首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plastic role of dendritic cells (DCs) in the regulation of immune responses has made them interesting targets for immunotherapy, but also for pathogens or tumors to evade immunity. Functional alterations of DCs are often ascribed to manipulation of canonical NF-κB activity. However, though this pathway has been linked to murine myeloid DC biology, a detailed analysis of its importance in human myeloid DC differentiation, survival, maturation, and function is lacking. The myeloid DC subsets include interstitial DCs and Langerhans cells. In this study, we investigated the role of canonical NF-κB in human myeloid DCs generated from monocytes (monocyte-derived DCs [mo-DCs]) or CD34(+) progenitors (CD34-derived myeloid DCs [CD34-mDCs]). Inhibition of NF-κB activation during and after mo-DC, CD34-interstitial DC, or CD34-Langerhans cell differentiation resulted in apoptosis induction associated with caspase 3 activation and loss of mitochondrial transmembrane potential. Besides regulating survival, canonical NF-κB activity was required for the acquisition of a DC phenotype. Despite phenotypic differences, however, Ag uptake, costimulatory molecule and CCR7 expression, as well as T cell stimulatory capacity of cells generated under NF-κB inhibition were comparable to control DCs, indicating that canonical NF-κB activity during differentiation is redundant for the development of functional APCs. However, both mo-DC and CD34-mDC functionality were reduced by NF-κB inhibition during activation. In conclusion, canonical NF-κB activity is essential for the development and function of mo-DCs as well as CD34-mDCs. Insight into the role of this pathway may help in understanding how pathogens and tumors escape immunity and aid in developing novel treatment strategies aiming to interfere with human immune responses.  相似文献   

2.
The molecular pathways controlling cerebellar Purkinje cell dendrite formation and maturation are poorly understood. The Purkinje cell degeneration (pcd) mutant mouse is characterized by mutations in Nna1, a gene discovered in an axonal regenerative context, but whose actual function in development and disease is unknown. We found abnormal development of Purkinje cell dendrites in postnatal pcd(Sid) mice and linked this deficit to a deletion mutation in exon 7 of Nna1. With single cell gene profiling and virus-based gene transfer, we analyzed a molecular pathway downstream to Nna1 underlying abnormal Purkinje cell dendritogenesis in pcd(Sid) mice. We discovered that mutant Nna1 dramatically increases intranuclear localization of lysyl oxidase propeptide, which interferes with NF-κB RelA signaling and microtubule-associated protein regulation of microtubule stability, leading to underdevelopment of Purkinje cell dendrites. These findings provide insight into Nna1's role in neuronal development and why its absence renders Purkinje cells more vulnerable.  相似文献   

3.
Ho JQ  Asagiri M  Hoffmann A  Ghosh G 《PloS one》2011,6(2):e16815

Background

The pro-survival activity of NF-κB in response to a variety of stimuli has been extensively characterized. Although there have been a few reports addressing the pro-cell death role of NF-κB, the precise mechanism of NF-κB''s pro-cell death function still remains elusive.

Methodology/Principal Findings

In the present study, we investigated the role of NF-κB in cell death induced by chronic insult with hydrogen peroxide (H2O2). Here, we show that NF-κB promotes H2O2 induced caspase independent but PARP dependent fibroblast cell death. The pro-death activity of NF-κB is due to the DNA binding activity of RelA, which is induced through IKK- mediated IκBα degradation. NF-κB dependent pro-survival genes, Bcl-2 and XIAP, were significantly repressed, while NF-κB dependent pro-death genes, TNFα and Fas Ligand, were induced in response to H2O2.

