首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian beta 2-adrenergic receptor: purification and characterization   总被引:8,自引:0,他引:8  
The beta 2-adrenergic receptors from hamster, guinea pig, and rat lungs have been solubilized with digitonin and purified by sequential Sepharose-alprenolol affinity and high-performance steric-exclusion liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of iodinated purified receptor preparations reveal a peptide with an apparent Mr of 64 000 in all three systems that coincides with the peptide labeled by the specific beta-adrenergic photoaffinity probe (p-azido-m-[125I]iodobenzyl)carazolol. A single polypeptide was observed in all three systems, suggesting that lower molecular weight peptides identified previously by affinity labeling or purification in mammalian systems may represent proteolyzed forms of the receptor. Purification of the beta-adrenergic receptor has also been assessed by silver staining, iodinated lectin binding, and measurement of the specific activity (approximately 15 000 pmol of [3H]dihydroalprenolol bound/mg of protein). Overall yields approximate 10% of the initial crude particulate binding, with 1-3 pmol of purified receptor obtained/g of tissue. The purified receptor preparations bind agonist and antagonist ligands with the expected beta 2-adrenergic specificity and stereoselectivity. Peptide mapping and lectin binding studies of the hamster, guinea pig, and rat lung beta 2-adrenergic receptors reveal significant similarities suggestive of evolutionary homology.  相似文献   

2.
An iodinated photosensitive derivative of norepinephine, N-(p-azido-m-iodophenethylamidoisobutyl)-norepinephrine (NAIN), has been synthesized and characterized. NAIN stimulated adenylate cyclase activity in guinea pig lung membranes in a manner similar to (-)-isoproterenol and was inhibited by (-)-alprenolol. NAIN was shown to compete with [125I]iodocyanobenzylpindolol for the beta-adrenergic receptor in guinea pig lung membranes with an affinity which was dependent on the presence of guanyl nucleotides. Carrier-free radioiodinated NAIN ([125I]NAIN) was used at 2 nM to photoaffinity label the beta-adrenergic receptor in guinea pig lung membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of (-)-alprenolol (1 microM) protectable [125I]NAIN labeling showed the same molecular mass polypeptide (65 kDa) that was specifically derivatized with the antagonist photolabel [125I]iodoazidobenzylpindolol. Specific labeling of the beta-adrenergic receptor with [125I]NAIN was dependent on the presence of MgCl2 and the absence of guanyl nucleotide. Guanosine-5'-O-(3-thiotriphosphate (100 microM) abolished specific labeling by [125I]NAIN. N-Ethylmaleimide (2 mM) in the presence of [125I]NAIN protected against the magnesium and guanyl nucleotide effect. These data show that NAIN is an agonist photolabel for the beta-adrenergic receptor.  相似文献   

3.
The structure of the human beta-adrenergic receptor in purified basal membranes of human placental syncytiotrophoblast was probed using photoaffinity labeling. Basal membranes display a high specific activity of receptors (4-5 pmol/mg protein) and possess both beta 1- and beta 2-adrenergic receptors subtypes. Autoradiography of membranes that were incubated with the beta-adrenergic antagonist [125I]iodoazidobenzylpindolol, photolyzed and then subjected to sodium dodecylsulfate-polyacrylamide gel electrophoresis, identified four radiolabeled peptides, Mr = 65-kDa, 54-kDa, 43-kDa and a novel higher molecular weight 76-kDa form of the receptor. Photoaffinity labeling of each of these four peptides displayed the pharmacological properties expected for true beta-adrenergic receptors. The 76-kDa photoaffinity labeled receptor peptide observed in human placenta basal membranes has not been reported elsewhere. Competition studies with the beta1-selective ligand CGP-20712A demonstrate that the photoaffinity labeled receptor peptides are composed of both beta 1- and beta 2-adrenergic receptor subtypes.  相似文献   

