obtained after intracerebral injection of [1-14C]acetate and [2-14C]acetate.  相似文献   

20.
Summary The metabolism and fate of specifically labeled glucose-14C were compared to mannitol-l-14C and arabitol-l-14C during basidiospore germination of Schizophyllum commune on glucose-asparagine minimal broth. Glucose-l-14C metabolism led to more 14CO2 evolution than glucose-6-14C in spores and the former activity increased upon germination. Liberation of 14CO2 from glucose-3,4-14C increased at 8 h to 12 h of germination and exceeded the amount of radioactive 14CO2 released from glucose-1-14C. The 14CO2 released from glucose-2-14C increased continually during germination while only minor changes in 14CO2 evolution occurred with glucose-6-14C. Unlabeled ethanol (0.25 M) inhibited 14CO2 evolution with glucose-3,4-14C and ungerminated spores and this inhibition disappeared upon germination.More 14CO2 was evolved from labeled glucose during germination and less radioactivity became associated with cellular material. Of the latter, alcohol-soluble extracts of spores or germlings contained mainly radioactive trehalose, less mannitol and little or no labeled arabitol, and this decreased upon germination. Germlings also converted more radioactive glucose-14C into KOH-insoluble material and KOH-soluble components. Spores or germlings converted arabitol-1-14C primarily into trehalose and this was not the case for mannitol-1-14C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号