Conclusions/Significance

We discovered an unexpected function of NF-κB, in that it potentiates chronic H2O2 exposure induced cell death, and suggest that NF-κB mediates cell death through the repression of pro-survival genes and induction of pro-death genes. Since unremitting exposure of tissues to H2O2 and other reactive oxygen species can lead to several degenerative disorders and diseases, our results have important implications for the use of NF-κB inhibitors in therapeutic drug design.  相似文献   

4.
Adiponectin (APN) is a crucial regulator for many inflammatory processes, but its effect on Th cell-mediated responses has not been fully understood. Thus, we investigated the immune-modulatory effects of APN on dendritic cells (DCs) controlling Th cell polarization. APN induced maturation and activation of DCs, as demonstrated by the increased expression of MHC class II, costimulatory molecules in both mouse and human DCs, and it significantly enhanced production of proinflammatory cytokines. APN triggered degradation of IκB proteins, nuclear translocation of NF-κB p65 subunit, and phosphorylation of MAPKs in DCs. Pretreatment with a phospholipase C (PLC)γ inhibitor and a JNK inhibitor suppressed IL-12 production and NF-κB binding activity. Additionally, PLCγ inhibitor downregulated phosphorylation of JNK, indicating that PLCγ and JNK may be upstream molecules of NF-κB. Importantly, APN-treated DCs significantly induced both Th1 and Th17 responses in allogeneic CD4(+) T cells. The addition of a neutralizing anti-IL-12 mAb to the cocultures abolished the secretion of IFN-γ, whereas the blockage of IL-23 and IL-1β suppressed APN-induced IL-17 production. Immunization of mice with OVA-pulsed, APN-treated DCs efficiently led to Ag-specific Th1 and Th17 cell responses. Taken together, these results demonstrated that APN effectively induced activation of DCs through PLCγ/JNK/NF-κB-signaling pathways, leading to enhanced Th1 and Th17 responses.  相似文献   

5.

Background

Intrahepatic cholestasis of pregnancy (ICP) is the most prevalent pregnancy specific liver disease. However, the pathogenesis and etiology of ICP is poorly understood.

Aim

To assess the expression of peroxisome proliferator-activated receptorγ (PPARγ) and nuclear factor kappa B (NF-κB) in placenta and HTR-8/SVneo cell, and evaluate the serum levels of cytokines, bile acids, hepatic function and lipids in control and ICP patients and the fetal outcome, in order to explore the role of PPARγ/NF-κB signaling pathway in the possible mechanism of ICP.

Methods

Clinical data of the pregnant women were collected and serum levels of cytokines, bile acids, hepatic function and lipids were measured. Expressions of PPARγ and NF-κB in placenta and HTR-8/SVneo cell were determined. The new-born information was collected to demonstrate the relationship between PPARγ/NF-κB signaling pathway and ICP.

Results

The serum levels of bile acids, hepatic function, triglycerides (TG), total cholesterol (TC), IL-6, IL-12 and TNF-α in ICP group were significantly increased (P<0.01), and serum level of IL-4 was significantly decreased (P<0.01). PPARγ and NF-κB staining were found in the membrane and cytoplasm of placental trophoblast cell. The expression of PPARγ and NF-κB were significantly higher in ICP group and taurocholate acid (TCA) treated HTR-8/SVneo cell (P<0.01). The new-born information in severe ICP group were significantly different as compared to that in control group (P<0.05), and part of information in mild ICP group were also difference to that in control group (P<0.05).

Conclusions

The higher expressions of PPARγ and NF-κB in ICP placenta and TCA treated HTR-8/SVneo cell, together with the abnormal serum levels of cytokines, might induced by the imbalance of inflammatory and immune reaction, and then disturb placental bile acid and serum lipids transportation, finally result in fatal cholestasis which probably be one of the mechanism of ICP.  相似文献   

6.
Accumulating evidence shows that the inhibition of thromboxane synthase (TXS) induced apoptosis in cancer cells. TXS inhibitor 1-Benzylimidzole (1-BI) can trigger apoptosis in lung cancer cells but the mechanism is not fully defined. In this study, lung cancer cells were treated with 1-BI. In this study, the level of reactive oxygen species (ROS) was measured and NF-κB activity was determined in human lung cancer cells. The roles of ROS and NF-κB in 1-BI-mediated cell death were analyzed. The results showed that 1-BI induced ROS generation but decreased the activity of NF-κB by reducing phosphorylated IκBα (p-IκBα) and inhibiting the translocation of p65 into the nucleus. In contrast to 1-BI, antioxidant N-acetyl cysteine (NAC) stimulated cell proliferation and significantly protected the cells from 1-BI-mediated cell death by neutralizing ROS. Collectively, apoptosis induced by 1-BI is associated with the over-production of ROS and the reduction of NF-κB. Antioxidants can significantly block the inhibitory effect of 1-BI.  相似文献   

