首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
中性粒细胞是机体外周血中数量最多的白细胞,在人体非特异性免疫系统中发挥着十分重要的作用.早期的研究认为,中性粒细胞能通过分泌细胞因子和产生活性氧等物质杀伤肿瘤.然而随着研究的深入,发现肿瘤微环境中的中性粒细胞对肿瘤的发展起到促进的作用.浸润性中性粒细胞产生的细胞因子和趋化因子能影响肿瘤微环境中炎症细胞的招募和激活,为肿瘤的发展提供良好的免疫抑制微环境,调控肿瘤的生长、转移和血管生成,还在肿瘤患者预后评估方面发挥着重要的作用.  相似文献   

2.
心血管疾病目前被认为是多因素参与的慢性炎症性疾病,中性粒细胞作为机体防御系统的第一道防线,广泛参与心血管疾病的发生发展。近期研究显示,作为先天性免疫吞噬细胞的中性粒细胞,可形成中性粒细胞胞外诱捕网(neutrophil extracellular traps,NETs)促进免疫反应的发展及持续,从而在心血管疾病中发挥重要调控作用。本综述详述了中性粒细胞和NETs在心血管疾病进展中的作用,并讨论了将NETs作为潜在治疗靶点的可能性。  相似文献   

3.
目的探讨中性粒细胞碱性磷酸酶(NAP)、中性粒细胞/淋巴细胞比值(NLR)及中性粒细胞表面(CD64)在肿瘤化疗合并细菌感染患者早期诊断的意义。方法选取2016年1月-2018年12月我院收治的200例肿瘤化疗后合并感染患者进行回顾性分析。应用流式细胞仪检测中性粒细胞表面CD64指数,全自动五分类细胞分析仪测定中性粒细胞与淋巴细胞比值,测定人NAP。结果真菌组、细菌组和病毒组患者体内NAP、NLR及CD64水平比较,细菌组患者NAP、NLR及CD64水平最高,真菌组、细菌组和病毒组患者体内NAP、NLR及CD64阳性检出的单独检出率明显低于三指标的联合检测率,差异具有统计学意义(均P0.05)。真菌组、细菌组和病毒组患者体内NAP、NLR及CD64的联合检出率、灵敏度、特异性、阳性预测值和阴性预测值明显高于各指标的单独检出。结论 NAP、NLR及CD64联合诊断在肿瘤化疗合并细菌感染患者的早期诊断中具有重要意义,特异性强,灵敏度高。  相似文献   

4.
肝细胞癌(HCC)是一种炎症相关癌症,肿瘤免疫微环境在HCC的发生和发展中起关键作用。该文旨在研究中性粒细胞胞外诱捕网(NETs)在HCC转移中的作用及相关机制。ELISA和免疫组化方法检测HCC患者血清和肿瘤组织中的NETs水平以检测NETs与肝癌转移的相关性。在体外实验中,建立NETs与肝癌细胞系Hep3B和CSQT-2体外共培养模型,通过划痕实验和Transwell等实验,研究NETs对肝癌细胞迁移的影响。在体内实验中,建立尾静脉注射转移瘤模型并使用脂多糖诱导小鼠体内NETs形成,通过检测肝脏病理变化和肝脏Ki67蛋白水平等指标,研究NETs对肿瘤转移的作用。最后,为了探讨NETs影响HCC转移的机制,通过质谱的方法检测了NETs对细胞外基质的修饰,并检测了修饰的细胞外基质蛋白对整合素/FAK信号通路的影响。结果发现:高转移HCC患者肿瘤组织中髓过氧化物酶蛋白水平较高,且与早期HCC患者相比,晚期HCC患者血清中的MPO和中性粒细胞弹性蛋白酶水平升高。体外实验中, NETs与Hep3B和CSQT-2细胞共培养,可以促进Hep3B和CSQT-2细胞的迁移能力。体内实验中, NETs...  相似文献   

