首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundDietary supplementation with omega-3 fatty acids has been associated with reduced incidence in thrombotic events. In addition, administration of n-3 polyunsaturated fatty acids (PUFAs) has been shown to rectify elevated platelet microparticle (MP) number and procoagulant activity in post myocardial infarction patients. However, it is unknown whether supplementation can alter these parameters in healthy individuals and if such effects are immediate or require long-term supplementation. We have previously demonstrated a gender-specific effect of LCn-3PUFA supplementation on platelet aggregation in healthy human subjects. Here we extend these findings to include the acute effects of supplementation with EPA- or DHA-rich oils on circulating MP levels and activity in healthy subjects.DesignA placebo-controlled trial was conducted in healthy males and females (n=30). MP activity, MP levels and platelet aggregation were measured at 0 and 24 h postsupplementation with either a placebo or EPA- or DHA-rich oil.ResultsBoth EPA and DHA effectively reduced platelet aggregation at 24 h postsupplementation relative to placebo (?13.3%, P=.006 and ?11.9%, P=.016, respectively), but only EPA reduced MP activity (?19.4%, P=.003). When grouped by gender, males showed a similar reduction in both platelet aggregation and MP activity (?20.5%, P=.008; ?22%, P=.008) following EPA, while females showed significantly reduced platelet aggregation (?13.7%, P=.04) but not MP activity after DHA only.ConclusionEPA and DHA exert gender-dependent effects on platelet aggregation and platelet MP activity, but not on MP levels. With respect to thrombotic disease risk, males may benefit more from EPA supplementation.  相似文献   

2.
The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1 ) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.  相似文献   

3.
Omega-3 fatty acids (FAs) are natural ligands of the peroxisome proliferator-activated receptor-α (PPARα), a nuclear receptor that modulates expression levels of genes involved in lipid metabolism. The L162V polymorphism of the PPARα gene is associated with a deteriorated metabolic profile. We postulate that subjects carrying the PPARα-V162 allele exhibit differences in the expression of PPARα and its target genes after incubation with omega-3 FAs compared with L162 homozygotes. Peripheral blood monocytes from six men carrying the PPARα-V162 allele paired for age and for body mass index with six L162 homozygotes were differentiated into macrophages and activated with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or mixtures of EPA:DHA. Data demonstrates that gene expression levels of PPARα and apolipoprotein AI (APOA1) were significantly lower for carriers of the PPARα-V162 allele compared to L162 homozygotes after the addition of DHA and a mixture of EPA:DHA. Additionally, lipoprotein lipase (LPL) gene expression displayed a tendency to be lower in the PPARα L162V polymorphism subgroup after the addition of a mixture of EPA:DHA. Consequently, individuals carrying the PPARα-V162 allele may demonstrate inferior improvements in their lipid profile due to alterations in gene expression rates in response to omega-3 FA supplementation.  相似文献   

4.
Nutritional enhancement of crops using genetic engineering can potentially affect herbivorous pests. Recently, oilseed crops have been genetically engineered to produce the long-chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at levels similar to that found in fish oil; to provide a more sustainable source of these compounds than is currently available from wild fish capture. We examined some of the growth and development impacts of adding EPA and DHA to an artificial diet of Pieris rapae, a common pest of Brassicaceae plants. We replaced 1% canola oil with EPA: DHA (11:7 ratio) in larval diets, and examined morphological traits and growth of larvae and ensuing adults across 5 dietary treatments. Diets containing increasing amounts of EPA and DHA did not affect developmental phenology, larval or pupal weight, food consumption, nor larval mortality. However, the addition of EPA and DHA in larval diets resulted in progressively heavier adults (F 4, 108 = 6.78; p = 0.011), with smaller wings (p < 0.05) and a higher frequency of wing deformities (R = 0.988; p = 0.001). We conclude that the presence of EPA and DHA in diets of larval P. rapae may alter adult mass and wing morphology; therefore, further research on the environmental impacts of EPA and DHA production on terrestrial biota is advisable.  相似文献   

