首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In human diabetic nephropathy, glomerular injury was found to comprise lipid droplets, suggesting that abnormal lipid metabolism might take place in the development of diabetic glomerular injury. However, its precise mechanism remains unclear. Fatty acid binding protein (FABP) is currently considered as a key molecule for lipid metabolism. Since diabetic eNOS knockout (KO) mouse is considered to be a good model for human diabetic nephropathy, we here investigated whether FABP could mediate glomerular injury in this model. We found that glomerular injuries were associated with inflammatory processes, such as macrophage infiltration and MCP-1 induction. Microarray assay with isolated glomeruli revealed that among 10 isoforms in FABP family, FABP3 mRNA was most highly expressed in diabetic eNOSKO mice compared to non-diabetic eNOSKO mice. FABP3 protein was found to be located in the mesangial cells. Overexpression of FABP3 resulted in a greater response to palmitate, a satulated FA, to induce MCP-1 in the rat mesangial cells. In turn, the heart, a major organ for FABP3 protein in normal condition, failed to alter its expression level under diabetic condition in either wild type or eNOSKO mice. In conclusion, FABP3 is induced in the mesangial cells and likely a mediator to induce MCP-1 in the diabetic nephropathy.  相似文献   

2.

Background

Binding affinity for human serum albumin (HSA) is one of the most important factors affecting the distribution and free blood concentration of many ligands. The effect of fatty acids (FAs) on HSA-ligand binding has long been studied. Since the elucidation of the 3-dimensional structure of HSA, molecular simulation approaches have been applied to studies of the structure–function relationship of HSA–FA binding.

Scope of review

We review current insights into the effects of FA binding on HSA, focusing on the biophysical insights obtained using molecular simulation approaches such as docking, molecular dynamics (MD), and binding free energy calculations.

Major conclusions

Possible conformational changes on binding of FA molecules to HSA have been observed through MD simulations. High- and low-affinity FA-binding sites on HSA have been identified based on binding free energy calculations. The relationship between the warfarin binding affinity of HSA and FA molecules has been clarified based on the results of simulations of multi-site FA binding that cannot be experimentally observed.

General significance

Molecular simulation approaches have great potentials to provide detailed biophysical insights into HSA as well as the effects of the binding of FAs or other ligands to HSA. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

3.
Elevated free fatty acid (FA) levels lead to insulin resistance, hypertension, and microangiopathy, all of which are associated with type 2 diabetes. On the other hand, deficiencies of FA are indicative of certain neurodegenerative diseases, including autism. Thus, free FA levels are a diagnostic indicator for a variety of disorders. Here we describe the use of a commercially available FA binding protein labeled with acrylodan (ADIFAB), which we modified with a ruthenium metal-ligand complex with the intention of creating a low-cost FA sensor. The dual-labeled FA binding protein was used in lifetime-assisted ratiometric sensing (LARS) of oleic acid. For both steady-state and time-resolved luminescence decay experiments, the protein is responsive to oleic acid in the range of 0.02-4.7 microM. The emission at 432 nm, which is associated with the acrylodan occupying the FA binding site, decreases in intensity and red shifts to 505 nm on the addition of oleic acid. The intensities of the 505-nm peak due to the acrylodan displaced from the binding site by FA and of the 610-nm emission peak of ruthenium remained nearly unchanged. Fitting of the fluorescence decay data using the method of least squares revealed three emitting components with lifetimes of approximately 0.60, 4.00, and 370 ns. Fractional intensities of the emitting species indicate that changes in modulation between 2 and 10 MHz on binding of the protein with oleic acid are due mainly to the 4.00-ns component. The 0.60- and 370-ns components are assigned to acrylodan (505 nm) and ruthenium, respectively. Note that because ruthenium has a lifetime that is two orders of magnitude longer than that of acrylodan, the FA measurements were carried out at excitation frequencies lower than what can be done with acrylodan alone. Thus, low-cost instrumentation can be designed for a practical FA sensor without sacrificing the quality of measurements.  相似文献   

