首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
‘Divide and conquer’ has been the guiding strategy for the study of protein structure and function. Proteins are divided into domains with each domain having a canonical structural definition depending on its type. In this review, we push forward with the interesting observation that many domains have regions outside of their canonical definition that affect their structure and function; we call these regions ‘extensions’. We focus on the highly abundant PDZ (PSD-95, DLG1 and ZO-1) domain. Using bioinformatics, we find that many PDZ domains have potential extensions and we developed an openly-accessible website to display our results (http://bcz102.ust.hk/pdzex/). We propose, using well-studied PDZ domains as illustrative examples, that the roles of PDZ extensions can be classified into at least four categories: 1) protein dynamics-based modulation of target binding affinity, 2) provision of binding sites for macro-molecular assembly, 3) structural integration of multi-domain modules, and 4) expansion of the target ligand-binding pocket. Our review highlights the potential structural and functional importance of domain extensions, highlighting the significance of looking beyond the canonical boundaries of protein domains in general.  相似文献   

2.
The tandem PDZ domains of syntenin promote cell invasion   总被引:1,自引:0,他引:1  
Syntenin is a tandem PDZ protein that has recently been shown to be overexpressed in several cancer cells and tissues, and that might play an active role in tumor cell invasion and metastasis. Here we show that overexpression of the tandem PDZ domains of syntenin in non-invasive cells is necessary and sufficient to stimulate these cells to invade a collagen I matrix, and this effect can be regulated by ligand binding to the PDZ domains. Furthermore, we show that syntenin-induced invasion requires signaling through ras, rho and PI3K/MAPK signaling pathways and involves changes in cell-cell adhesion. Inversely, when we used RNA interference to inhibit syntenin expression in different invasive cancer cell lines, we observed a drastically decreased ability of these cells to migrate and invade into collagen type I or Matrigel. RNAi-treated cells also show increased cell aggregation, indicating that syntenin is important for cell-cell adhesion in epithelial cells. Together, these results suggest that downregulation of syntenin by RNA interference could provide a means of inhibiting tumor invasion and possibly metastasis in different cancers, and point to syntenin as a potential cancer biomarker and drug target.  相似文献   

3.
High-temperature requirement A (HtrA) and its homologs contain a serine protease domain followed by one or two PDZ domains. Bacterial HtrA proteins and the mitochondrial protein HtrA2/Omi maintain cell function by acting as both molecular chaperones and proteases to manage misfolded proteins. The biological roles of the mammalian family members HtrA1 and HtrA3 are less clear. We report a detailed structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3 using peptide libraries and affinity assays to define specificity, structural studies to view the molecular details of ligand recognition, and alanine scanning mutagenesis to investigate the energetic contributions of individual residues to ligand binding. In common with HtrA2/Omi, we show that the PDZ domains of HtrA1 and HtrA3 recognize hydrophobic polypeptides, and while C-terminal sequences are preferred, internal sequences are also recognized. However, the details of the interactions differ, as different domains rely on interactions with different residues within the ligand to achieve high affinity binding. The results suggest that mammalian HtrA PDZ domains interact with a broad range of hydrophobic binding partners. This promiscuous specificity resembles that of bacterial HtrA family members and suggests a similar function for recognizing misfolded polypeptides with exposed hydrophobic sequences. Our results support a common activation mechanism for the HtrA family, whereby hydrophobic peptides bind to the PDZ domain and induce conformational changes that activate the protease. Such a mechanism is well suited to proteases evolved for the recognition and degradation of misfolded proteins.  相似文献   

4.
Numb is an evolutionary conserved protein that plays critical roles in cell fate determination. Mammalian Numb displays a higher degree of structural complexity compared to the Drosophila homolog based on the number of encoding genes (Numb and Numb-like) and of alternative spliced isoforms. Accordingly, Numb proteins display a complex pattern of functions such as the control of asymmetric cell division and cell fate choice, endocytosis, cell adhesion, cell migration, ubiquitination of specific substrates and a number of signaling pathways (i.e. Notch, Hedgehog, p53). Recent findings indicate that, besides controlling such physiologic developmental processes, subversion of the above Numb-dependent events plays a critical role in disease (e.g. cancer). We will review here the multiple functions of mNumb and their underlying molecular mechanisms in development and disease.  相似文献   