5.
The effects of several methane-inhibitors on rumen fermentation were compared during three 24 h consecutive batch cultures of ruminal microbes in the presence of nonlimiting amounts of hydrogen. After the initial incubation series, methane production was reduced greater than 92% from that of non-treated controls (25.8 ± 8.1 μmol ml−1 incubation fluid) in cultures treated with nitroethane, sodium laurate, Lauricidin® or a finely-ground product of the marine algae, Chaetoceros (added at 1, 5, 5 and 10 mg ml−1, respectively) but not in cultures treated with sodium nitrate (1 mg m1−1). Methane production during two successive incubations was reduced greater than 98% from controls (22.5 ± 3.2 and 23.5 ± 7.9 μmol ml−1, respectively) by all treatments. Reductions in amounts of volatile fatty acids and ammonia produced and amounts of hexose fermented, when observed, were most severe in sodium laurate-treated cultures. These results demonstrate that all tested compounds inhibited ruminal methane production in our in vitro system but their effects on fermentation differed.  相似文献   

6.
The objective was to determine the effect of long-term dietary supplementation of two types of fish oil on lipid composition and steroidogenesis in adult pig testis. Twenty-four Duroc boars, aged 204.5 ± 9.4 d (body weight 128.1 ± 16.7 kg) received daily 2.5 kg of an iso-caloric basal diet supplemented with: 1) 62 g of hydrogenated animal fat (AF); 2) 60 g of menhaden oil (MO) containing 16% of eicosapentaenoic acid (EPA) and 18% of docosahexaenoic acid (DHA); or 3) 60 g of tuna oil (TO) containing 7% of EPA and 33% of DHA. After these diets were consumed for 7 mo, testicular hormones, phospholipid content, and fatty acid composition of individual phospholipids in testis were determined. Body and reproductive organ weights were not significantly affected by dietary treatments. Testicular tissue from boars fed a TO diet, followed by those receiving MO and AF diets, had the lowest level of phosphatidylethanolamine (TO < MO < AF; P < 0.01) but the highest sphingomyelin (TO > MO > AF; P < 0.01). For each phospholipid, boars fed either the MO or TO diet had increased total omega-3 fatty acids, particularly DHA (P < 0.01), by reciprocal replacement of total omega-6 fatty acids (20:4n-6, 22:5n-6). The MO diet increased EPA more than the other diets. Testicular concentrations of testosterone and estradiol were lower in boars fed a TO diet than a MO diet (P < 0.02). In conclusion, long-term dietary supplementation of fish oil, regardless of the EPA/DHA ratio, modified the fatty acid compositions in testis and affected steroid production of healthy adult boars, which may represent a promising models for future studies on fertility.  相似文献   

7.
Administration of fish oil (FO) in broiler diets can elevate α-linolenic acid (ALA), eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) levels, which are protective against cardiovascular disease. However, optimization based solely on n-3 polyunsaturated fatty acid (n-3 PUFA) enrichment in chicken meat could lead to lower meat quality, unless the withdrawal period (plan) is applied for 1 week. The present study investigated whether the incorporation of FO in the diet for 32 days followed by its withdrawal for 1 week affected blood lipid profiles, lipoprotein particles, performance and meat flavor in male broiler chickens. Two hundred and forty birds (1-day-old, Ross 308) were assigned to 1 of 4 dietary groups: 0%, 1%, 2% or 3% FO with four replicates. Broilers were fed for 49 days according to a 4-phase feeding program. The experimental phase comprised day 11 to 42, and FO was removed on day 42. Blood samples were collected during the pre- and post-withdrawal period after the recordings before slaughter. The FO groups demonstrated decreased low-density lipoprotein (LDL) and increased high-density lipoprotein levels on day 42 (P < 0.01); however, these values were not significant after design withdrawal. Diet supplementation with FO elevated the blood levels of palmitic acid (C16:0) and n-3 PUFAs, especially long-chain (LC) PUFAs (EPA, C20:5n-3 and DHA, C22:6n-3), and caused a decline in the level of arachidonic acid (AA, C20:4n-6; P < 0.05). Application of a one-week withdrawal period resulted in a decrease in (P < 0.05) linoleic acid (C18:2n-6) and an increase in the level of AA, unlike their amounts on day 42. Although blood and tissue LC n-3 PUFA levels on day 49 were significantly higher in the FO groups compared with the control, they demonstrated a substantial decrease on day 49 compared with day 42. The best results, mainly the lowest n-6/n-3 fatty acids (FAs) and feed conversion ratio (FCRs), were observed for 3% FO (group T4), even after institution of the withdrawal design. Degradation of total n-3 FAs deposited in tissues occurred after instituting the withdrawal plan diet, but deposited levels of EPA and DHA in tissues could ensure omega-3 enrichment of broiler meat in groups 3 and 4. On the basis of the dissatisfaction of the panelists toward group 4 meats (scored as near to acceptable) and their satisfaction with cooked samples of T3 (scored as good), group 3 meats were selected as good-quality n-3-enriched broiler meat.  相似文献   