4.
Squalene epoxidase (SE) catalyzes the conversion of squalene to (3S)-2,3-oxidosqualene. Photolabeling and site-directed mutagenesis were performed on recombinant rat SE (rrSE) in order to identify the location of the substrate-binding site and the roles of key residues in catalysis. Truncated 50-kDa rrSE was purified and photoaffinity labeled by competitive SE inhibitor (Ki=18.4 microM), [(3)H]TNSA-Dza. An 8-kDa CNBr/BNPS-skatole peptide was purified and the first 24 amino acids were sequenced by Edman degradation. The sequence PASFLPPSSVNKRGVLLLGDAYNL corresponded to residues 388-411 of the full-length rat SE. Three nucleophilic residues (Lys-399, Arg-400, and Asp-407) were labeled by [(3)H]TNSA-Dza. Triple mutants were prepared in which bulky groups were used to replace the labeled charged residues. Purified mutant enzymes showed lower enzymatic activity and reduced photoaffinity labeling by [(3)H]TNSA-Dza. This constitutes the first evidence as to the identity of the substrate-binding site of SE.  相似文献   

5.
Guinea pig lung cytosolic phospholipase A2 was purified to near homogeneity by chromatography on a phosphocellulose column, followed by Q-Sepharose, S-Sepharose, gel filtration chromatography and reverse-phase HPLC. The purified enzyme exhibited an apparent molecular weight of 16,700 by SDS-polyacrylamide gel electrophoresis. Active enzyme eluted from the gel at an apparent molecular weight of 16,700. The purified enzyme exhibited a pH optimum of 9.0 and was calcium-dependent. Guinea pig lung phospholipase A2 hydrolyzed phosphatidylcholine and phosphatidylethanolamine equally well. Substrates containing unsaturated fatty acids in the sn-2 position were hydrolyzed preferentially to those containing saturated fatty acids. Anionic detergents stimulated enzyme activity while nonionic detergents inhibited the enzyme. Disulfide reducing agents dithiothreitol, glutathione and 2-mercaptoethanol modestly stimulated enzyme activity. The sulfhydryl aklylating agent n-ethylmaleimide had no effect on enzyme activity and only high concentrations of p-hydroxymercuribenzoic acid inhibited enzyme activity. The histidine modifying agent, bromophenacyl bromide did not inhibit guinea pig lung phospholipase A2 under conditions in which Crotalus adamanteus phospholipase A2 was inhibited 80%. Manoalide inhibited guinea pig lung phospholipase A2 in a concentration-dependent manner (IC50 = 2 microM). Antibodies prepared against porcine pancreatic phospholipase A2 specifically immunoprecipitated guinea pig lung phospholipase A2 suggesting that the major phospholipase A2 in guinea pig lung cytosol is immunologically related to pancreatic phospholipase A2 in agreement with the biochemical properties of the enzyme.  相似文献   

6.
While photoaffinity ligands (PALs) have been widely used to probe the structures of many receptors and transporters, their effective use in the study of membrane-bound cytochrome P450s is less established. Here, lapachenole has been used as an effective photoaffinity ligand of human P450 3A4, and mass spectrometry data demonstrating the efficient and specific photoaffinity labeling of CYP3A4 by this naturally occurring benzochromene compound is presented. Without photolysis, lapachenole is a substrate of CYP3A4 and can be metabolized to hydroxylated products by this enzyme. A high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) procedure was developed to analyze small amounts of intact purified CYP3A4, and analysis of the labeled protein showed the presence of one molecule of lapachenole bound per monomer of protein. Photolabeled CYP3A4 peptide adducts were further characterized by mass spectrometric analysis after proteolytic digestion and isolation of fluorescent photolabeled peptides. Two peptide adducts accounting for >95% of the labeled peptides were isolated by HPLC, and both peptides, ECYSVFTNR (positions 97-105) and VLQNFSFKPCK (positions 459-469), were identified by nano-LC/ESI quadrupole time-of-flight (QTOF) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The sites of modification were further localized to positions Cys-98 and Cys-468 for each peptide by nano-LC/ESI QTOF tandem mass spectrometry (MS/MS). The results provided the first direct evidence for interaction between the PAL and the putative B-B' loop region, which may serve as a substrate access channel or as a part of the CYP3A4 active site. In conclusion, benzochromene analogues are effective PALs, which may be used in the study of other cytochrome P450 structures.  相似文献   