5.
目的:通过对比CD177~+中性粒细胞在溃疡性结肠炎(UC)患者与正常对照者外周血中的表达差异,分析CD177~+中性粒细胞在溃疡性结肠炎发生发展中的临床意义。方法:收集30例UC患者及20例正常对照者外周血,采用流式细胞术检测中性粒细胞CD177~+中性粒细胞表达情况,对比两组CD177表达差异。结果:UC患者外周血中CD177~+中性粒细胞表达明显高于正常对照组(P 0. 01),中度活动UC外周血CD177~+中性粒细胞表达较轻度者明显增高(P 0. 05),UC患者外周血CD177~+中性粒细胞%与Mayo评分呈显著正相关(r=0. 384,P=0. 036)。结论:CD177~+中性粒细胞在UC患者外周血表达明显增高,且与疾病活动程度密切相关,能够反映UC患者临床疾病活动程度。  相似文献   

6.
实体瘤的发生发展常伴随着细胞外基质的异常沉积、交联和基质刚度增加.基质刚度增加和肿瘤细胞软化引起肿瘤微环境的力学异质性.基质力学通过影响肿瘤细胞的增殖、迁移、转移、上皮间质转换、肿瘤干细胞特性和耐药性等调控肿瘤的发生、恶性转变和转移.研究基质力学对肿瘤发生发展的影响不仅可深化对肿瘤发展的认识,也可为研究新的诊治方法提供理论基础.本文论述了细胞外基质力学特性对肿瘤发生发展及肿瘤细胞生物学行为影响的研究进展,并展望了其发展前景.  相似文献   

7.
细胞自噬是一种进化上高度保守的胞内降解系统,旨在实现维持细胞稳态以应对不同的细胞应激。在生理状态下,细胞自噬水平通常较低;而在氧化应激、营养饥饿和各种病原体刺激下会显著上调。过去的许多研究都表明细胞自噬在多种组织细胞和生理功能调控中有重要意义。早期研究发现了细胞自噬和中性粒细胞死亡之间的联系,这是与炎症密切关联的必要过程。在人类系统和小鼠模型中表明,细胞自噬在中性粒细胞驱动的炎症和防御病原体方面起着至关重要的作用。细胞自噬对中性粒细胞主要功能的发挥至关重要,包括脱颗粒、活性氧产生和中性粒细胞胞外诱捕网的释放。细胞自噬对中性粒细胞分化以及主要功能(包括脱颗粒、活性氧产生和中性粒细胞胞外诱捕网的释放)的发挥至关重要。集中讨论了细胞自噬对中性粒细胞的作用,即从中性粒细胞在骨髓中产生到炎症反应和NETosis细胞死亡。  相似文献   

8.
在世界范围内,乳腺癌是最常见的女性恶性肿瘤,严重危害人民健康。最近的流行病学和临床研究发现炎性反应与乳腺肿瘤有着一定的联系。炎症构成肿瘤微环境的一部分,炎性细胞的变化影响着肿瘤的进展,包括乳腺癌细胞增殖,侵袭,免疫力降低,转移等。检验外周静脉血中的白细胞、中性粒细胞、淋巴细胞、单核细胞、血小板以及衍生出的中性粒细胞/淋巴细胞比值(NLR)、派生中性粒细胞/淋巴细胞(d-NLR)、血小板/淋巴细胞比值(PLR)、淋巴细胞/单核细胞比值(LMR)等可以反映许多恶性肿瘤细胞的炎性状态。深入研究外周血中常见的标记物与乳腺癌的治疗及预后的关系,为临床医师提供有价值的参考信息,将具有重要的临床意义和应用前景。本文就外周血中常见的标记物进行相关论述,以期为乳腺癌的治疗及预后提供一个新的方法。  相似文献   

9.
中性粒细胞募集/浸润是肺部炎症性疾病的特征性表现,是肺部抵抗病原微生物入侵的第一道防线,主要通过吞噬作用杀灭病原微生物.然而,新近的研究发现,中性粒细胞被刺激后可形成一种以DNA为骨架并镶嵌有大量活性蛋白质的网状物质——中性粒细胞胞外诱捕网(neutrophil extracellular traps,NETs),这种特殊形式的生物结构能捕获并杀灭病原微生物.尽管就NETs的生物学功能而言,其对肺部炎症性疾病应该是有益的,但是越来越多的研究表明,NETs对肺上皮细胞和内皮细胞均具有直接的细胞毒性作用,并可能促进肺部炎症性疾病的发生发展.为了系统地了解NETs与肺部相关炎症性疾病的关系,本综述首先简述了NETs的结构、功能和形成过程,然后分别叙述了NETs与哮喘、慢性阻塞性肺病、细菌性肺炎、肺结核、肺囊性纤维化、间质性肺疾病、流感病毒感染和急性肺损伤的关系.最后总结、展望了NETs在肺部炎症性疾病中的潜在研究方向和针对性治疗策略.  相似文献   