8.
The long-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are prevalent in aquatic ecosystems and are not part of the natural diet of herbivorous, terrestrial insects, which generally consume alpha-linolenic acid (ALA) and linoleic acid (LNA). However, recent advances in genetic engineering have lead to the development of terrestrial crops that express the novel traits of EPA and DHA production. In the present study, we examine the effects of dietary EPA and DHA on the growth, development and fatty acid content of two crop pest insects: bertha armyworm and cabbage looper. Five experimental diets were formulated to include increasing amounts of pure EPA and DHA (in relation to the total diet lipid level), according to the ratios (EPA + DHA relative to a vegetable oil containing ALA and LNA): 0 (control), 0.25 : 0.75 (lowest), 0.5 : 0.5 (low), 0.75 : 0.25 (medium) and 1 : 0 (high). Dietary EPA and DHA had significant effects on development time, mass and fatty acid content in both species. Dietary treatment (interactive with time) had a significant effect on individual mass of both insects, indicating that, over time, EPA and DHA impacted growth. However, insect mass, development and morphology results are not linearly related with increasing dietary EPA and DHA. Both species retained EPA and DHA in adult form, and the body content of EPA and DHA was significantly, positively correlated with EPA and DHA diet treatments in both the bertha armyworm (r2 = 91.3%) and cabbage looper (r2 = 75.8%). Dietary EPA and DHA could have fitness consequences for these organisms and could be nutritionally transferred to higher consumers.  相似文献   

9.
Several studies demonstrate the importance of essential fatty acids (EFAs), and the long chain polyunsaturated FA docosahexaenoic acid (DHA), on cognition and brain development. The objective of this study was to investigate the relationship between whole-blood FAs and executive function in children from Northern Ghana. A total of 307, 2-to-6-year-old children attempted the dimensional change card sort (DCCS) task to assess executive function, and dried blood spot samples were collected and analyzed for FA content. Significant differences in mean % total whole-blood fatty acids were observed between children who could not follow directions on the DCCS test (49.8% of the sample) and those who could (50.2% of the sample). Positive associations with DCCS performance were observed for DHA (β=0.25, P=.06), total n-3 (β=0.17, P=.06) and dihomo-gamma-linolenic acid (DGLA; β=0.60, P=.06). Children with the highest levels of total n-3 and DHA were three and four times, respectively, more likely to pass at least one condition of the DCCS test of executive function than those with the lowest DHA levels. The results of this study indicate an association between n-3 FAs and high-level cognitive processes in children two to six years of age, providing impetus for further studies into possible interventions to improve EFA status of children in developing countries.  相似文献   

10.
The marine dinoflagellate Protoceratium reticulatum has been recently identified as a source for the disulfated polyether toxin, yessotoxin (YTX), and may pose a risk to human health, aquaculture development and coastal environments. The requirements of P. reticulatum for selenium, iron and cobalt were assessed in culture. P. reticulatum was grown in nutrient enriched seawater (1/10 GP medium) without selenium or with 0.003 and 0.0003 μM selenium added; without iron or with 0.076 and 0.0076 μM iron added; and without cobalt or with 0.008 μM cobalt added. Test flasks were monitored for growth rate, cell yield and YTX production. P. reticulatum was found to exhibit a strong requirement for both selenium and iron. Growth rate and cell yield in treatments without added selenium were significantly (P<0.05) reduced to 60.2% (μ=0.15 day−1) and 20.2% (4942 cell ml−1), respectively, of those with selenium added (μ=0.23 day−1 and 24, 387 cell ml−1). YTX production was significantly increased by addition of selenium in two of three transfers tested. Cells of P. reticulatum subjected to medium without selenium added showed morphological changes observable at the light microscope level which included enlarged cell size. The diameter of cells in medium without selenium added were significantly (P<0.05) enlarged to 36.7±0.90 μm compared to cells in the medium with selenium added, 27.5±1.25 μm. Growth rate and cell yield in treatments without added iron were also significantly reduced to 70.1% (μ=0.16 day−1) and 34.2% (8003 cells ml−1), respectively, of those with iron added (μ=0.23 day−1 and 23,416 cells ml−1). No significant effect on YTX production was measured. In contrast to selenium and iron, no limitation of growth or cell yield or differences in YTX production were observed for flasks without cobalt as compared to those with cobalt added. The possibility that harmful algal events of P. reticulatum may be influenced by selenium or iron in neritic waters is discussed.  相似文献   