7.
Under reducing conditions (5% beta-mercaptoethanol) the mammalian beta-adrenergic receptor binding site from both beta 1 (porcine heart membranes) and beta 2 receptors (hamster lung and rat erythrocyte membranes) appears to reside on peptides of Mr 62,000-65,000 as determined by photoaffinity labeling with p-azido-m-[125I]iodobenzylcarazolol and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When similar experiments are performed in these same systems under a variety of non-reducing conditions, there are minimal changes in the apparent molecular weight of both the beta 1- and beta 2-adrenergic receptor binding subunits and no specifically labeled higher molecular weight proteins are observed suggesting that there are no disulfide linked subunits in mammalian beta-adrenergic receptors.  相似文献   

8.
Exposure of the purified Ca2+ pump of human erythrocytes to chymotrypsin led to the rapid loss of calmodulin activation. A fragment of about 12 kDa was removed from the ATPase in 1-2 min. Blotting experiments with 125I-labeled calmodulin showed that this fragment contains the calmodulin binding region. The remainder of the ATPase molecule was degraded to a number of fragments ranging from 3 to 120 kDa; none of them bound calmodulin. To isolate the calmodulin binding domain, calmodulin which had been coupled to the Denny-Jaffe reagent (a cleavable radioactive photoaffinity cross-linker) was allowed to bind to the Ca2+ pump. After illumination to couple the cross-linker to the pump, the cleavable bond was split and the calmodulin removed, leaving the pump radioactively labeled. This pump was digested with chymotrypsin, and the products were separated by gel permeation chromatography. The only radioactive peak (migrating at about 12 kDa) was further purified on reverse-phase high pressure liquid chromatography (HPLC). Amino acid analysis showed the fragment to have a minimal molecular mass of 12.4 kDa and to contain a single methionine. After attempts to sequence the peptide directly failed. CNBr digestion was carried out on the labeled ATPase, producing both soluble and insoluble labeled material. After reverse-phase HPLC purification of the soluble material, a single radioactive peak was collected. Its sequence was (Formula: see text). A portion of this peak was passed through a microcalmodulin column; it bound in the presence of Ca2+ and was eluted by EDTA, and by a mixture of EDTA and urea. Staphylococcal V8 protease digestion of the eluted peak produced the same sequence as shown above, but starting at Leu-2 and ending at Glu-32. Structural analysis of this peptide showed that it shares features with the calmodulin binding domains of other enzymes which are regulated by calmodulin.  相似文献   

9.
beta-Adrenergic receptors from turkey erythrocyte membranes have been purified 1000-4000-fold using alprenolol-Sepharose affinity chromatography. Addition of deoxycholate solubilized egg phosphatidylcholine to the beta-adrenergic receptor, that is 5-10% pure and in 0.1% digitonin, followed by Sephadex G-50 gel filtration in buffers containing 30 mM MgCl2 results in 65-70% of the receptor being incorporated into phospholipid vesicles. The beta-adrenergic receptor as detected by photoaffinity labeling using [125I]azidobenzylpindolol in membranes and after alprenolol-Sepharose chromatography is a Mr = 40,000 peptide. Addition of deoxycholate extracts of human erythrocyte membranes, which contain the guanine nucleotide stimulatory regulatory protein of adenylate cyclase (Ns) but not beta-adrenergic receptor, were used to reconstitute a guanine nucleotide-mediated change in agonist affinity for the receptor. These results demonstrate that the alprenolol-Sepharose affinity purified beta-adrenergic receptor is functional in both ligand binding and coupling to Ns. The procedure is rapid, efficient and should be generally applicable to beta-adrenergic receptor and Ns from several different membrane systems.  相似文献   

