首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies on the process of spontaneous protein folding into a unique native state are an important issue of molecular biology. Apomyoglobin from the sperm whale is a convenient model for these studies in vitro. Here, we present the results of equilibrium and kinetic experiments carried out in a study on the folding and unfolding of eight mutant apomyoglobin forms of with hydrophobic amino acid substitutions on the protein surface. Calculated values of apparent constants of folding/unfolding rates, as well as the data on equilibrium conformational transitions in the urea concentration range of 0–6 M at 11°C are given. Based on the obtained information on the kinetic properties of the studied proteins, a Φ-value analysis of the transition state has been performed and values of urea concentrations corresponding to the midpoint of the transition from the native to intermediate state have been determined for the given forms of mutant apomyoglobin. It has been found that a significant increase in the stability of the native state can be achieved by a small number of amino acid substitutions on the protein surface. It has been shown that the substitution of only one amino acid residue exclusively affects the height of the energy barrier that separates different states of apomyoglobin.  相似文献   

2.
Simulations and experiments that monitor protein unfolding under denaturing conditions are commonly employed to study the mechanism by which a protein folds to its native state in a physiological environment. Due to the differences in conditions and the complexity of the reaction, unfolding is not necessarily the reverse of folding. To assess the relevance of temperature initiated unfolding studies to the folding problem, we compare the folding and unfolding of a 125-residue protein model by Monte Carlo dynamics at two temperatures; the lower one corresponds to the range used in T -jump experiments and the higher one to the range used in unfolding simulations of all-atom models. The trajectories that lead from the native state to the denatured state at these elevated temperatures are less diverse than those observed in the folding simulations. At the lower temperature, the system unfolds through a mandatory intermediate that corresponds to a local free energy minimum. At the higher temperature, no such intermediate is observed, but a similar pathway is followed. The structures contributing to the unfolding pathways resemble most closely those that make up the "fast track" of folding. The transition state for unfolding at the lower temperature (above Tm) is determined and is found to be more structured than the transition state for folding below the melting temperature. This shift towards the native state is consistent with the Hammond postulate. The implications for unfolding simulations of higher resolution models and for unfolding experiments of proteins are discussed.  相似文献   

3.
Duan J  Nilsson L 《Proteins》2005,59(2):170-182
The folding of an oligomeric protein poses an extra challenge to the folding problem because the protein not only has to fold correctly; it has to avoid nonproductive aggregation. We have carried out over 100 molecular dynamics simulations using an implicit solvation model at different temperatures to study the unfolding of one of the smallest known tetramers, p53 tetramerization domain (p53tet). We found that unfolding started with disruption of the native tetrameric hydrophobic core. The transition state for the tetramer to dimer transition was characterized as a diverse ensemble of different structures using Phi value analysis in quantitative agreement with experimental data. Despite the diversity, the ensemble was still native-like with common features such as partially exposed tetramer hydrophobic core and shifts in the dimer-dimer arrangements. After passing the transition state, the secondary and tertiary structures continued to unfold until the primary dimers broke free. The free dimer had little secondary structure left and the final free monomers were random-coil like. Both the transition states and the unfolding pathways from these trajectories were very diverse, in agreement with the new view of protein folding. The multiple simulations showed that the folding of p53tet is a mixture of the framework and nucleation-condensation mechanisms and the folding is coupled to the complex formation. We have also calculated the entropy and effective energy for the different states along the unfolding pathway and found that the tetramerization is stabilized by hydrophobic interactions.  相似文献   

4.
5.
We used Phi-value analysis to characterise the transition state for folding of a thermophilic protein at the relatively high temperature of 325 K. PhiF values for the folding of the three-helix bundle, peripheral subunit binding domain from Bacillus stearothermophilus (E3BD) were determined by temperature-jump experiments in the absence of chemical denaturants. E3BD folded in microseconds through a highly diffuse transition state. Excellent agreement was observed between experiment and the results from eight (independent) molecular dynamics simulations of unfolding at 373 K. We used a combination of heteronuclear NMR experiments and molecular dynamics simulations to characterise the denatured ensemble, and found that it contained very little persistent, residual structure. However, those regions that adopt helical structure in the native state were found by simulation to be poised for helix formation in the denatured state. These regions also had significant structure in the transition state for folding. The overall folding pathway appears to be nucleation-condensation.  相似文献   