11.
It has been demonstrated that supplementation with the two main omega 3 polyunsaturated fatty acids (ω3 FAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), leads to modifications in the cardiac physiology. ω3 FAs can affect the membrane's lipid composition, as well as proteins' location and/or function. The Na+/H+ exchanger (NHE1) is an integral membrane protein involved in the maintenance of intracellular pH and its hyperactivity has been associated with the development of various cardiovascular diseases such as cardiac hypertrophy.Our aim was to determine the effect of ω3 FAs on systolic blood pressure (SBP), lipid profiles, NHE1 activity, and cardiac function in spontaneously hypertensive rats (SHR) using Wistar rats (W) as normotensive control. After weaning, the rats received orally ω3 FAs (200 mg/kg body mass/day/ 4 months). We measured SBP, lipid profiles, and different echocardiography parameters, which were used to calculate cardiac hypertrophy index, systolic function, and ventricular geometry. The rats were sacrificed, and ventricular cardiomyocytes were obtained to measure NHE1 activity.While the treatment with ω3 FAs did not affect the SBP, lipid analysis of plasma revealed a significant decrease in omega-6/omega-3 ratio, correlated with a significant reduction in left ventricular mass index in SHR.The NHE1 activity was significantly higher in SHR compared with W. While in W the NHE1 activity was similar in both groups, a significant decrease in NHE1 activity was detected in SHRs supplemented with ω3 FAs, reaching values comparable with W. Altogether, these findings revealed that diet supplementation with ω3 FAs since early age prevents the development of cardiac hypertrophy in SHR, perhaps by decreasing NHE1 activity, without altering hemodynamic overload.  相似文献   

12.
Our understanding of the differential effects between specific omega-3 fatty acids is incomplete. Here, we aimed to evaluate the effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on T-helper type 1 (Th1) cell responses and identify the pathways associated with these responses. Naïve CD4+ T cells were co-cultured with bone marrow-derived dendritic cells (DCs) in the presence or absence of palmitate (PA), DHA, or EPA. DHA or EPA treatment lowered the number of differentiated IFN-γ-positive cells and inhibited the secretion of IFN-γ, whereas only DHA increased IL-2 and reduced TNF-α secretion. There was reduced expression of MHC II on DCs after DHA or EPA treatment. In the DC-independent model, DHA and EPA reduced Th1 cell differentiation and lowered the cell number. DHA and EPA markedly inhibited IFN-γ secretion, while only EPA reduced TNF-α secretion. Microarray analysis identified pathways involved in inflammation, immunity, metabolism, and cell proliferation. Moreover, DHA and EPA inhibited Th1 cells through the regulation of diverse pathways and genes, including Igf1 and Cpt1a. Our results showed that DHA and EPA had largely comparable inhibitory effects on Th1 cell differentiation. However, each of the fatty acids also had distinct effects on specific cytokine secretion, particularly according to the presence of DCs.  相似文献   