7.
The ubiquitin-proteasome system (UPS) plays a central role in regulating protein homeostasis in tumor progression.The proteasome subunit Rpn10 is associated wit...  相似文献   

8.
9.
Transendothelial trafficking model mimics in vivo differentiation of monocytes into dendritic cells (DC). The serum from patients with systemic lupus erythematosus promotes the differentiation of monocytes into mature DC. We have shown that selective inhibition of NF-κB by adenoviral gene transfer of a novel mutated IκBα (AdIκBαM) in DC contributes to T cell tolerance. Here we demonstrated for the first time that asthmatic serum facilitated human monocyte-derived DC (MDDC) maturation associated with increased NF-κB activation in this model. Furthermore, selective blockade of NF-κB by AdIκBαM in MDDC led to increased apoptosis, and decreased levels of CD80, CD83, CD86, and IL-12 p70 but not IL-10 in asthmatic serum-stimulated MDDC, accompanied by reduced proliferation of T cells. These results suggest that AdIκBαM-transferred MDDC are at a more immature stage which is beneficial to augment the immune tolerance in asthma.  相似文献   

10.
Omega-3 fatty acids (FAs) are natural ligands of the peroxisome proliferator-activated receptor-α (PPARα), a nuclear receptor that modulates expression levels of genes involved in lipid metabolism. The L162V polymorphism of the PPARα gene is associated with a deteriorated metabolic profile. We postulate that subjects carrying the PPARα-V162 allele exhibit differences in the expression of PPARα and its target genes after incubation with omega-3 FAs compared with L162 homozygotes. Peripheral blood monocytes from six men carrying the PPARα-V162 allele paired for age and for body mass index with six L162 homozygotes were differentiated into macrophages and activated with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or mixtures of EPA:DHA. Data demonstrates that gene expression levels of PPARα and apolipoprotein AI (APOA1) were significantly lower for carriers of the PPARα-V162 allele compared to L162 homozygotes after the addition of DHA and a mixture of EPA:DHA. Additionally, lipoprotein lipase (LPL) gene expression displayed a tendency to be lower in the PPARα L162V polymorphism subgroup after the addition of a mixture of EPA:DHA. Consequently, individuals carrying the PPARα-V162 allele may demonstrate inferior improvements in their lipid profile due to alterations in gene expression rates in response to omega-3 FA supplementation.  相似文献   

11.
Boswellic acid acylates including their epimers were synthesized and screened against a panel of human cancer cell lines. They exhibited a range of cytotoxicity against various human cancer cell lines thereby leading to the development of a possible SAR. One of the identified lead compounds was found to be an inhibitor of the NF-κB and STAT proteins, warranting further investigations to be developed into a potential anticancer lead.  相似文献   

12.
Hepatocellular carcinoma is the third leading cause of cancer mortality worldwide, but the molecular mechanisms in tumorigenesis remain largely unknown. Previously, a DEAD-box protein DDX20, a component of microRNA-containing ribonucleoprotein complexes, was identified as a liver tumor suppressor candidate in an oncogenomics-based in vivo RNAi screen. However, the molecular mechanisms were unknown. Here, we show that deficiency of DDX20 results in the enhancement of NF-κB activity, a crucial intracellular signaling pathway closely linked with hepatocarcinogenesis. While DDX20 normally suppresses NF-κB activity by regulating NF-κB-suppressing miRNA-140 function, this suppressive effect was lost in DDX20-deficient cells. The impairment of miRNA function due to DDX20 deficiency appears to be miRNA species-specific at the point of loading miRNAs into the RNA-induced silencing complex. These results indicate that DDX20 deficiency enhances NF-κB activity by impairing the NF-κB-suppressive action of microRNAs, and suggest that dysregulation of the microRNA machinery components may also be involved in pathogenesis in various human diseases.  相似文献   