10.
A 1,4-dihydropyridine- and phenylalkylamine-binding polypeptide has been identified by photoaffinity labeling of purified rabbit and guinea pig skeletal muscle calcium channel preparations. The arylazide ligands (-)-[3H]azidopine and (-)-5-[(3-azidophenethyl)[N-methyl-3H]methylamino]-2-(3,4,5- trimethoxyphenyl)-2-isopropylvaleronitrile [( N-methyl-3H]LU 49888) were used to label 1,4-dihydropyridine- and phenylalkylamine-binding sites, respectively. A single, 155 to 170-kDa polypeptide was specifically labeled by both ligands in rabbit and guinea pig preparations provided that the skeletal muscle membranes used for purification were derived from fresh and not previously frozen and thawed tissue. The photoaffinity labeled polypeptide (termed here alpha 1) is different from the previously described alpha subunit in that it has the identical electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels irrespective of pretreatment either with N-ethylmaleimide or with dithiothreitol. The use of transverse tubular membranes isolated from previously frozen and thawed skeletal muscle results in a purified calcium channel preparation devoid of the alpha 1 subunit. In these preparations proteolytic degradation products of alpha 1 are labeled with both (-)-[3H]azidopine and [N-methyl-3H]LU 49888. Another large molecular weight polypeptide (termed here alpha 2) was also present in every purified calcium channel preparation studied. alpha 2 is distinct from alpha 1 in that reduction with dithiothreitol changes its apparent mass from 160-190 to 130-150 kDa. The alpha 2 subunit is not photoaffinity labeled either with (-)-[3H]azidopine or [N-methyl-3H]LU 49888. These data suggest that two distinct high molecular weight polypeptides (termed alpha 1 and alpha 2) are putative subunits of skeletal muscle calcium channels. Only the alpha 1 subunit contains both 1,4-dihydropyridine and phenylalkylamine receptors. alpha 2 is the same as the previously described alpha subunit (Curtis, B. M., and Catterall, W. A. (1984) Biochemistry 23, 2113-2118), but is neither a 1,4-dihydropyridine- nor a phenylalkylamine-binding protein.  相似文献   

11.
Photoaffinity labeling techniques using p-azido-m-[125I]iodobenzylcarazolol have recently demonstrated that both the beta 1- and beta 2-adrenergic receptor-binding subunits from mammalian tissues including heart, lung, and erythrocytes reside on peptides of Mr approximately equal to 62,000-64,000. In this study, a two-dimensional gel electrophoresis method for peptide mapping was used to investigate and compare the structure of beta 1 - and beta 2-adrenergic receptor subtypes. When the photoaffinity labeled Mr approximately equal to 62,000 peptides from the beta 2-adrenergic receptors of rat lung and erythrocyte are subjected to simultaneous proteolysis using Staphylococcus aureus V8 proteinase or papain, exactly the same peptide fragments are generated from each subunit. In contrast, when the Mr approximately equal to 62,000 peptide containing the beta 1-adrenergic receptor-binding subunit derived from the rat heart is proteolyzed simultaneously with the Mr approximately equal to 62,000 peptide containing the beta 2-adrenergic receptors from either lung or erythrocyte, the peptide fragments generated are distinctly different. Peptide maps of beta 1-adrenergic receptors from the myocardial tissue of different species (pig versus rat) yield slightly different maps while the maps derived from the beta 2-adrenergic receptors of hamster lung and rat lung or erythrocytes reveal no interspecies differences. These data suggest: 1) alterations in the primary structure of the beta-adrenergic receptor may be responsible for the pharmacological specificities characteristic of beta 1- and beta 2-adrenergic receptor subtypes; and 2) alterations in the primary structure of similar beta-adrenergic receptor subtypes across different species may relate to the magnitude of their phylogenetic differences.  相似文献   