13.
Excessive body weight is inversely associated with insulin sensitivity in children and adults. Chromium supplementation produces modest improvement in insulin sensitivity in adults. The aim of this study was to examine the beneficial effects of chromium supplementation on insulin sensitivity and body composition in overweight children simultaneously modifying lifestyle. Twenty-five overweight children aged 9–12 years were randomized to receive either 400 μg of chromium chloride or placebo in double-blind fashion, during a 6-week lifestyle modification regimen that included nutritional education and 3×90 min of aerobic physical activity weekly. Insulin sensitivity was demonstrated using homeostasis model assessment-insulin resistance and quantitative insulin sensitivity check index (QUICKI). Changes in body mass index (BMI; kg/m2), BMI Z-score, waist circumference, body composition and fasting plasma glucose were measured. Although no significant benefit of chromium supplementation over placebo was evident for BMI, BMI Z-score and fasting insulin level, children who received chromium chloride demonstrated more positive changes versus the placebo group in HOMA (−1.84±1.07 vs. 0.05±0.42, P=.05), QUICKI (0.02±0.01 vs. −0.002±0.01, P=.05), lean body mass (2.43±0.68kg vs. 1.36±1.61kg, P=.02) and percentage body fat (−3.32±1.29% vs. 0.65±1.05%, P=.04). The desirable effects of chromium supplementation on insulin sensitivity and body composition were more apparent in pre-pubertal children. These results suggest that short-term chromium supplementation can improve insulin sensitivity and body composition in overweight children.  相似文献   

14.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) lower risk of cardiovascular disease. The primary source of EPA and DHA is fatty fish. Plant-derived alpha linolenic acid (ALA) and stearidonic acid (SDA) could provide sustainable land-based alternatives, but their functionality is underexplored. Omega-3 fatty acids (n-3 FAs) may influence atherogenic processes through changing endothelial cell (EC) function and lowering inflammation. This study compared effects of marine- and plant-derived n-3 FAs on EC inflammatory responses. EA.hy926 cells were exposed to ALA, SDA, EPA or DHA prior to stimulation with tumor necrosis factor (TNF)-α. All FAs were shown to be incorporated into ECs in a dose-dependent manner. SDA (50 μM) decreased both production and cell-surface expression of intercellular adhesion molecule (ICAM)-1; however EPA and DHA resulted in greater reduction of ICAM-1 production and expression. EPA and DHA also significantly lowered production of monocyte chemoattractant protein 1, interleukin (IL)-6 and IL-8. ALA, SDA and DHA (50 μM) all reduced adhesion of THP-1 monocytes to EA.hy926 cells. DHA significantly decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)p105 gene expression and phosphorylated NFκBp65 protein. Both EPA and DHA (50 μM) significantly decreased cyclooxygenase (COX)-2 protein. Thus, both marine-derived n-3 FAs, particularly DHA, had potent anti-inflammatory effects in this EC model. Of the plant-derived n-3 FAs, SDA showed the greatest inhibition of inflammation. Although neither ALA nor SDA reproduced the anti-inflammatory effects of EPA and DHA in this model, there is some potential for SDA to be a sustainable anti-inflammatory alternative to the marine n-3 FAs.  相似文献   

15.
IntroductionEpidemiological studies suggest that reduced intakes and/or blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with increased risk for depression in adults, but data on adolescents are scarce. The objective of this study was to determine whether red blood cell (RBC) levels of EPA+DHA (the omega-3 index) and/or the overall RBC fatty acid profile differ between depressed adolescents (cases) and non-depressed adolescents (controls).Patients and MethodsWe measured the RBC fatty acid composition of cases admitted to the hospital for depression (n=150) and compared it to that of controls (n=161).ResultsCases and controls had similar ages, gender proportions, and body mass index (BMI) distributions, but there was a significant difference in racial/ethnic composition due to differences in recruitment sites. The unadjusted odds ratio for case status was 0.72 (95% CI; 0.55–0.95) for a 1% absolute increase in the omega-3 index. A multivariable logistic regression model was used to determine which fatty acids were useful in classifying cases and controls; BMI, age, gender, and race/ethnicity were forced into the model. Seven fatty acids were selected (DHA, myristic, stearic, oleic, trans linoleic, trans palmitoleic, and alpha-linolenic acids) to optimize the model fit to the data. In the adjusted model, the odds ratio was 0.67 (95% CI; 0.49–0.93) for a 1 SD increase in DHA. Adding the seven fatty acid profile to the basic model increased the area under the ROC curve by 12.6% (7.5%–17.6%).Discussion and ConclusionThese findings support the hypothesis that adolescent depression is associated with a perturbed RBC fatty acid pattern which includes a reduced omega-3 index. Intervention studies with EPA and DHA should be conducted in this vulnerable population for which few, safe therapeutic options currently exist.  相似文献   