4.
5.
The introduction of a new spin-labeled anionic ligand, 1-gamma-aminobutyrate-5-N-(1-oxyl-2,2,6,6-tetramethyl-4-aminopiperidinyl)-2,4-dinitrobenzene, is reported. Under the experimental conditions, the first molar equivalent of this ligand is 93% bound to human serum albumin. With the addition of palmitate, the free spin label concentration decreases greatly, by almost 80%, in the presence of a fatty acid:albumin ratio of 3:1 to 4:1. The spectral characteristics of the bound spin label are also affected. The changes seen in the intensity of and the splitting between the high and low field extrema are indicative of perturbations of the protein molecule. It is seen then that the binding of each molar equivalent of fatty acid effects the conformation state of albumin and allosterically affects albumin binding properties. Computer spectral subtractions, furthermore, suggest that the binding of the first molar equivalent of palmitate specifically increases the affinity of the first two 1-gamma-amino-butyrate-5-N-(1-oxyl-2,2,6,6-tetramethyl-4-aminopiperidinyl)-2,4-dinitrobenzene binding sites. The present results indicate that fluctuations in serum free fatty acid levels within the physiological range may have a major modulatory effect on the free serum levels of certain drugs and/or physiological substances that bind to albumin.  相似文献   

6.
7.

Background

Post-stroke infections occur in 20–36% of stroke patients and are associated with high morbidity and mortality rates. Early identification of patients at risk of developing an infection could improve care via an earlier treatment leading to a better outcome. We used proteomic tools in order to discover biomarkers able to stratify patients at risk of post-stroke infection.

Methods

The post hoc analysis of a prospective cohort study including 40 ischemic stroke patients included 21 infected and 19 non-infected participants. A quantitative, isobaric labeling, proteomic strategy was applied to the plasma samples of 5 infected and 5 non-infected patients in order to highlight any significantly modulated proteins. A parallel reaction monitoring (PRM) assay was applied to 20 additional patients (10 infected and 10 non-infected) to verify discovery results. The most promising protein was pre-validated using an ELISA immunoassay on 40 patients and at different time points after stroke onset.

Results

Tandem mass analysis identified 266 proteins, of which only serum amyloid A (SAA1/2) was significantly (p = 0.007) regulated between the two groups of patients. This acute-phase protein appeared to be 2.2 times more abundant in infected patients than in non-infected ones. These results were verified and validated using PRM and ELISA immunoassays, which showed that infected patients had significantly higher concentrations of SAA1/2 than non-infected patients at hospital admission, but also at 1, 3, and 5 days after admission.

Conclusions

The present study demonstrated that SAA1/2 is a promising predictor, at hospital admission, of stroke patients at risk of developing an infection. Further large, multicenter validation studies are needed to confirm these results. If confirmed, SAA1/2 concentrations could be used to identify the patients most at risk of post-stroke infections and therefore implement treatments more rapidly, thus reducing mortality.
  相似文献   

8.
Fatty acid binding protein 7 (FABP7), abundant in the embryonic brain, binds with the highest affinity to docosahexaenoic acid (DHA) and is expressed in the early stages of embryogenesis. Here, we have examined the consequences of the exposure to different DHA levels and of the in utero depletion of FABP7 on early rat brain development. Neurodevelopment was evaluated through the contents of two proteins, connexin 43 (Cx43) and cyclin‐dependent kinase 5 (CDK5), both involved in neuroblast proliferation, differentiation, and migration. The dams were fed with diets presenting different DHA contents, from deficiency to supplementation. DHA brain embryos contents already differed at embryonic day 11.5 and the differences kept increasing with time. Cx43 and CDK5 contents were positively associated with the brain DHA levels. When FABP7 was depleted in vivo by injections of siRNA in the telencephalon, the enhancement of the contents of both proteins was lost in supplemented animals, but FABP7 depletion did not modify phospholipid compositions regardless of the diets. Thus, FABP7 is a necessary mediator of the effect of DHA on these proteins synthesis, but its role in DHA uptake is not critical, although FABP7 is localized in phospholipid‐rich areas. Our study shows that high contents of DHA associated with FABP7 are necessary to promote early brain development, which prompted us to recommend DHA supplementation early in pregnancy. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 287–297, 2016  相似文献   