12.
Photoaffinity labeling of the beta-adrenergic receptor   总被引:3,自引:0,他引:3  
A new photoactive beta-adrenergic antagonist, p-azidobenzylcarazolol (pABC) has been synthesized by combining a carbazole moiety with a p-azido-benzyl substituent. The compound has been labeled with tritium to a specific activity of 26 Ci/mmol. In frog erythrocyte membranes, [3H]p-azido-benzylcarazolol binds to the beta-adrenergic receptor with the expected beta 2 specificity and with high affinity (KD congruent to 100 +/- 10 pM). Unlabeled p-azido-benzylcarazolol can irreversibly inactivate the [3H]dihydroalprenolol-binding activity of frog erythrocyte membranes in a photodependent manner which can be prevented by beta-adrenergic agents. Incubation of frog erythrocyte membranes or digitonin-solubilized preparations of these membranes or digitonin-solubilized preparations of these membranes which had been enriched in beta-adrenergic receptors by a Sepharose-alprenolol chromatography step led to covalent incorporation of radioactivity into a Mr = 58,000 peptide. Specific incorporation of [3H]pABC into the Mr = 58,000 peptide could be prevented by both beta-adrenergic agonists and antagonists. This peptide has previously been purified and shown to contain the beta-adrenergic receptor-binding site (Shorr, R. G. L., Lefkowitz, R. J., and Caron, M. G. (1981) J. Biol. Chem. 256, 5820-5826). Thus, photoaffinity labeling of the beta-adrenergic receptor protein directly identifies the same hormone-binding subunit as has been isolated by conventional purification techniques.  相似文献   

13.
J C Mak  P J Barnes 《Peptides》1988,9(5):957-963
125I-Human calcitonin gene-related peptide (hCGRP) binding sites were localized in human and guinea pig lungs by an autoradiographic method. Scatchard analysis of saturation experiments from slide-mounted sections of guinea pig lung displayed specific 125I-hCGRP binding sites with a dissociation constant (Kd) of 0.72 +/- 0.05 nM (mean +/- S.E.M., n = 3) and a maximal number of binding sites (Bmax) of 133.4 +/- 5.6 fmol/mg protein. In both human and guinea pig lung, autoradiography revealed that CGRP binding sites were widely distributed, with particularly dense labeling over bronchial and pulmonary blood vessels of all sizes and alveolar walls. Airway smooth muscle and epithelium of large airways was sparsely labeled but no labeling was found over submucosal glands. This localization corresponds well to the reported pattern of CGRP-like immunoreactive innervation. The findings of localization of CGRP binding sites on bronchial and pulmonary blood vessels indicate that CGRP may be important in the regulation of airway and pulmonary blood flow.  相似文献   

14.
Mammalian beta-adrenergic receptor binding peptides can be visualized by covalently labeling them with the photoaffinity reagent p-azido-m-[125I]iodobenzylcarazolol followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The receptor peptides migrate as broad bands of Mr approximately equal to 62,000. In the present study, we examined the carbohydrate composition of the mammalian beta receptor through the use of specific exo- and endoglycosidases and lectin affinity chromatography. Treatment of p-azido-m-[125I]iodobenzylcarazolol-labeled beta2-adrenergic receptors from hamster lung or rat erythrocyte with the exoglycosidases neuraminidase and alpha-mannosidase provided evidence for the existence of both high mannose and complex type carbohydrate chains on beta 2-adrenergic receptors. The nonadditivity of the effect of sequential treatments with these enzymes suggested discrete populations of beta-adrenergic receptors containing either complex or high mannose type chains. Deglycosylation of receptor with endoglycosidase F results in a single labeled polypeptide at Mr = 49,000 for both systems. The same two populations of the beta receptors (high mannose or complex type chain) could also be fractionated by lectin affinity chromatography of solubilized p-azido-m-[125I]iodobenzylcarazolol-labeled receptors. The high mannose-containing receptors could be absorbed to and specifically eluted from concanavalin A-agarose. Those containing complex type carbohydrates could be adsorbed to and eluted from wheat germ agglutinin-agarose. Taken together, these data suggest that mammalian beta-adrenergic receptors contain both complex and high mannose type carbohydrate chains and that microheterogeneity of these chains likely explains the broad band pattern typically obtained on sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