16.
Docosahexaenoic acid (DHA, 22:6n-3) must be consumed in the diet or synthesized from n-3 polyunsaturated fatty acid (PUFA) precursors. However, the effect of dietary DHA on the metabolic pathway is not fully understood. Presently, 21-day-old Long Evans rats were weaned onto one of four dietary protocols: 1) 8 weeks of 2% ALA (ALA), 2) 6 weeks ALA followed by 2 weeks of 2% ALA + 2% DHA (DHA), 3) 4 weeks ALA followed by 4 weeks DHA and 4) 8 weeks of DHA. After the feeding period, 2H5-ALA and 13C20-eicosapentaenoic acid (EPA, 20:5n-3) were co-infused and blood was collected over 3 h for determination of whole-body synthesis-secretion kinetics. The synthesis-secretion coefficient (ml/min, means ± SEM) for EPA (0.238±0.104 vs. 0.021±0.001) and DPAn-3 (0.194±0.060 vs. 0.020±0.008) synthesis from plasma unesterified ALA, and DPAn-3 from plasma unesterified EPA (2.04±0.89 vs. 0.163±0.025) were higher (P<.05) after 2 weeks compared to 8 weeks of DHA feeding. The daily synthesis-secretion rate (nmol/d) of DHA from EPA was highest after 4 weeks of DHA feeding (843±409) compared to no DHA (70±22). Liver gene expression of ELOVL2 and FADS2 were lower (P<.05) after 4 vs. 8 weeks of DHA. Higher synthesis-secretion kinetics after 2 and 4 weeks of DHA feeding suggests an increased throughput of the PUFA metabolic pathway. Furthermore, these findings may lead to novel dietary strategies to maximize DHA levels while minimizing dietary requirements.  相似文献   

17.
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are long-chain polyunsaturated fatty acids (PUFAs) that belong to the omega-3 group. They are essential fatty acids found in phospholipid of cell membranes. There is strong evidence that these nutrients may also favorably modulate many diseases. Primary sources of omega-3 PUFAs in the human diet are fish and fish-derived products. The fishing industry worldwide, however, is becoming unable to satisfy the growing demand for these PUFAs. A promising cost-effective alternative source of PUFAs is bacterial production. We identified 40 Antarctic marine bacterial isolates by 16S rRNA gene sequence analysis. Fifteen genera in three phyla were represented in the collection. Isolates were tested for ability to produce EPA using a method in which their ability to reduce 2,3,5-triphenyltetrazolium chloride (TTC) is determined and by gas chromatography coupled to mass spectrometry (GC–MS). All isolates could reduce TTC, and GC–MS analysis showed that four produced EPA and that six produced DHA. We show for the first time that isolates identified as Cellulophaga, Pibocella and Polaribacter can produce EPA and DHA, only DHA or only EPA, respectively. One isolate, Shewanella sp. (strain 8-5), is indicated to be a good candidate for further study to optimize growth and EPA production. In conclusion, a rapid method was tested for identification of new EPA producing strains from marine environments. New EPA and DHA producing strains were found as well as a potentially useful PUFA production strain.  相似文献   

18.
The involvement of endogenous opioids in modulation of prolactin (PRL) secretion during pregnancy in the pig was studied. Twenty-four crossbred pregnant gilts (150 ± 10 kg) were cannulated via the cephalic vein 24–48 h before treatment with 1 mg kg−1 body weight of naloxone (NAL) or 3 ml of saline (CONT) i.v. at Day 40 (NAL, n = 6; CONT, n = 6) or Day 70 (NAL, n = 6; CONT, n = 6) of pregnancy. Blood plasma was collected at 15 min intervals from 1 h before to 3 h after treatment with NAL or saline. At Day 40 of pregnancy, administration of NAL caused a decrease in mean plasma PRL concentrations at 60 min, 120 min and 180 min post-treatment (NAL, 19.1 ± 1.3 ng ml−1, P < 0.05; 15.8 ± 0.6 ng ml−1, P < 0.001; 14.6 ± 0.7 ng ml−1, P < 0.001, respectively) when compared with the CONT group (22.9 ± 0.7 ng ml−1, 21.6 ± 0.6 ng ml−1 and 22.4 ± 0.5 ng ml−1, respectively). Mean plasma estradiol concentration was higher (P < 0.01) in the NAL group during the second and third hour post-treatment than in the CONT group. At Day 70 of pregnancy, infusion of NAL also decreased (P < 0.001) plasma PRL concentrations at 60 min, 120 min and 180 min after treatment (20.1 ± 1.6 ng ml−1, 16.2 ± 1.5 ng ml−1 and 14.8 ± 0.4 ng ml−1, respectively) compared with the CONT group (33.4 ± 1.7 ng ml−1, 34.1 ± 1.3 ng ml−1 and 29.1 ± 0.9 ng ml−1, respectively). Estradiol concentrations were not different (P > 0.05) between groups in this stage of gestation. Mean concentrations of progesterone were similar during the pre- and post-treatment periods in both stages of pregnancy.These data would suggest a possible role of the opioids in modulation of PRL secretion at these stages of pregnancy in the pig.  相似文献   

