首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular principles of the interactions of disordered proteins   总被引:6,自引:0,他引:6  
Thorough knowledge of the molecular principles of protein-protein recognition is essential to our understanding of protein function at the cellular level. Whereas interactions of ordered proteins have been analyzed in great detail, complexes of intrinsically unstructured/disordered proteins (IUPs) have hardly been addressed so far. Here, we have collected a database of 39 complexes of experimentally verified IUPs, and compared their interfaces with those of 72 complexes of ordered, globular proteins. The characteristic differences found between the two types of complexes suggest that IUPs represent a distinct molecular implementation of the principles of protein-protein recognition. The interfaces do not differ in size, but those of IUPs cover a much larger part of the surface of the protein than for their ordered counterparts. Moreover, IUP interfaces are significantly more hydrophobic relative to their overall amino acid composition, but also in absolute terms. They rely more on hydrophobic-hydrophobic than on polar-polar interactions. Their amino acids in the interface realize more intermolecular contacts, which suggests a better fit with the partner due to induced folding upon binding that results in a better adaptation to the partner. The two modes of interaction also differ in that IUPs usually use only a single continuous segment for partner binding, whereas the binding sites of ordered proteins are more segmented. Probably, all these features contribute to the increased evolutionary conservation of IUP interface residues. These noted molecular differences are also manifested in the interaction energies of IUPs. Our approximation of these by low-resolution force-fields shows that IUPs gain much more stabilization energy from intermolecular contacts, than from folding, i.e. they use their binding energy for folding. Overall, our findings provide a structural rationale to the prior suggestions that many IUPs are specialized for functions realized by protein-protein interactions.  相似文献   

2.
3.
Computational approaches for predicting protein-protein interfaces are extremely useful for understanding and modelling the quaternary structure of protein assemblies. In particular, partner-specific binding site prediction methods allow delineating the specific residues that compose the interface of protein complexes. In recent years, new machine learning and other algorithmic approaches have been proposed to solve this problem. However, little effort has been made in finding better training datasets to improve the performance of these methods. With the aim of vindicating the importance of the training set compilation procedure, in this work we present BIPSPI+, a new version of our original server trained on carefully curated datasets that outperforms our original predictor. We show how prediction performance can be improved by selecting specific datasets that better describe particular types of protein interactions and interfaces (e.g. homo/hetero). In addition, our upgraded web server offers a new set of functionalities such as the sequence-structure prediction mode, hetero- or homo-complex specialization and the guided docking tool that allows to compute 3D quaternary structure poses using the predicted interfaces. BIPSPI+ is freely available at https://bipspi.cnb.csic.es.  相似文献   

4.
Chen H  Zhou HX 《Proteins》2005,61(1):21-35
The number of structures of protein-protein complexes deposited to the Protein Data Bank is growing rapidly. These structures embed important information for predicting structures of new protein complexes. This motivated us to develop the PPISP method for predicting interface residues in protein-protein complexes. In PPISP, sequence profiles and solvent accessibility of spatially neighboring surface residues were used as input to a neural network. The network was trained on native interface residues collected from the Protein Data Bank. The prediction accuracy at the time was 70% with 47% coverage of native interface residues. Now we have extensively improved PPISP. The training set now consisted of 1156 nonhomologous protein chains. Test on a set of 100 nonhomologous protein chains showed that the prediction accuracy is now increased to 80% with 51% coverage. To solve the problem of over-prediction and under-prediction associated with individual neural network models, we developed a consensus method that combines predictions from multiple models with different levels of accuracy and coverage. Applied on a benchmark set of 68 proteins for protein-protein docking, the consensus approach outperformed the best individual models by 3-8 percentage points in accuracy. To demonstrate the predictive power of cons-PPISP, eight complex-forming proteins with interfaces characterized by NMR were tested. These proteins are nonhomologous to the training set and have a total of 144 interface residues identified by chemical shift perturbation. cons-PPISP predicted 174 interface residues with 69% accuracy and 47% coverage and promises to complement experimental techniques in characterizing protein-protein interfaces. .  相似文献   