5.
Kong Y  Karplus M 《Proteins》2009,74(1):145-154
PDZ domains are found in many signaling proteins. One of their functions is to provide scaffolds for forming membrane-associated protein complexes by binding to the carboxyl termini of their partners. PDZ domains are thought also to play a signal transduction role by propagating the information that binding has occurred to remote sites. In this study, a molecular dynamics (MD) simulation-based approach, referred to as an interaction correlation analysis, is applied to the PDZ2 domain to identify the possible signal transduction pathways. A residue correlation matrix is constructed from the interaction energy correlations between all residue pairs obtained from the MD simulations. Two continuous interaction pathways, starting at the ligand binding pocket, are identified by a hierarchical clustering analysis of the residue correlation matrix. One pathway is mainly localized at the N-terminal side of helix alpha1 and the adjacent C-terminus of loop beta1-beta2. The other pathway is perpendicular to the central beta-sheet and extends toward the side of PDZ2 domain opposite to the ligand binding pocket. The results complement previous studies based on multiple sequence analysis, NMR, and MD simulations. Importantly, they reveal the energetic origin of the long-range coupling. The PDZ2 results, as well as the earlier rhodopsin analysis, show that the interaction correlation analysis is a robust approach for determining pathways of intramolecular signal transduction.  相似文献   

6.
Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using ROSETTA LIGAND , we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density‐95/Dlg/ZO‐1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 Å. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately.  相似文献   

7.
A ubiquitous feature of neurotransmitter transporters is the presence of short C-terminal PDZ binding motifs acting as important trafficking elements. Depending on their very C-terminal sequences, PDZ binding motifs are usually divided into at least three groups; however this classification has recently been questioned. To introduce a 3D aspect into transporter’s PDZ motif similarities, we compared their interactions with the natural collection of all 13 PDZ domains of the largest PDZ binding protein MUPP1. The GABA, glycine and serotonin transporters showed unique binding preferences scattered over one or several MUPP1 domains. On the contrary, the dopamine and norepinephrine transporter PDZ motifs did not show any significant affinity to MUPP1 domains. Interestingly, despite their terminal sequence diversity all three GABA transporter PDZ motifs interacted with MUPP1 domain 7. These results indicate that similarities in binding schemes of individual transporter groups might exist. Results also suggest the existence of variable PDZ binding modes, allowing several transporters to interact with identical PDZ domains and potentially share interaction partners in vivo.  相似文献   

8.
The asymmetric cell division of stem or progenitor cells generates daughter cells with distinct fates that balance proliferation and differentiation. Asymmetric segregation of Notch signaling regulatory protein Numb plays a crucial role in cell diversification. However, the molecular mechanism remains unclear. Here, we examined the unequal distribution of Numb in the daughter cells of murine erythroleukemia cells (MELCs) that undergo DMSO-induced erythroid differentiation. In contrast to the cytoplasmic localization of Numb during uninduced cell division, Numb is concentrated at the cell boundary in interphase, near the one-spindle pole in metaphase, and is unequally distributed to one daughter cell in anaphase in induced cells. The inheritance of Numb guides this daughter cell toward erythroid differentiation while the other cell remains a progenitor cell. Mitotic spindle orientation, critical for distribution of cell fate determinants, requires complex communication between the spindle microtubules and the cell cortex mediated by the NuMA-LGN-dynein/dynactin complex. Depletion of each individual member of the complex randomizes the position of Numb relative to the mitotic spindle. Gene replacement confirms that multifunctional erythrocyte protein 4.1R (4.1R) functions as a member of the NuMA-LGN-dynein/dynactin complex and is necessary for regulating spindle orientation, in which interaction between 4.1R and NuMA plays an important role. These results suggest that mispositioning of Numb is the result of spindle misorientation. Finally, disruption of the 4.1R-NuMA-LGN complex increases Notch signaling and decreases the erythroblast population. Together, our results identify a critical role for 4.1R in regulating the asymmetric segregation of Numb to mediate erythropoiesis.  相似文献   