6.
To complement experimental studies of the src SH3 domain folding, we studied 30 independent, high-temperature, molecular dynamics simulations of src SH3 domain unfolding. These trajectories were observed to differ widely from each other. Thus, rather than analyzing individual trajectories, we sought to identify the recurrent features of the high-temperature unfolding process. The conformations from all simulations were combined and then divided into groups based on the number of native contacts. Average occupancies of each side-chain hydrophobic contact and hydrogen bond in the protein were then determined. In the symmetric funnel limit, the occupancies of all contacts should decrease in concert with the loss in total number of native contacts. If there is a lack of symmetry or hierarchy to the unfolding process, the occupancies of some contacts should decrease more slowly, and others more rapidly. Despite the heterogeneity of the individual trajectories, the ensemble averaging revealed an order to the unfolding process: contacts between the N and C-terminal strands are the first to disappear, whereas contacts within the distal beta-hairpin and a hydrogen-bonding network involving the distal loop beta-turn and the diverging turn persist well after the majority of the native contacts are lost. This hierarchy of events resembles but is somewhat less pronounced than that observed in our experimental studies of the folding of src SH3 domain.  相似文献   

7.
The ankyrin repeat is one of the most common protein motifs and is involved in protein-protein interactions. It consists of 33 residues that assume a beta-hairpin helix-loop-helix fold. Mutagenesis and kinetic experiments (Phi-value analysis of the folding transition state) have shown that the tumor suppressor p16(INK4a), a four-repeat protein, unfolds sequentially starting from the two N-terminal repeats. Here, the flexibility of p16(INK4a) at room temperature and its unfolding mechanism at high temperature have been investigated by multiple molecular dynamics runs in explicit water for a total simulation time of 0.65 micros. The transition state ensemble (TSE) of p16(INK4a) was identified by monitoring both the deviation from the experimental Phi values and sudden conformational changes along the unfolding trajectories. Conformations in the TSE have a mainly unstructured second repeat whereas the other repeats are almost completely folded. A rigid-body displacement of the first repeat involving both a rotation and translation is observed in all molecular dynamics simulations at high temperature. The Trp(15), Pro(75), and Ala(76) side-chains are more buried in the TSE than the native state. The sequential unfolding starting at the second repeat is in agreement with the mutagenesis studies whereas the displacement of the first repeat and the presence of nonnative interactions at the TSE are simulation results which supplement the experimental data. Furthermore, the unfolding trajectories reveal the presence of two on-pathway intermediates with partial alpha-helical structure. Finally, on the basis of the available experimental and simulation results we suggest that in modular proteins the shift of the folding TSE toward the native structure upon reduction of the number of tandem repeats is consistent with the Hammond effect.  相似文献   

8.
We have performed 128 folding and 45 unfolding molecular dynamics runs of chymotrypsin inhibitor 2 (CI2) with an implicit solvation model for a total simulation time of 0.4 microseconds. Folding requires that the three-dimensional structure of the native state is known. It was simulated at 300 K by supplementing the force field with a harmonic restraint which acts on the root-mean-square deviation and allows to decrease the distance to the target conformation. High temperature and/or the harmonic restraint were used to induce unfolding. Of the 62 folding simulations started from random conformations, 31 reached the native structure, while the success rate was 83% for the 66 trajectories which began from conformations unfolded by high-temperature dynamics. A funnel-like energy landscape is observed for unfolding at 475 K, while the unfolding runs at 300 K and 375 K as well as most of the folding trajectories have an almost flat energy landscape for conformations with less than about 50% of native contacts formed. The sequence of events, i.e., secondary and tertiary structure formation, is similar in all folding and unfolding simulations, despite the diversity of the pathways. Previous unfolding simulations of CI2 performed with different force fields showed a similar sequence of events. These results suggest that the topology of the native state plays an important role in the folding process.  相似文献   

9.
We report high temperature molecular dynamics simulations of the unfolding of the TRPZ1 peptide using an explicit model for the solvent. The system has been simulated for a total of 6 μs with 100-ns minimal continuous stretches of trajectory. The populated states along the simulations are identified by monitoring multiple observables, probing both the structure and the flexibility of the conformations. Several unfolding and refolding transition pathways are sampled and analyzed. The unfolding process of the peptide occurs in two steps because of the accumulation of a metastable on-pathway intermediate state stabilized by two native backbone hydrogen bonds assisted by nonnative hydrophobic interactions between the tryptophan side chains. Analysis of the un/folding kinetics and classical commitment probability calculations on the conformations extracted from the transition pathways show that the rate-limiting step for unfolding is the disruption of the ordered native hydrophobic packing (Trp-zip motif) leading from the native to the intermediate state. But, the speed of the folding process is mainly determined by the transition from the completely unfolded state to the intermediate and specifically by the closure of the hairpin loop driven by formation of two native backbone hydrogen bonds and hydrophobic contacts between tryptophan residues. The temperature dependence of the unfolding time provides an estimate of the unfolding activation enthalpy that is in agreement with experiments. The unfolding time extrapolated to room temperature is in agreement with the experimental data as well, thus providing a further validation to the analysis reported here.  相似文献   