5.
Small molecules that bind at protein-protein interfaces may either block or stabilize protein-protein interactions in cells. Thus, some of these binding interfaces may turn into prospective targets for drug design. Here, we collected 175 pairs of protein-protein (PP) complexes and protein-ligand (PL) complexes with known three-dimensional structures for which (1) one protein from the PP complex shares at least 40% sequence identity with the protein from the PL complex, and (2) the interface regions of these proteins overlap at least partially with each other. We found that those residues of the interfaces that may bind the other protein as well as the small molecule are evolutionary more conserved on average, have a higher tendency of being located in pockets and expose a smaller fraction of their surface area to the solvent than the remaining protein-protein interface region. Based on these findings we derived a statistical classifier that predicts patches at binding interfaces that have a higher tendency to bind small molecules. We applied this new prediction method to more than 10 000 interfaces from the protein data bank. For several complexes related to apoptosis the predicted binding patches were in direct contact to co-crystallized small molecules.  相似文献   

6.
We developed a model of macromolecular interfaces based on the Voronoi diagram and the related alpha-complex, and we tested its properties on a set of 96 protein-protein complexes taken from the Protein Data Bank. The Voronoi model provides a natural definition of the interfaces, and it yields values of the number of interface atoms and of the interface area that have excellent correlation coefficients with those of the classical model based on solvent accessibility. Nevertheless, some atoms that do not lose solvent accessibility are part of the interface defined by the Voronoi model. The Voronoi model provides robust definitions of the curvature and of the connectivity of the interfaces, and leads to estimates of these features that generally agree with other approaches. Our implementation of the model allows an analysis of protein-water contacts that highlights the role of structural water molecules at protein-protein interfaces.  相似文献   

7.
The de novo design of protein-protein interfaces is a stringent test of our understanding of the principles underlying protein-protein interactions and would enable unique approaches to biological and medical challenges. Here we describe a motif-based method to computationally design protein-protein complexes with native-like interface composition and interaction density. Using this method we designed a pair of proteins, Prb and Pdar, that heterodimerize with a Kd of 130 nM, 1000-fold tighter than any previously designed de novo protein-protein complex. Directed evolution identified two point mutations that improve affinity to 180 pM. Crystal structures of an affinity-matured complex reveal binding is entirely through the designed interface residues. Surprisingly, in the in vitro evolved complex one of the partners is rotated 180° relative to the original design model, yet still maintains the central computationally designed hotspot interaction and preserves the character of many peripheral interactions. This work demonstrates that high-affinity protein interfaces can be created by designing complementary interaction surfaces on two noninteracting partners and underscores remaining challenges.  相似文献   

8.
Protein-protein complexes that dissociate and associate readily, often depending on the physiological condition or environment, play an important role in many biological processes. In order to characterise these "transient" protein-protein interactions, two sets of complexes were collected and analysed. The first set consists of 16 experimentally validated "weak" transient homodimers, which are known to exist as monomers and dimers at physiological concentration, with dissociation constants in the micromolar range. A set of 23 functionally validated transient (i.e. intracellular signalling) heterodimers comprise the second set. This set includes complexes that are more stable, with nanomolar binding affinities, and require a molecular trigger to form and break the interaction. In comparison to more stable homodimeric complexes, the weak homodimers demonstrate smaller contact areas between protomers and the interfaces are more planar and polar on average. The physicochemical and geometrical properties of these weak homodimers more closely resemble those of non-obligate hetero-oligomeric complexes, whose components can exist either as monomers or as complexes in vivo. In contrast to the weak transient dimers, "strong" transient dimers often undergo large conformational changes upon association/dissociation and are characterised with larger, less planar and sometimes more hydrophobic interfaces. From sequence alignments we find that the interface residues of the weak transient homodimers are generally more conserved than surface residues, consistent with being constrained to maintain the protein-protein interaction during evolution. Protein families that include members with different oligomeric states or structures are identified, and found to exhibit a lower sequence conservation at the interface. The results are discussed in terms of the physiological function and evolution of protein-protein interactions.  相似文献   