9.
PDZ domain proteins play critical roles in binding, clustering and subcellular targeting of membrane receptors and ion channels. PDZ domains in multi-PDZ proteins often are arranged in groups with highly conserved spacing and intervening sequences; however, the functional significance of such tandem arrangements of PDZs is unclear. We have solved the three-dimensional structure of the first two PDZ domains of postsynaptic density protein-95 (PSD-95 PDZ1 and PDZ2), which are closely linked to each other in the PSD-95 family of scaffold proteins. The two PDZs have limited freedom of rotation and their C-terminal peptide-binding grooves are aligned with each other with an orientation preference for binding to pairs of C termini extending in the same direction. Increasing the spacing between PDZ1 and PDZ2 resulted in decreased binding between PDZ12 and its dimeric targets. The same mutation impaired the functional ability of PSD-95 to cluster Kv1.4 potassium channels in heterologous cells. The data presented provide a molecular basis for preferential binding of PSD-95 to multimeric membrane proteins with appropriate C-terminal sequences.  相似文献   

10.
Mitogen activated protein (MAP) kinases and their target ribosomal protein S6 (RSK) kinases have been recognized as shared components in the intracellular signaling pathways of many diverse cytokines. Recent studies have extended this protein kinase cascade by identifying the major activator of vertebrate MAP kinases as a serine/threonine/tyrosine-protein kinase called MEK, which is related to yeast mating factor-regulated protein kinases encoded by the STE7 and byr1 genes. MEK, in turn, may be activated following its phosphorylation on serine by either of the kinases encoded by proto-oncogenesraf1 ormos, as well as by p78 mekk , which is related to the yeast STE11 and byr2 gene products. Isoforms of all of these protein kinases may specifically combine to assemble distinct modules for intracellular signal transmission. However, the fundamental architecture of these protein kinase cascades has been highly conserved during eukaryotic evolution.  相似文献   

11.
PDZ domains are protein-protein interaction modules that are crucial for the assembly of structural and signaling complexes. PDZ domains specifically bind short carboxyl-terminal peptides and occasionally internal sequences that structurally resemble peptide termini. Previously, using yeast two-hybrid methodology, we studied the interaction of two PDZ domains present in the large submembranous protein tyrosine phosphatase PTP-BL with the C-terminal half of the LIM domain-containing protein RIL. Deletion of the extreme RIL C-terminus did not eliminate binding, suggesting the presence of a PDZ binding site within the RIL LIM moiety. We have now performed experiments in mammalian cell lysates and found that the RIL C-terminus proper, but not the RIL LIM domain, can interact with PTP-BL, albeit very weakly. However, this interaction with PTP-BL PDZ domains is greatly enhanced when the combined RIL LIM domain and C-terminus is used, pointing to synergistic effects. NMR titration experiments and site-directed mutagenesis indicate that this result is not dependent on specific interactions that require surface exposed residues on the RIL LIM domain, suggesting a stabilizing role in the association with PTP-BL.  相似文献   