9.
A novel form of non-linear EPR spectroscopy, viz. the first harmonic absorption spectrum recorded in phase quadrature with respect to the Zeeman field modulation, is used here to investigate spin-lattice relaxation enhancements of nitroxide spin labels bound to serum albumin that are induced by spin-spin interactions with aqueous paramagnetic ions. The advantage of this EPR method is that it is directly sensitive to spin-lattice relaxation and affected relatively little by other spectral parameters (Livshits et al., J. Magn. Reson. 133 (1998) 79-91). Relaxation enhancements by ferricyanide of bound fatty acids (n-SASL) spin-labelled at different positions, n, in the chain are compared with those of different maleimide spin label derivatives attached at the single free -SH group, as well as with those of the spin labels free in solution. It was found that: (1) the encounter frequency of ferricyanide with 5-SASL and 12-SASL bound to serum albumin is more than two times less than that with 16-SASL; (2) the accessibility of ferricyanide to 16-SASL is comparable to that of the more immobilised covalently bound spin labels; and (3) the absolute values of the encounter frequencies for the bound spin-labelled fatty acids are approximately a factor of ten smaller than for the corresponding free spin labels, but the latter show a dependence on position of labelling that is similar to the bound labels. A kinetic scheme that is consistent with these relative differences involves rapid reversible transitions between an 'open' and 'closed' state, in which interaction with aqueous paramagnetic agents is possible only in the 'open' state. The equilibrium strongly favours the 'closed' state, which is further enhanced at low temperatures.  相似文献   

10.
The carnitine palmitoyltransferase activity of various subcellular preparations measured with octanoyl-CoA as substrate was markedly increased by bovine serum albumin at low M concentrations of octanoyl-CoA. However, even a large excess (500 M) of this acyl-CoA did not inhibit the activity of the mitochondrial outer carnitine palmitoyltransferase, a carnitine palmitoyltransferase isoform that is particularly sensitive to inhibition by low M concentrations of palmitoyl-CoA. This bovine serum albumin stimulation was independent of the salt activation of the carnitine palmitoyltransferase activity. The effects of acyl-CoA binding protein (ACBP) and the fatty acid binding protein were also examined with palmitoyl-CoA as substrate. The results were in line with the findings of stronger binding of acyl-CoA to ACBP but showed that fatty acid binding protein also binds acyl-CoA esters. Although the effects of these proteins on the outer mitochondrial carnitine palmitoyltransferase activity and its malonyl-CoA inhibition varied with the experimental conditions, they showed that the various carnitine palmitoyltransferase preparations are effectively able to use palmitoyl-CoA bound to ACBP in a near physiological molar ratio of 1:1 as well as that bound to the fatty acid binding protein. It is suggested that the three proteins mentioned above effect the carnitine palmitoyltransferase activities not only by binding of acyl-CoAs, preventing acyl-CoA inhibition, but also by facilitating the removal of the acylcarnitine product from carnitine palmitoyltransferase. These results support the possibility that the acyl-CoA binding ability of acyl-CoA binding protein and of fatty acid binding protein have a role in acyl-CoA metabolismin vivo.Abbreviations ACBP acyl-CoA binding protein - BSA bovine serum albumin - CPT carnitine palmitoyltransferase - CPT0 malonyl-CoA sensitive CPT of the outer mitochondrial membrane - CPT malonyl-CoA insensitive CPT of the inner mitochondrial membrane - OG octylglucoside - OMV outer membrane vesicles - IMV inner membrane vesicles Affiliated to the Department of Experimental Medicine, University of Montreal  相似文献   

11.
In an attempt to identify high affinity, fatty acid binding proteins present in 3T3-L1 adipocytes plasma membranes, we labeled proteins in purified plasma membranes with the photoreactive fatty acid analogue, 11-m-diazirinophenoxy[11-3H]undecanoate. A single membrane protein of 22 kDa was covalently labeled after photolysis. This protein fractionated with caveolin-1 containing caveolae and was immunoprecipitated by an anti-caveolin-1 monoclonal antibody. Furthermore, 2D-PAGE analysis revealed that both the alpha and beta isoforms of caveolin-1 could be labeled by the photoreactive fatty acid upon photolysis, indicating that both bind fatty acids. The saturable binding of the photoreactive fatty acid suggests caveolin-1 has a lipid binding site that may either operate during intracellular lipid traffic or regulate caveolin-1 function.  相似文献   