9.
A long-standing question in molecular biology is whether interfaces of protein-protein complexes are more conserved than the rest of the protein surfaces. Although it has been reported that conservation can be used as an indicator for predicting interaction sites on proteins, there are recent reports stating that the interface regions are only slightly more conserved than the rest of the protein surfaces, with conservation signals not being statistically significant enough for predicting protein-protein binding sites. In order to properly address these controversial reports we have studied a set of 28 well resolved hetero complex structures of proteins that consists of transient and non-transient complexes. The surface positions were classified into four conservation classes and the conservation index of the surface positions was quantitatively analyzed. The results indicate that the surface density of highly conserved positions is significantly higher in the protein-protein interface regions compared with the other regions of the protein surface. However, the average conservation index of the patches in the interface region is not significantly higher compared with other surface regions of the protein structures. This finding demonstrates that the number of conserved residue positions is a more appropriate indicator for predicting protein-protein binding sites than the average conservation index in the interacting region. We have further validated our findings on a set of 59 benchmark complex structures. Furthermore, an analysis of 19 complexes of antigen-antibody interactions shows that there is no conservation of amino acid positions in the interacting regions of these complexes, as expected, with the variable region of the immunoglobulins interacting mostly with the antigens. Interestingly, antigen interacting regions also have a higher number of non-conserved residue positions in the interacting region than the rest of the protein surface.  相似文献   

10.
Liu S  Li Q  Lai L 《Proteins》2006,64(1):68-78
With the large amount of protein-protein complex structural data available, to understand the key features governing the specificity of protein-protein recognition and to define a suitable scoring function for protein-protein interaction predictions, we have analyzed the protein interfaces from geometric and energetic points of view. Atom-based potential of mean force (PMFScore), packing density, contact size, and geometric complementarity are calculated for crystal contacts in 74 homodimers and 91 monomers, which include real biological interactions in dimers and nonbiological contacts in monomers and dimers. Simple cutoffs were developed for single and combinatorial parameters to distinguish biological and nonbiological contacts. The results show that PMFScore is a better discriminator between biological and nonbiological interfaces comparable in size. The combination of PMFScore and contact size is the most powerful pairwise discriminator. A combinatorial score (CFPScore) based on the four parameters was developed, which gives the success rate of the homodimer discrimination of 96.6% and error rate of the monomer discrimination of 6.0% and 19.8% according to Valdar's and our definition, respectively. Compared with other statistical learning models, the cutoffs for the four parameters and their combinations are directly based on physical models, simple, and can be easily applied to protein-protein interface analysis and docking studies.  相似文献   

11.
We compare the geometric and physical-chemical properties of interfaces involved in specific and non-specific protein-protein interactions in crystal structures reported in the Protein Data Bank. Specific interactions are illustrated by 70 protein-protein complexes and by subunit contacts in 122 homodimeric proteins; non-specific interactions are illustrated by 188 pairs of monomeric proteins making crystal-packing contacts selected to bury more than 800 A2 of protein surface. A majority of these pairs have 2-fold symmetry and form "crystal dimers" that cannot be distinguished from real dimers on the basis of the interface size or symmetry. The chemical and amino acid compositions of the large crystal-packing interfaces resemble the protein solvent-accessible surface. These interfaces are less hydrophobic than in homodimers and contain much fewer fully buried atoms. We develop a residue propensity score and a hydrophobic interaction score to assess preferences seen in the chemical and amino acid compositions of the different types of interfaces, and we derive indexes to evaluate the atomic packing, which we find to be less compact at non-specific than at specific interfaces. We test the capacity of these parameters to identify homodimeric proteins in crystal structures, and show that a simple combination of the non-polar interface area and the fraction of buried interface atoms assigns the quaternary structure of 88% of the homodimers and 77% of the monomers in our data set correctly. These success rates increase to 93-95% when the residue propensity score of the interfaces is taken into consideration.  相似文献   