10.
The folding of CheY mutant F14N/V83T was studied at 75 residues by NMR. Fluorescence, NMR, and sedimentation equilibrium studies at different urea and protein concentrations reveal that the urea-induced unfolding of this CheY mutant includes an on-pathway molten globule-like intermediate that can associate off-pathway. The populations of native and denatured forms have been quantified from a series of 15N-1H HSQC spectra recorded under increasing concentrations of urea. A thermodynamic analysis of these data provides a detailed picture of the mutant's unfolding at the residue level: (1) the transition from the native state to the molten globule-like intermediate is highly cooperative, and (2) the unfolding of this state is sequential and yields another intermediate showing a collapsed N-terminal domain and an unfolded C-terminal tail. This state presents a striking similarity to the kinetic transition state of the CheY folding pathway.  相似文献   

11.
Molecular dynamics simulations of protein unfolding were performed at an elevated temperature for the authentic and recombinant forms of goat alpha-lactalbumin. Despite very similar three-dimensional structures, the two forms have significantly different unfolding rates due to an extra N-terminal methionine in the recombinant protein. To identify subtle differences between the two forms in the highly stochastic kinetics of unfolding, we classified the unfolding trajectories using the multiple alignment method based on the analogy between the biological sequences and the molecular dynamics trajectories. A dendrogram derived from the multiple trajectory alignment revealed a clear difference in the unfolding pathways of the authentic and recombinant proteins, i.e. the former reached the transition state in an all-or-none manner while the latter unfolded less cooperatively. It was also found in the classification that the two forms of the protein shared a common transition state structure, which was in excellent agreement with the transition state structure observed experimentally in the Phi-value analysis.  相似文献   

12.
D P Goldenberg 《Biochemistry》1988,27(7):2481-2489
The kinetics of the disulfide-coupled unfolding-refolding transition of a mutant form of bovine pancreatic trypsin inhibitor (BPTI) lacking Cys-14 and -38 were measured and compared to previous results for the wild-type protein and other modified forms. The altered cysteines, which were changed to serine in the mutant protein, are normally paired in a disulfide in the native protein but from disulfides with Cys-5 in two-disulfide kinetic intermediates during folding. Although the mutant protein could fold efficiently, the kinetics of both folding and unfolding were altered, reflecting the roles of these cysteines in the two-disulfide intermediates with "wrong" disulfides. The intramolecular rate constant for the formation of the second disulfide of the native mutant protein was more than 10(3)-fold lower than that for the formation of a second disulfide during the refolding of the wild-type protein. The observed rate of unfolding of the mutant protein was also lower than that of the wild-type protein, demonstrating that the altered cysteines are involved in the intramolecular rearrangements that are the rate-determining step in the unfolding of the wild-type protein. These results confirm the previous conclusion [Creighton, T.E. (1977) J. Mol. Biol. 113, 275-293] that the energetically preferred pathway for folding and unfolding of BPTI includes intramolecular rearrangements of intermediates in which Cys-14 and -38 are paired in disulfides not present in the native protein. The present results are also consistent with other, less detailed, studies with similar mutants lacking Cys-14 and -38 [Marks, C.B., Naderi, H., Kosen, P.A., Kuntz, I.D., & Anderson, S. (1987) Science (Washington, D.C.) 235, 1370-1371].  相似文献   

13.
Patel B  Finke JM 《Biophysical journal》2007,93(7):2457-2471
Kinetic simulations of the folding and unfolding of triosephosphate isomerase (TIM) from yeast were conducted using a single monomer gammaTIM polypeptide chain that folds as a monomer and two gammaTIM chains that fold to the native dimer structure. The basic protein model used was a minimalist Gō model using the native structure to determine attractive energies in the protein chain. For each simulation type--monomer unfolding, monomer refolding, dimer unfolding, and dimer refolding--thirty simulations were conducted, successfully capturing each reaction in full. Analysis of the simulations demonstrates four main conclusions. First, all four simulation types have a similar "folding order", i.e., they have similar structures in intermediate stages of folding between the unfolded and folded state. Second, despite this similarity, different intermediate stages are more or less populated in the four different simulations, with 1), no intermediates populated in monomer unfolding; 2), two intermediates populated with beta(2)-beta(4) and beta(1)-beta(5) regions folded in monomer refolding; 3), two intermediates populated with beta(2)-beta(3) and beta(2)-beta(4) regions folded in dimer unfolding; and 4), two intermediates populated with beta(1)-beta(5) and beta(1)-beta(5) + beta(6) + beta(7) + beta(8) regions folded in dimer refolding. Third, simulations demonstrate that dimer binding and unbinding can occur early in the folding process before complete monomer-chain folding. Fourth, excellent agreement is found between the simulations and MPAX (misincorporation proton alkyl exchange) experiments. In total, this agreement demonstrates that the computational Gō model is accurate for gammaTIM and that the energy landscape of gammaTIM appears funneled to the native state.  相似文献   