19.

Objectives

Celiac disease (CD), a genetically predisposed intolerance for gluten, is associated with an increased risk of major depressive disorder (MDD). We investigated whether dietary intake and serum levels of the essential n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA) found in fatty fish play a role in this association.

Methods

Cross-sectional study in 71 adult CD patients and 31 healthy volunteers, matched on age, gender and level of education, who were not using n-3 PUFA supplements. Dietary intake, as assessed using a 203-item food frequency questionnaire, and serum levels of EPA and DHA were compared in analyses of covariance, adjusting for potential confounders. Serum PUFA were determined using gas chromatography.

Results

Mean serum DHA was significantly higher in CD patients (1.72 mass%) than controls (1.28 mass%) after multivariable adjustment (mean diff. 0.45 mass%; 95% CI: 0.22–0.68; p = 0.001). The mean intake of EPA plus DHA did not differ between CD patients and controls after multivariable adjustment (0.15 and 0.22 g/d, respectively; p = 0.10). There were no significant differences in intake or serum levels of EPA and DHA between any of the CD patient groups (never depressed, current MDD, minor/partially remitted MDD, remitted MDD) and controls.

Conclusions

Patients on a long term gluten-free diet had similar intakes of EPA plus DHA compared to controls. Contrary to expectations, DHA serum levels were significantly higher in CD patients compared to healthy controls and were unrelated to MDD status.  相似文献   

20.
IntroductionLong chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) such as EPA and DHA have been shown to possess beneficial health effects, and it is believed that many of their effects are mediated by their oxygenated products (oxylipins). Recently, we have shown that serum levels of several hydroxy, epoxy, and dihydroxy FAs are dependent on the individual status of the parent FAs in a cohort of normo- and hyperlipidemic subjects. So far, the effect of an increased dietary LC n-3 PUFA intake on hydroxy, epoxy, and dihydroxy FA levels has not been investigated in subjects with mild combined hyperlipidemia.Subjects and methodsIn the present study, we compared oxylipin patterns of 10 hyperlipidemic (cholesterol >200 mg/dl; triglyceride >150 mg/ml) and 10 normolipidemic men in response to twelve weeks of LC n-3 PUFA intake (1.14 g DHA and 1.56 g EPA). Levels of 44 free hydroxy, epoxy and dihydroxy FAs were analyzed in serum by LC-MS. Additionally, oxylipin levels were compared with their parent PUFA levels in erythrocyte membranes; a biomarker for the individual PUFA status.ResultsDifferences in the oxylipin pattern between normo- and hyperlipidemic subjects were minor before and after treatment. In all subjects, levels of EPA-derived oxylipins (170–4800 pM) were considerably elevated after LC n-3 PUFA intake (150–1400%), the increase of DHA-derived oxylipins (360–3900 pM) was less pronounced (30–130%). The relative change of EPA in erythrocyte membranes is strongly correlated (r≥0.5; p<0.05) with the relative change of corresponding epoxy and dihydroxy FA serum levels. The effect on arachidonic acid (AA)-derived oxylipin levels (140–27,100 pM) was inconsistent.Discussion and conclusionsThe dietary LC PUFA composition has a direct influence on the endogenous oxylipin profile, including several highly biological active EPA- and DHA-derived lipid mediators. The shift in oxylipin pattern appears to be dependent on the initial LC PUFA status particularly for EPA. The finding that also levels of other oxylipins derived from ALA, LA or AA are modified by LC n-3 PUFA intake might suggest that at least some of the effects of EPA and DHA could be mediated by a shift in the entire oxylipin profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号