12.
Chakrabarti P  Janin J 《Proteins》2002,47(3):334-343
The recognition sites in 70 pairwise protein-protein complexes of known three-dimensional structure are dissected in a set of surface patches by clustering atoms at the interface. When the interface buries <2000 A2 of protein surface, the recognition sites usually form a single patch on the surface of each component protein. In contrast, larger interfaces are generally multipatch, with at least one pair of patches that are equivalent in size to a single-patch interface. Each recognition site, or patch within a site, contains a core made of buried interface atoms, surrounded by a rim of atoms that remain accessible to solvent in the complex. A simple geometric model reproduces the number and distribution of atoms within a patch. The rim is similar in composition to the rest of the protein surface, but the core has a distinctive amino acid composition, which may help in identifying potential protein recognition sites on single proteins of known structures.  相似文献   

13.
Biological processes are commonly controlled by precise protein‐protein interactions. These connections rely on specific amino acids at the binding interfaces. Here we predict the binding residues of such interprotein complexes. We have developed a suite of methods, i‐Patch, which predict the interprotein contact sites by considering the two proteins as a network, with residues as nodes and contacts as edges. i‐Patch starts with two proteins, A and B, which are assumed to interact, but for which the structure of the complex is not available. However, we assume that for each protein, we have a reference structure and a multiple sequence alignment of homologues. i‐Patch then uses the propensities of patches of residues to interact, to predict interprotein contact sites. i‐Patch outperforms several other tested algorithms for prediction of interprotein contact sites. It gives 59% precision with 20% recall on a blind test set of 31 protein pairs. Combining the i‐Patch scores with an existing correlated mutation algorithm, McBASC, using a logistic model gave little improvement. Results from a case study, on bacterial chemotaxis protein complexes, demonstrate that our predictions can identify contact residues, as well as suggesting unknown interfaces in multiprotein complexes. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Huang SY  Zou X 《Proteins》2008,72(2):557-579
Using an efficient iterative method, we have developed a distance-dependent knowledge-based scoring function to predict protein-protein interactions. The function, referred to as ITScore-PP, was derived using the crystal structures of a training set of 851 protein-protein dimeric complexes containing true biological interfaces. The key idea of the iterative method for deriving ITScore-PP is to improve the interatomic pair potentials by iteration, until the pair potentials can distinguish true binding modes from decoy modes for the protein-protein complexes in the training set. The iterative method circumvents the challenging reference state problem in deriving knowledge-based potentials. The derived scoring function was used to evaluate the ligand orientations generated by ZDOCK 2.1 and the native ligand structures on a diverse set of 91 protein-protein complexes. For the bound test cases, ITScore-PP yielded a success rate of 98.9% if the top 10 ranked orientations were considered. For the more realistic unbound test cases, the corresponding success rate was 40.7%. Furthermore, for faster orientational sampling purpose, several residue-level knowledge-based scoring functions were also derived following the similar iterative procedure. Among them, the scoring function that uses the side-chain center of mass (SCM) to represent a residue, referred to as ITScore-PP(SCM), showed the best performance and yielded success rates of 71.4% and 30.8% for the bound and unbound cases, respectively, when the top 10 orientations were considered. ITScore-PP was further tested using two other published protein-protein docking decoy sets, the ZDOCK decoy set and the RosettaDock decoy set. In addition to binding mode prediction, the binding scores predicted by ITScore-PP also correlated well with the experimentally determined binding affinities, yielding a correlation coefficient of R = 0.71 on a test set of 74 protein-protein complexes with known affinities. ITScore-PP is computationally efficient. The average run time for ITScore-PP was about 0.03 second per orientation (including optimization) on a personal computer with 3.2 GHz Pentium IV CPU and 3.0 GB RAM. The computational speed of ITScore-PP(SCM) is about an order of magnitude faster than that of ITScore-PP. ITScore-PP and/or ITScore-PP(SCM) can be combined with efficient protein docking software to study protein-protein recognition.  相似文献   