15.
The beta 1-adrenergic receptor of turkey erythrocytes has been purified by a combination of affinity and high performance steric exclusion chromatography. These procedures provide preparations with specific activities of greater than 15,000 pmol/mg of protein with an overall recovery of approximately 30% of the receptor activity solubilized from membrane preparations. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioiodinated purified receptor reveals two bands of labeled protein with apparent Mr = 40,000 +/- 2,000 and 45,000 +/- 3,000 in a 3-4:1 ratio. These same two peptides can also be labeled specifically and in approximately the same ration in both membranes and purified preparations using the photoaffinity probe 125I-labeled p-azidobenzylcarazolol. When the two purified polypeptides are completely separated by high performance liquid chromatography and subjected to detailed ligand binding studies, identical beta 1-adrenergic specificities are found for the two receptor forms. Preliminary characterization of these two proteins by partial protease digestion suggests a large degree of similarity between them, albeit with some significant differences. These results demonstrate that both purification and photoaffinity labeling identify two polypeptides in turkey erythrocyte membranes as containing a beta 1-adrenergic receptor binding site. The functional and structural relationships of these two forms of the receptor remain to be elucidated.  相似文献   

16.
The photoaffinity label 8-azidoadenosine 5'-triphosphate (N3-ATP) was used to covalently modify the recA protein from Escherichia coli within its ATP-binding site. We have previously demonstrated that N3-ATP modification of recA protein is specific for the ATP-binding site and have isolated a unique tryptic peptide (T31), spanning residues 257-280, that contains the exclusive site of attachment of this ATP analog (Knight, K. L., and McEntee, K. (1985) J. Biol. Chem. 260, 867-872). We performed a secondary proteolytic digestion of the [alpha-32P]N3-ATP-labeled T31 peptide using Staphylococcus aureus V8 protease and purified the resulting peptide fragments by high-pressure liquid chromatography (HPLC). Based on a comparison of the amino acid compositions of all purified fragments and sequence analysis of one labeled fragment we determined that Tyr-264 is the exclusive site of N3-ATP attachment in recA protein. Photoaffinity labeling of recA protein was also performed in the presence of single-stranded DNA. Following trypsin treatment and separation of peptides by HPLC we showed that tryptic peptide T31 contained the exclusive site of N3-ATP attachment. A secondary proteolytic digestion was performed on both [alpha-32P]N3ATP-modified T31 and unmodified T31 using alpha-chymotrypsin. Comparison of the HPLC profiles and amino acid compositions of the resulting fragments was consistent with Tyr-264 as the exclusive site of N3-ATP attachment to recA protein.  相似文献   

17.
The PvuII fragment of human genomic clone LCV-517 which contains the entire coding region of a beta-adrenergic receptor gene was cloned into the SmaI site of the expression vector pMSG. The recombinant DNA was cotransfected with pRSVneo into mouse B-82 cells using the CaPO4 precipitation method. B-82 cells do not possess beta-adrenergic receptors but do contain prostaglandin E1 receptors that stimulate adenylate cyclase. Following transfection, several colonies expressing beta-adrenergic receptors were isolated. Analysis of ligand binding to expressed beta-receptors indicated that the protein encoded by the gene in clone LCV-517 was a beta 2-adrenergic subtype. Human beta 2-adrenergic receptors photoaffinity labeled with [125I]iodocyanopindolol diazirine migrated on sodium dodecyl sulfate-polyacrylamide gels consistent with a molecular mass of 68,000, demonstrating that the receptor is glycosylated to an extent of 25-30% by weight. Addition of isoproterenol to cultures of transfected cells resulted in a 3-4-fold stimulation of adenylate cyclase, an effect similar to that seen in control B-82 cells with prostaglandin E1. These data describe the production of stable murine clonal cell lines expressing human beta 2-adrenergic receptors and illustrate the utility of such lines in the biochemical and pharmacological characterization of receptor proteins.  相似文献   