14.
We use a combination of experiments, computer simulations and simple model calculations to characterize, first, the folding transition state ensemble of the src SH3 domain, and second, the features of the protein that determine its folding mechanism. Kinetic analysis of mutations at 52 of the 57 residues in the src SH3 domain revealed that the transition state ensemble is even more polarized than suspected earlier: no single alanine substitution in the N-terminal 15 residues or the C-terminal 9 residues has more than a two-fold effect on the folding rate, while such substitutions at 15 sites in the central three-stranded beta-sheet cause significant decreases in the folding rate. Molecular dynamics (MD) unfolding simulations and ab initio folding simulations on the src SH3 domain exhibit a hierarchy of folding similar to that observed in the experiments. The similarity in folding mechanism of different SH3 domains and the similar hierarchy of structure formation observed in the experiments and the simulations can be largely accounted for by a simple native state topology-based model of protein folding energy landscapes.  相似文献   

15.
Numerous quantitative stability/flexibility relationships, within Escherichia coli thioredoxin (Trx) and its fragments are determined using a minimal distance constraint model (DCM). A one-dimensional free energy landscape as a function of global flexibility reveals Trx to fold in a low-barrier two-state process, with a voluminous transition state. Near the folding transition temperature, the native free energy basin is markedly skewed to allow partial unfolded forms. Under native conditions the skewed shape is lost, and the protein forms a compact structure with some flexibility. Predictions on ten Trx fragments are generally consistent with experimental observations that they are disordered, and that complementary fragments reconstitute. A hierarchical unfolding pathway is uncovered using an exhaustive computational procedure of breaking interfacial cross-linking hydrogen bonds that span over a series of fragment dissociations. The unfolding pathway leads to a stable core structure (residues 22-90), predicted to act as a kinetic trap. Direct connection between degree of rigidity within molecular structure and non-additivity of free energy is demonstrated using a thermodynamic cycle involving fragments and their hierarchical unfolding pathway. Additionally, the model provides insight about molecular cooperativity within Trx in its native state, and about intermediate states populating the folding/unfolding pathways. Native state cooperativity correlation plots highlight several flexibly correlated regions, giving insight into the catalytic mechanism that facilitates access to the active site disulfide bond. Residual native cooperativity correlations are present in the core substructure, suggesting that Trx can function when it is partly unfolded. This natively disordered kinetic trap, interpreted as a molten globule, has a wide temperature range of metastability, and it is identified as the "slow intermediate state" observed in kinetic experiments. These computational results are found to be in overall agreement with a large array of experimental data.  相似文献   

16.
S Segawa  T Kawai 《Biopolymers》1986,25(10):1815-1835
Monte Carlo computer simulations were performed to elucidate the dynamic aspects of the folding and unfolding transitions of island-model protein. Five different types of model proteins were designed, according to characteristics of backbone structure. The computer simulations clearly show that the unfolding and folding transitions are all-or-none processes between the N-and U-states. They are typical Poisson processes. From the Arrhenius plots of rate constants, the activation enthalpies of folding and unfolding were determined. In addition, the folding pathways were determined along the reaction coordinate. Formations of several local structures along a polypeptide chain are almost simultaneous, but the most probable time sequence of events exists at the moment of transition. That is the most probable folding pathway. The unfolding pathway was found to be just the reverse process of the most probable folding pathway. The relationship between the fluctuations in each equilibrium state and the transition process was considered. In contrast to the theory of absolute reaction rate, the transient states are widely distributed along the reaction coordinate. From analysis of the “transient process,” we tried to determine the critical states from which the transient process starts. As a result, we found that the unfolding transition occurs at the stage near the N-state. During the U-state, large joined blocks rarely appear, but they appear in the transient process towards the N-state. However, the “branch point” between the N- and U-states lies near the N-state, and joined blocks tend to unfold prior to passing over the branch point. We concluded that the stability of later folding intermediates is important for selection of the folding pathway, while preferential selection of an early folding intermediate is important in acceleration of the folding rate. The effects of intrachain cross-linking and peptide fragment binding on the rate constants were examined by using computer simulations of model proteins. In general, a small-sized loop formed by cross-linking accelerates the folding rate and a large-sized loop contributes much to the stabilization of the native conformation. We also found that peptide fragment binding contributes little to the acceleration of the folding rate of the residual protein.  相似文献   