15.
16.
Tuncbag N  Keskin O  Nussinov R  Gursoy A 《Proteins》2012,80(4):1239-1249
The similarity between folding and binding led us to posit the concept that the number of protein-protein interface motifs in nature is limited, and interacting protein pairs can use similar interface architectures repeatedly, even if their global folds completely vary. Thus, known protein-protein interface architectures can be used to model the complexes between two target proteins on the proteome scale, even if their global structures differ. This powerful concept is combined with a flexible refinement and global energy assessment tool. The accuracy of the method is highly dependent on the structural diversity of the interface architectures in the template dataset. Here, we validate this knowledge-based combinatorial method on the Docking Benchmark and show that it efficiently finds high-quality models for benchmark complexes and their binding regions even in the absence of template interfaces having sequence similarity to the targets. Compared to "classical" docking, it is computationally faster; as the number of target proteins increases, the difference becomes more dramatic. Further, it is able to distinguish binders from nonbinders. These features allow performing large-scale network modeling. The results on an independent target set (proteins in the p53 molecular interaction map) show that current method can be used to predict whether a given protein pair interacts. Overall, while constrained by the diversity of the template set, this approach efficiently produces high-quality models of protein-protein complexes. We expect that with the growing number of known interface architectures, this type of knowledge-based methods will be increasingly used by the broad proteomics community.  相似文献   

17.
Protein-protein interfaces are regions between 2 polypeptide chains that are not covalently connected. Here, we have created a nonredundant interface data set generated from all 2-chain interfaces in the Protein Data Bank. This data set is unique, since it contains clusters of interfaces with similar shapes and spatial organization of chemical functional groups. The data set allows statistical investigation of similar interfaces, as well as the identification and analysis of the chemical forces that account for the protein-protein associations. Toward this goal, we have developed I2I-SiteEngine (Interface-to-Interface SiteEngine) [Data set available at http://bioinfo3d.cs.tau.ac.il/Interfaces; Web server: http://bioinfo3d.cs.tau.ac.il/I2I-SiteEngine]. The algorithm recognizes similarities between protein-protein binding surfaces. I2I-SiteEngine is independent of the sequence or the fold of the proteins that comprise the interfaces. In addition to geometry, the method takes into account both the backbone and the side-chain physicochemical properties of the interacting atom groups. Its high efficiency makes it suitable for large-scale database searches and classifications. Below, we briefly describe the I2I-SiteEngine method. We focus on the classification process and the obtained nonredundant protein-protein interface data set. In particular, we analyze the biological significance of the clusters and present examples which illustrate that given constellations of chemical groups in protein-protein binding sites may be preferred, and are observed in proteins with different structures and different functions. We expect that these would yield further information regarding the forces stabilizing protein-protein interactions.  相似文献   

18.
We present an analysis of the water molecules immobilized at the protein-protein interfaces of 115 homodimeric proteins and 46 protein-protein complexes, and compare them with 173 large crystal packing interfaces representing nonspecific interactions. With an average of 15 waters per 1000 A2 of interface area, the crystal packing interfaces are more hydrated than the specific interfaces of homodimers and complexes, which have 10-11 waters per 1000 A2, reflecting the more hydrophilic composition of crystal packing interfaces. Very different patterns of hydration are observed: Water molecules may form a ring around interfaces that remain "dry," or they may permeate "wet" interfaces. A majority of the specific interfaces are dry and most of the crystal packing interfaces are wet, but counterexamples exist in both categories. Water molecules at interfaces form hydrogen bonds with protein groups, with a preference for the main-chain carbonyl and the charged side-chains of Glu, Asp, and Arg. These interactions are essentially the same in specific and nonspecific interfaces, and very similar to those observed elsewhere on the protein surface. Water-mediated polar interactions are as abundant at the interfaces as direct protein-protein hydrogen bonds, and they may contribute to the stability of the assembly.  相似文献   