13.
14.
The molecular mechanism by which Profilin acts as a tumor suppressor is still unclear. Several chemotherapeutic agents, used till date either have unfavorable side effects or acquired resistance in tumor cells. Our findings show that Profilin enhances cell death mediated by several chemotherapeutic-agents. The activation of NF-κB and its dependent genes, mediated by paclitaxel and vinblastine, was completely inhibited in Profilin overexpressing cells. This inhibition was due to the Profilin mediated attenuation of IκBα degradation, thereby preventing p65 nuclear translocation and low NF-κB DNA binding activity.Moreover, Profilin increases level of p53 in the presence of known inducers, such as doxorubicin, vinblastine, and benzofuran. This increased p53 level leads to enhanced cell death as indicated by activation of caspases 3, 8, 9, which results in cleavage of PARP.Furthermore, knocking down of p53 in Profilin overexpressing cells leads to decreased cell death. Ectopic expression of Profilin in HCT116 p53 knock out cells showed lesser cell death as compared to the HCT116 p53 wild type cells. For the first time, we provide evidences, which suggest that Profilin synergizes with chemotherapeutic drugs to induce tumor cell death by regulating NF-κB and p53. Thus, modulation of Profilin may be a useful strategy for effective combination therapy.  相似文献   

15.
Accumulating studies have implicated that long noncoding RNA (lncRNA) plays a vital role in lung cancer. However, little is known of the role of lncRNA highly upregulated in liver cancer (HULC) in the pathogenesis of lung squamous cell carcinoma (LSCC). In this study, we investigated the modifying effects and underlying mechanisms of lncRNA HULC in LSCC. Significantly decreased level of lncRNA HULC was observed in LSCC samples compared with adjacent tissues. Besides, the expression of lncRNA HULC was negatively associated with protein tyrosine phosphatase receptor type O (PTPRO) in LSCC. Moreover, lncRNA HULC could promote the proliferation of LSCC cells by downregulating the expression PTPRO dependent on the phosphorylation and activation of nuclear factor-κB (NF-κB). The present study firstly shows strong evidence supporting a critical role of lncRNA HULC in promoting LSCC by regulating PTPRO/NF-κB signaling pathway, which provides new promising biomarkers for LSCC.  相似文献   

16.
17.
Epithelial-derived thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine that triggers dendritic cell (DC)-mediated Th2-type inflammatory responses. The activated DCs can penetrate the epithelium to directly take up antigen without compromising the barrier function. Although it is reported that DCs express tight junction molecules and can establish tight junction-like structures with adjacent epithelial cells to preserve the epithelial barrier, the regulation of expression of tight junction molecules in DCs remains unknown. In the present study, to investigate the mechanical regulation of expression of tight junction molecules in DCs, XS52 DCs that was a long-term DC line established from the epidermis of a newborn BALB/c mouse, were treated with TSLP or toll-like receptor (TLR) ligands. In XS52 cells, tight junction molecules claudin-1, -3, -4, -6, -7, -8, and occludin were detected. mRNA expression of TSLP receptor and all these tight junction molecules was significantly increased in activated XS52 cells after treatment with TSLP. In addition, expression of claudin-7 protein was increased in dose- and time-dependent manner. In XS52 cells, which express TLR2, TLR3, TLR4, and TLR7, but not TLR9, expression of claudin-7 protein was also increased after treatment with ligands of TLR2, TLR4 or TLR7/8, Pam3Cys-Ser-(Lys)4, LPS, or CL097. The NF-κB inhibitor IMD-0354 prevented upregulation of claudin-7 after treatment with TSLP or TLR ligands. These findings indicate that TSLP induces expression of tight junction protein claudin-7 in DCs via NF-κB as well as via TLRs and may control tight junctions of DCs to preserve the epithelial barrier during allergic inflammation.  相似文献   