12.
13.
Intestinal fatty acid binding protein (IFABP) is thought to participate in the intracellular transport of fatty acids (FAs). Fatty acid transfer from IFABP to phospholipid membranes is proposed to occur during protein-membrane collisional interactions. In this study, we analyzed the participation of electrostatic and hydrophobic interactions in the collisional mechanism of FA transfer from IFABP to membranes. Using a fluorescence resonance energy transfer assay, we examined the rate and mechanism of transfer of anthroyloxy-fatty acid analogs a) from IFABP to phospholipid membranes of different composition; b) from chemically modified IFABPs, in which the acetylation of surface lysine residues eliminated positive surface charges; and c) as a function of ionic strength. The results show clearly that negative charges on the membrane surface and positive charges on the protein surface are important for establishing the "collisional complex", during which fatty acid transfer occurs. In addition, changes in the hydrophobicity of the protein surface, as well as the hydrophobic volume of the acceptor vesicles, also influenced the rate of fatty acid transfer. Thus, ionic interactions between IFABP and membranes appear to play a primary role in the process of fatty acid transfer to membranes, and hydrophobic interactions can also modulate the rates of ligand transfer.  相似文献   

14.
15.
Colorectal cancer (CRC) is a major public health issue worldwide, and novel tumor markers may contribute to its efficient management by helping in early detection, prognosis or surveillance of disease. The aim of our study was to identify new serum biomarkers for CRC, and we followed a phased biomarker discovery and validation process to obtain an accurate preliminary assessment of potential clinical utility. We compared colonic tumors and matched normal tissue from 15 CRC patients, using two-dimensional difference gel electrophoresis (2D-DIGE), and identified 17 proteins that had significant differential expression. These results were further confirmed by western blotting for heat shock protein (HSP) 60, glutathione-S-transferase Pi, α-enolase, T-complex protein 1 subunit β, and leukocyte elastase inhibitor, and by immunohistochemistry for HSP60. Using mAbs raised against HSP60, we developed a reliable (precision of 5-15%) and sensitive (0.3 ng·mL(-1)) immunoassay for the detection of HSP60 in serum. Elevated levels of HSP60 were found in serum from CRC patients in two independent cohorts; the receiver-operating characteristic curve obtained in 112 patients with CRC and 90 healthy controls had an area under the curve (AUC) of 0.70, which was identical to the AUC of carcinoembryonic antigen. Combination of serum markers improved clinical performance: the AUC of a three-marker logistic regression model combining HSP60, carcinoembryonic antigen and carbohydrate antigen 19-9 reached 0.77. Serum HSP60 appeared to be more specific for late-stage CRC; therefore, future studies should evaluate its utility for determining prognosis or monitoring therapy rather than early detection.  相似文献   

16.

Background

Cardioembolic stroke generally results in more severe disability, since it typically has a larger ischemic area than the other types of ischemic stroke. However, it is difficult to differentiate cardioembolic stroke from non-cardioembolic stroke (atherothrombotic stroke and lacunar stroke). In this study, we evaluated the levels of plasma brain natriuretic peptide in acute ischemic stroke patients with cardioembolic stroke or non-cardioembolic stroke, and assessed the prediction factors of plasma brain natriuretic peptide and whether we could differentiate between stroke subtypes on the basis of plasma brain natriuretic peptide concentrations in addition to patient's clinical variables.

Methods

Our patient cohort consisted of 131 consecutive patients with acute cerebral infarction who were admitted to Kagawa University School of Medicine Hospital from January 1, 2005 to December 31, 2007. The mean age of patients (43 females, 88 males) was 69.6 ± 10.1 years. Sixty-two patients had cardioembolic stroke; the remaining 69 patients had non-cardioembolic stroke (including atherothrombotic stroke, lacunar stroke, or the other). Clinical variables and the plasma brain natriuretic peptide were evaluated in all patients.