12.
Although the vast majority of the human proteome is represented by multi-domain proteins, the study of multi-domain folding and misfolding is a relatively poorly explored field. The protein Whirlin is a multi-domain scaffolding protein expressed in the inner ear. It is characterized by the presence of tandem repeats of PDZ domains. The first two PDZ domains of Whirlin (PDZ1 and PDZ2 – namely P1P2) are structurally close and separated by a disordered short linker. We recently described the folding mechanism of the P1P2 tandem. The difference in thermodynamic stability of the two domains allowed us to selectively unfold one or both PDZ domains and to pinpoint the accumulation of a misfolded intermediate, which we demonstrated to retain physiological binding activity. In this work, we provide an extensive characterization of the folding and unfolding of P1P2. Based on the observed data, we describe an integrated kinetic analysis that satisfactorily fits the experiments and provides a valuable model to interpret multi-domain folding. The experimental and analytical approaches described in this study may be of general interest for the interpretation of complex multi-domain protein folding kinetics.  相似文献   

13.
14.
15.
16.
The folding pathway of the third domain of PDZ from the synaptic protein PSD-95 was characterized using kinetic and equilibrium methods by monitoring the fluorescence signal from a Trp residue that is incorporated at a near-surface position. Kinetic folding of this domain showed multiple exponential phases, whereas unfolding showed a single exponential phase. The slow kinetic phases were attributed to isomerization of proline residues, since there are five proline residues in this domain. We found that the logarithms of the rate constants for the fast phase of folding and unfolding are linearly dependent on the concentrations of denaturant. The unfolding free energy derived from these rate constants at zero denaturant was close to the value measured using the equilibrium method, suggesting the absence of detectable sub-millisecond folding intermediates. However, native-state hydrogen exchange experiments detected a partially unfolded intermediate under native conditions. It was further confirmed by a protein engineering study. These data suggest that a hidden intermediate exists after the rate-limiting step in the folding of the third domain of PDZ.  相似文献   

17.
Ca2+ and calmodulin (CaM), a key Ca2+ sensor in all eukaryotes, have been implicated in defense responses in plants. To elucidate the role of Ca2+ and CaM in defense signaling, we used 35S-labeled CaM to screen expression libraries prepared from tissues that were either treated with an elicitor derived from Phytophthora megasperma or infected with Pseudomonas syringae pv. tabaci. Nineteen cDNAs that encode the same protein, pathogen-induced CaM-binding protein (PICBP), were isolated. The PICBP fusion proteins bound 35S-CaM, horseradish peroxidase-labeled CaM and CaM-Sepharose in the presence of Ca2+ whereas EGTA, a Ca2+ chelator, abolished binding, confirming that PICBP binds CaM in a Ca2+-dependent manner. Using a series of bacterially expressed truncated versions of PICBP, four CaM-binding domains, with a potential CaM-binding consensus sequence of WSNLKKVILLKRFVKSL, were identified. The deduced PICBP protein sequence is rich in leucine residues and contains three classes of repeats. The PICBP gene is differentially expressed in tissues with the highest expression in stem. The expression of PICBP in Arabidopsis was induced in response to avirulent Pseudomonas syringae pv. tomato carrying avrRpm1. Furthermore, PICBP is constitutively expressed in the Arabidopsis accelerated cell death2-2 mutant. The expression of PICBP in bean leaves was also induced after inoculation with avirulent and non-pathogenic bacterial strains. In addition, the hrp1 mutant of Pseudomonas syringae pv. tabaci and inducers of plant defense such as salicylic acid, hydrogen peroxide and a fungal elicitor induced PICBP expression in bean. Our data suggest a role for PICBP in Ca2+-mediated defense signaling and cell-death. Furthermore, PICBP is the first identified CBP in eukaryotes with four Ca2+-dependent CaM-binding domains.  相似文献   