19.
Rahat O  Yitzhaky A  Schreiber G 《Proteins》2008,71(2):621-630
Protein-protein interactions networks has come to be a buzzword associated with nets containing edges that represent a pair of interacting proteins (e.g. hormone-receptor, enzyme-inhibitor, antigen-antibody, and a subset of multichain biological machines). Yet, each such interaction composes its own unique network, in which vertices represent amino acid residues, and edges represent atomic contacts. Recent studies have shown that analyses of the data encapsulated in these detailed networks may impact predictions of structure-function correlation. Here, we study homologous families of protein-protein interfaces, which share the same fold but vary in sequence. In this context, we address what properties of the network are shared among relatives with different sequences (and hence different atomic interactions) and which are not. Herein, we develop the general mathematical framework needed to compare the modularity of homologous networks. We then apply this analysis to the structural data of a few interface families, including hemoglobin alpha-beta, growth hormone-receptor, and Serine protease-inhibitor. Our results suggest that interface modularity is an evolutionarily conserved property. Hence, protein-protein interfaces can be clustered down to a few modules, with the boundaries being evolutionarily conserved along homologous complexes. This suggests that protein engineering of protein-protein binding sites may be simplified by varying each module, but retaining the overall modularity of the interface.  相似文献   

20.
Zhang Q  Sanner M  Olson AJ 《Proteins》2009,75(2):453-467
Biological complexes typically exhibit intermolecular interfaces of high shape complementarity. Many computational docking approaches use this surface complementarity as a guide in the search for predicting the structures of protein-protein complexes. Proteins often undergo conformational changes to create a highly complementary interface when associating. These conformational changes are a major cause of failure for automated docking procedures when predicting binding modes between proteins using their unbound conformations. Low resolution surfaces in which high frequency geometric details are omitted have been used to address this problem. These smoothed, or blurred, surfaces are expected to minimize the differences between free and bound structures, especially those that are due to side chain conformations or small backbone deviations. Despite the fact that this approach has been used in many docking protocols, there has yet to be a systematic study of the effects of such surface smoothing on the shape complementarity of the resulting interfaces. Here we investigate this question by computing shape complementarity of a set of 66 protein-protein complexes represented by multiresolution blurred surfaces. Complexed and unbound structures are available for these protein-protein complexes. They are a subset of complexes from a nonredundant docking benchmark selected for rigidity (i.e. the proteins undergo limited conformational changes between their bound and unbound states). In this work, we construct the surfaces by isocontouring a density map obtained by accumulating the densities of Gaussian functions placed at all atom centers of the molecule. The smoothness or resolution is specified by a Gaussian fall-off coefficient, termed "blobbyness." Shape complementarity is quantified using a histogram of the shortest distances between two proteins' surface mesh vertices for both the crystallographic complexes and the complexes built using the protein structures in their unbound conformation. The histograms calculated for the bound complex structures demonstrate that medium resolution smoothing (blobbyness = -0.9) can reproduce about 88% of the shape complementarity of atomic resolution surfaces. Complexes formed from the free component structures show a partial loss of shape complementarity (more overlaps and gaps) with the atomic resolution surfaces. For surfaces smoothed to low resolution (blobbyness = -0.3), we find more consistency of shape complementarity between the complexed and free cases. To further reduce bad contacts without significantly impacting the good contacts we introduce another blurred surface, in which the Gaussian densities of flexible atoms are reduced. From these results we discuss the use of shape complementarity in protein-protein docking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号