17.
Folding reaction of goat alpha-lactalbumin has been studied by stopped-flow circular dichroism and molecular dynamics simulations. The effects of four single mutations and a double mutation on the stability of the protein under a native condition were studied. The mutations were introduced into residues located at a hydrophobic core in the alpha-domain of the molecule. Here we show that an amino acid substitution (T29I) increases the native-state stability of goat alpha-lactalbumin against the guanidine hydrochloride-induced unfolding by 3.5 kcal/mol. Kinetic refolding and unfolding of wild-type and mutant goat alpha-lactalbumin measured by stopped-flow circular dichroism showed that the local structure around the Thr29 side chain was not constructed in the transition state of the folding reaction. To characterize the local structural change around the Thr29 side chain to an atomic level of resolution, we performed high-temperature (at 400 K and 600 K) molecular dynamics simulations and studied the structural change at an initial stage of unfolding observed in the simulation trajectories. The Thr29 portion of the molecule experienced structural disruption accompanied with the loss of inter-residue contacts and with the water molecule penetration in the 400-K simulation as well as in four of the six 600-K simulations. Disruption of the N-terminal portion was also observed and was consistent with the results of kinetic refolding/unfolding experiments shown in our previous report.  相似文献   

18.
The folding properties of wild type and mutants of domain C5 from cardiac myosin binding protein C have been investigated via molecular dynamics simulations within the framework of a native-centric and coarse-grained model. The relevance of a mutation has been assessed through the shift in the unfolding temperature, the change in the unfolding rate it determines and Phi-values analysis. In a previous paper (Guardiani et al. Biophys J 94:1403-1411, 2008), we performed Kinetic simulations on native contact formation revealing an entropy-driven folding pathway originating near the FG and DE loops. This folding mechanism allowed also a possible interpretation of the molecular impact of the three mutations, Arg14His, Arg28His and Asn115Lys involved in the Familial Hypertrophic Cardiomyopathy. Here we extend that analysis by enriching the mutant pool and we identify a correlation between unfolding rates and the number of native contacts retained in the transition state.  相似文献   

19.
To perform specific functional activities, the majority of proteins should fold into their distinct three-dimensional conformations. However, the biologically active conformation of a protein is generally found to be marginally stable than the other conformations that the chain can adopt. How a protein finds its native conformation from its post-synthesis unfolded structure in a complex conformational landscape is the unsolved question that still drives the protein folding community. Here, we report the folding mechanism of a globular protein, ubiquitin, from its chemically denatured state using all-atom molecular dynamics simulations. From the kinetic analysis of the simulated trajectories we show that the folding process can be described by the hydrophobic collapse mechanism, initiated by the “dewetting transition”, and subsequently assisted by the origination of an N-terminal folding nucleus, and finally supported by a native salt-bridge interaction between K11 and E34. We show that ubiquitin folds via an intermediate. Finally, we confirm the presence of “biological water” and explain its role to the folding process.  相似文献   

20.
We studied the pressure-induced folding/unfolding transition of staphylococcal nuclease (SN) over a pressure range of approximately 1-3 kilobars at 25 degrees C by small-angle neutron scattering and molecular dynamics simulations. We find that applying pressure leads to a twofold increase in the radius of gyration derived from the small-angle neutron scattering spectra, and P(r), the pair distance distribution function, broadens and shows a transition from a unimodal to a bimodal distribution as the protein unfolds. The results indicate that the globular structure of SN is retained across the folding/unfolding transition although this structure is less compact and elongated relative to the native structure. Pressure-induced unfolding is initiated in the molecular dynamics simulations by inserting water molecules into the protein interior and applying pressure. The P(r) calculated from these simulations likewise broadens and shows a similar unimodal-to-bimodal transition with increasing pressure. The simulations also reveal that the bimodal P(r) for the pressure-unfolded state arises as the protein expands and forms two subdomains that effectively diffuse apart during initial stages of unfolding. Hydrophobic contact maps derived from the simulations show that water insertions into the protein interior and the application of pressure together destabilize hydrophobic contacts between these two subdomains. The findings support a mechanism for the pressure-induced unfolding of SN in which water penetration into the hydrophobic core plays a central role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号