18.
By photoaffinity labeling of brush border membrane vesicles from rabbit small intestine with photoreactive derivatives of beta-lactam antibiotics and dipeptides, a binding protein for dipeptides and beta-lactam antibiotics with an apparent molecular weight of 127,000 was labeled. The labeled 127 kDa polypeptide could be solubilized with the non-ionic detergents Triton X-100, n-octyl glucoside or CHAPS. If the vesicles were solubilized prior to photoaffinity labeling, no clear incorporation of radioactivity into the 127 kDa polypeptide occurred indicating a loss of binding ability upon solubilization. By affinity chromatography of solubilized brush border membrane proteins on an agarose wheat germ lectin column, the binding protein for dipeptides and beta-lactam antibiotics of Mr 127,000 was retained on the column. With N-acetyl-D-glucosamine the photolabeled binding protein for beta-lactam antibiotics and dipeptides was eluted together with the brush border membrane-bound enzyme aminopeptidase N. Separation from aminopeptidase N and final purification was achieved by anion-exchange chromatography on DEAE-sephacel. Polyclonal antibodies against the purified binding protein were raised in guinea pigs. The photolabeled 127 kDa protein could be precipitated from solubilized brush border membranes with these antibodies. Incubation of brush border membrane vesicles with antiserum prior to photoaffinity labeling significantly reduced the extent of labeling of the 127 kDa protein. Treatment of brush border membrane vesicles with antiserum significantly inhibited the efflux of the alpha-aminocephalosporin cephalexin from the brush border membrane vesicles compared to vesicles treated with preimmune serum. These studies indicate that the binding protein for dipeptides and beta-lactam antibiotics of apparent molecular weight 127,000 in the brush border membrane of rabbit small intestinal enterocytes is directly involved in the uptake process of small peptides and orally active beta-lactam antibiotics across the enterocyte brush border membrane.  相似文献   

19.
A method for the isolation of non-ciliated bronchiolar epithelial (Clara) cells from the guinea pig is described. Following digestion of the lung tissue with Type XXIV protease, the isolated lung cells showed a viability greater than 90% and contained 3% of Clara cells. Several cell populations were then separated on the basis of size using 2 centrifugal elutriations. The macrophages and endothelial cells were removed from the Clara cells enriched fractions by differential adherence on Petri dishes. The Clara cell-rich suspension was then further purified by centrifugation on Percoll non-continuous density gradients consisting of 48-52-55% Percoll solution. The lower interface and the pellet of the non-continuous gradient consisted of approximately 80% Clara cells. Identification of isolated Clara cells was confirmed by light microscopic observations after nitroblue tetrazolium staining and by ultrastructural characteristic features as observed by electron microscopy. The metabolism of arachidonic acid into prostaglandins and TxB2 by purified Clara cells was examined by enzyme immunoassay (EIA) and leukotriene formation was investigated by reverse phase high performance liquid chromatography (RP-HPLC). Enriched guinea pig Clara cells incubated with arachidonic acid released TxB2, PGE2 and 6-keto PGF1 alpha, but did not produce leukotrienes. These cells could however transform exogenous leukotriene A4 into leukotriene B4. These results suggest that guinea pig Clara cells possess the enzymes of the cyclooxygenase pathway required for TxB2, PGE2 and 6-keto-PGF1 alpha synthesis. Clara cells do not possess the 5-lipoxygenase enzyme but show some leukotriene A4 hydrolase activity since they can produce leukotriene B4 upon incubation with leukotriene A4.  相似文献   

20.
Studies on the spermatogenic sulfogalactolipid binding protein SLIP 1   总被引:1,自引:0,他引:1  
We have purified the testicular sulfogalactolipid binding protein SLIP 1 and shown by photoaffinity labeling that it contains an ATP binding site. Purified SLIP 1 was fluorescently labeled and shown to retain specific sulfogalactolipid binding function. This probe was used to investigate the topology of SLIP 1 binding sites on testicular germ cells. The binding pattern precisely coincided with the previously demonstrated asymmetric surface domains of sulfogalactoglycerolipid (SGG). Occasionally these SGG-containing, SLIP 1-binding cell surface domains exactly coincided with structural features on the cell surface as detected by differential interference contrast microscopy. These results demonstrate that SLIP 1/SGG interactions could provide an effective intercellular communication network between testicular germ cells within the seminiferous tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号