Results

Plasma brain natriuretic peptide was linearly associated with atrial fibrillation, heart failure, chronic renal failure, and left atrial diameter, independently (F4,126 = 27.6, p < 0.0001; adjusted R2 = 0.45). Furthermore, atrial fibrillation, mitral regurgitation, plasma brain natriuretic peptide (> 77 pg/ml), and left atrial diameter (> 36 mm) were statistically significant independent predictors of cardioembolic stroke in the multivariable setting (Χ2 = 127.5, p < 0.001).

Conclusion

It was suggested that cardioembolic stroke was strongly predicted with atrial fibrillation and plasma brain natriuretic peptide. Plasma brain natriuretic peptide can be a surrogate marker for cardioembolic stroke.  相似文献   

17.
18.
13C NMR spectroscopy was used to probe the structural interactions between carboxyl-13C-enriched oleic acid (18:1) and rat liver fatty acid binding protein (FABP) and the partitioning of 18:1 between FABP and unilamellar phosphatidylcholine (PC) vesicles. Spectra of systems containing 2-8 mol of 18:1/mol of FABP (but no PC) exhibited one carboxyl resonance (182.2 ppm) corresponding to FABP-bound 18:1. At pH values less than 8.0, an additional carboxyl resonance, corresponding to unbound 18:1 in a lamellar phase, was observed. Both resonances exhibited ionization shifts with estimated apparent pKa values of less than 5 (bound 18:1) and greater than 7 (unbound 18:1). The intensity of the resonance corresponding to FABP-bound 18:1 increased with increasing 18:1/FABP mole ratio and at 8/1 mole ratio indicated that at least 2 and 6 mol of 18:1/mol of FABP were FABP-bound at pH 7.4 and 8.6, respectively. NMR spectra of systems containing equal concentrations (w/v) of FABP and PC and from 1 to 4 mol of total fatty acid (FA)/mol of FABP exhibited two 18:1 carboxyl resonances (182.2 and 178.5 ppm, pH 7.4). The downfield resonance corresponded to FABP-bound 18:1 and the upfield resonance to PC vesicle bound 18:1. At 1/1 mole ratio (FA/FABP), the intensities of both resonances were approximately equal, but at 4/1 mole ratio the resonance for PC vesicle bound 18:1 was 3-fold more intense than that for FABP-bound 18:1. The following conclusions are reached: (i) The carboxyl groups of 18:1 bound to liver FABP experience only one type of binding environment (the aqueous milieu adjacent to the protein surface).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Disposition kinetics of [(3)H]palmitate and its low-molecular-weight metabolites in perfused rat livers were studied using the multiple-indicator dilution technique, a selective assay for [(3)H]palmitate and its low-molecular-weight metabolites, and several physiologically based pharmacokinetic models. The level of liver fatty acid binding protein (L-FABP), other intrahepatic binding proteins (microsomal protein, albumin, and glutathione S-transferase) and the outflow profiles of [(3)H]palmitate and metabolites were measured in four experimental groups of rats: 1) males; 2) clofibrate-treated males; 3) females; and 4) pregnant females. A slow-diffusion/bound model was found to better describe the hepatic disposition of unchanged [(3)H]palmitate than other pharmacokinetic models. The L-FABP levels followed the order: pregnant female > clofibrate-treated male > female > male. Levels of other intrahepatic proteins did not differ significantly. The hepatic extraction ratio and mean transit time for unchanged palmitate, as well as the production of low-molecular-weight metabolites of palmitate and their retention in the liver, increased with increasing L-FABP levels. Palmitate metabolic clearance, permeability-surface area product, retention of palmitate by the liver, and cytoplasmic diffusion constant for unchanged [(3)H]palmitate also increased with increasing L-FABP levels. It is concluded that the variability in hepatic pharmacokinetics of unchanged [(3)H]palmitate and its low-molecular-weight metabolites in perfused rat livers is related to levels of L-FABP and not those of other intrahepatic proteins.  相似文献   

20.

Background  

Monitoring systemic inflammatory activity during steroid therapy of canine immune-mediated polyarthritis (IMPA) is difficult and mainly relies on clinical signs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号