18.
The C-terminal PDZ-binding motifs are required for polarized apical/basolateral localization of many membrane proteins. Ezrin–radixin–moesin (ERM) proteins regulate the organization and function of specific cortical structures in polarized epithelial cells by connecting filamentous (F)-actin to plasma membrane proteins through EBP50. Previous work showed that the membrane phosphoprotein apactin (an 80-kDa type I membrane protein derived from pro-Muclin) is associated with the acinar cell apical actin cytoskeleton and that this association is modulated by changes in the phosphorylation state of the apactin cytosolic tail. The carboxyl-terminal amino acids of apactin (–STKL–COOH) are predicted to form a type I PDZ-binding domain, similar to that of CFTR (–DTRL–COOH). Pairwise sequence comparison between NHERF/EBP50 and PDZK1/CAP70 PDZ domains reveals significant identity among the 83 amino-acid residues (12–92) of EBP50 and CAP70 (241–323), which are involved in the interaction with the carboxyl-terminal peptides (STKL–COOH and phosphomimetics) of apactin. Hence, the specificity and affinity of interactions are identical between them, which is corroborated with the two hybrid results. Substitution of all the four-carboxyl-terminal amino acids in the wild type to Ala reduces the interaction. Only the carbonyl oxygen and amide nitrogen of Ala are found to be involved in hydrogen bonding. Further, truncation of the wild carboxyl-terminal peptide to RGQPP–COOH, showed very low affinity of interaction with PDZ1 domain. Only the atom Oε1 of Gln-2 hydrogen bonds with Nε2 of His72 of PDZ domain. Ser-3 amino acid in wild type apactin protein (STKL–COOH) is not involved in hydrogen bonding with PDZ1 domain. However, substitution of Ser-3 to Asp-3 in PDTKL–COOH peptide increases the affinity of interaction of PDTKL–COOH with PDZ1 domain. Thus, carboxyl-terminal Asp(D) -3, Thr(T) -2, Lys(K) -1 and Leu(L) 0 are involved in numerous interactions with PDZ1 domains of NHERF/EBP50 and PDZK1/CAP70.  相似文献   

19.
We report the identification of a novel partner of Kidins220/ARMS (Kinase D-interacting substrate of 220 kDa/Ankyrin Repeat-rich Membrane Spanning) an adaptor of neurotrophin receptors playing crucial roles during neurogenesis. Screening a phage display library of brain cDNA products we found that D. rerio Pdzrn3, a protein containing RING-finger and PDZ-domains, interacts with Kidins220/ARMS through its first PDZ-domain. Both zebrafish proteins share high homology with the corresponding mammalian proteins and both genes are developmentally expressed in neural districts where early neurogenesis occurs. The interaction was also confirmed by biochemical assays and by co-localization at the tips of growing neurites of PC12 cells induced with nerve growth factor.  相似文献   

20.
Ranganathan S  Wang Y  Kern FG  Qu Z  Li R 《Proteins》2007,67(3):709-719
Atypical protein kinase C zeta (PKCzeta) plays an important role in cell proliferation and survival. PKCzeta and its truncated form containing only the kinase domain, CATzeta, have been reported to be activated by the phosphorylation of threonine 410 in the activation loop. We expressed both the full length PKCzeta and CATzeta in a baculovirus/insect cell over-expression system and purified the proteins for biochemical characterization. Ion exchange chromatography of CATzeta revealed three species with different levels of phosphorylation at Thr-410 and allowed the isolation of the CATzeta protein devoid of phosphorylation at Thr-410. All three species of CATzeta were active and their activity was not correlated with phosphorylation at Thr-410, indicating that the kinase activity of CATzeta did not depend solely on activation loop phosphorylation. Tyrosine phosphorylation was detected in all three species of CATzeta and the full length PKCzeta. Homology structural modeling of PKCzeta revealed a conserved, predicted-to-be phosphorylated tyrosine residue, Tyr-428, in the close proximity of the RD motif of the catalytic loop and of Thr-410 in the activation loop. The structural analysis indicated that phospho-Tyr-428 would interact with two key, positively-charged residues to form a triad conformation similar to that formed by phospho-Thr-410. Based on these observations, it is possible that the Thr-410 phosphorylation-independent kinase activity of CATzeta is regulated by the phosphorylation of Tyr-428. This alternative mode of PKCzeta activation is supported by the observed stimulation of PKCzeta kinase activity upon phosphorylation at the equivalent site by Abl, and may be involved in resistance to drug-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号