18.
5-aminosalicylic acid (5-ASA) is widely used for the treatment of inflammatory bowel disease (IBD). Recent studies have evaluated the potential of nutritional intervention as adjunct therapy to 5-ASA in IBD. N-3 polyunsaturated fatty acids (PUFA) have shown potent anti-inflammatory properties in gut inflammation. Therefore, we aimed to evaluate the efficacy of the dual therapy (n-3 PUFA plus 5-ASA) in rats with 2, 4, 6-trinitrobenzen sulfonic acid (TNBS)-induced colitis. Colitis was induced by intrarectal injection of TNBS while control rats received the vehicle. Rats received by gavage a fish oil-rich formula (n-3 groups) or an isocaloric and isolipidic oil formula supplemented with 5-ASA for 14 days. A dose response of 5-ASA (5–75 mg. suppression mg kg? 1 d? 1) was tested. Colitis was evaluated and several inflammatory markers were quantified in the colon. COX-2 expression (P<.05) and pro-inflammatory eicosanoids production of prostaglandin E2 (P<.001) and leukotriene B4 (P<.001) were significantly inhibited by n-3 PUFA or 5-ASA therapy. 5-ASA also reduces mRNA levels of tumor necrosis factor α (P<.05). n-3 PUFA or 5-ASA significantly inhibits nuclear factor κB (NF-κB) activation (P<.01 and P<.05, respectively). The dual therapy n-3 PUFA plus 5-ASA also inhibited inflammatory response by lowering NF-κB activation (P<.01) or inducing peroxisome proliferator-activated receptor-γ (PPARγ) expression (P<.05). These results indicate that 5-ASA plus n-3 PUFAs are more effective than a higher dose of 5-ASA alone to reduce NF-κB activation and to induce PPARγ. By contrast, the dual therapy did not improve the effects of individual treatments on eicosanoids or cytokine production. Use of n-3 PUFA in addition to 5-ASA may reduce dose of standard therapy.  相似文献   

19.
20.
Peroxisome proliferator-activated receptor (PPAR)-γ agonists such as troglitazone, pioglitazone and thiazolidine have been shown to induce apoptosis in human colon cancer cells. The molecular mechanism of PPARγ agonist-induced apoptosis of colon cancer cells, however, is not clear. Glycogen synthase kinase-3β (GSK-3β) is an indispensable element for the activation of nuclear factor-kappa B (NF-κB) which plays a critical role in the mediation of survival signals in cancer cells. To investigate the mechanisms of PPARγ agonist-induced apoptosis of colon cancer cells, we examined the effect of troglitazone (0–16 μM) on the activation of GSK-3β and NF-κB. Our study showed that the inhibitory effect of troglitazone on colon cancer cell growth was associated with inhibition of NF-κB activity and GSK-3β expression in a dose-dependent manner. Cells were arrested in G0/G1 phase followed by the induction of apoptosis after treatment of troglitazone with concomitant decrease in the expression of the G0/G1 phase regulatory proteins; Cdk2, Cdk4, cyclin B1, D1, and E as well as in the anti-apoptosis protein Bcl-2 along with an increase in the expression of the pro-apoptosis-associated proteins; Caspase-3, Caspase-9 and Bax. Transient transfection of GSK-3β recovered troglitazone-induced cell growth inhibition and NF-κB inactivation. In contrast, co-treatment of troglitazone with a GSK-3β inhibitor (AR-a014418) or siRNA against GSK-3β, significantly augmented the inhibitory effect of troglitazone on the NF-κB activity, the cancer cell growth and on the expression of G0/G1 phase regulatory proteins and pro-apoptosis regulatory proteins. These results suggest that the PPARγ agonist, troglitazone, inhibits colon cancer cell growth via inactivation of NF-κB by suppressing GSK-3β activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号