10.
中性粒细胞是抵御病原体入侵机体的第一道防线,通过趋化和吞噬作用使病原体失活,从而进行免疫防御,杀灭病原体。研究证实,中性粒细胞通过吞噬病原体、分泌抗微生物蛋白颗粒来杀灭病原微生物。2004年Brinkmann发现了一种中性粒细胞新型抗感染机制,即中性粒细胞经病原体活化刺激后释放中性粒细胞胞外诱捕网(neutrophil extracellular trap,NET)至细胞外。NET是由双链DNA染色质和镶嵌在染色质上的抗菌蛋白构成的纤维网格状结构,通过网罗、捕获而杀灭病原体。诸多研究表明,NET在炎症相关疾病中起重要作用,其生成和降解会影响急慢性炎性疾病的病理过程。本文主要从NET的特征、产生机制、抗菌作用及其在炎性相关疾病中的作用等方面着手,概述其最新研究进展,为炎性疾病的治疗及其药物开发提供新的思路和方向。  相似文献   

11.
Human cancers are comprised of numerous cell types including neutrophils. Although often ignored, neutrophils are frequently present at sites of tumorigenesis including the kidney, breast, colon, and lung. These cells possess substances such as reactive oxygen species and proteinases that are capable of modifying tumor growth and invasiveness. This review addresses recent reports describing both pro-host and pro-tumor roles for neutrophils and neutrophil-derived substances and will examine the alterations in neutrophil behavior that explain this apparent biological discrepancy. Unfortunately, with the exception of investigator driven manipulation of neutrophil function, these cells function overwhelmingly against the host in the setting of cancer. Many cancers are capable of recruiting neutrophils to sites of tumorigenesis where they enhance tumor growth. Identification of the neutrophil-derived substances that promote tumor growth may yield novel therapeutic approaches to inhibit cancer progression. Alternatively, strategies designed to generate highly activated and cytotoxic neutrophils within the tumor microenvironment may provide a means to unleash the tumoricidal potential of the host’s innate immune response.  相似文献   

12.
We evaluated the spontaneous and immunotherapy‐induced histological changes in the tumor microenvironment of a mouse melanoma regression model consisting of immunocompetent C57BL/6J mice implanted with syngeneic YUMMER1.7 melanoma cells. We focused on tumor regression phenotypes and spatial relationships of melanoma cells with B cells and neutrophils since this was not previously described. We found common themes to the host response to cancer irrespective of the mode of tumor regression. In nonregression tumors, melanoma cells were epithelioid shaped and tightly packed. In regression tumors, melanoma cells were spindle shaped and discohesive. B cells including plasmablasts and plasma cells were numerous and were increased with immunotherapy. Neutrophils were in direct contact with dead or dying melanoma cells. Immunotherapy increased neutrophil counts and induced neutrophil extracellular traps (NETs)‐like formations and geographic necrosis. Beyond tumor regression, the increase in the B cell and neutrophil response could play a role in immunotherapy‐induced adverse reactions.  相似文献   

13.
Neutrophils are the frontline cells in response to microbial infections and are involved in a range of inflammatory disorders in the body. In recent years, neutrophils have gained considerable attention in their involvement of complex roles in tumor development and progression. Tumor-associated neutrophils (TANs) that accumulate in local region could be triggered by external stimuli from tumor microenvironment (TME) and switch between anti- and pro-tumor phenotypes. The anti-tumor neutrophils kill tumor cells through direct cytotoxic effects as well as indirect effects by activating adaptive immune responses. In contrast, the pro-tumor phenotype of neutrophils might be associated with cell proliferation, angiogenesis, and immunosuppression in TME. More recently, neutrophils have been proposed as a potential target in cancer therapy for their ability to diminish the pro-tumor pathways, such as by immune checkpoint blockade. This review discusses the complex roles of neutrophils in TME and highlights the strategies in neutrophil targeting in cancer treatment with a particular focus on the progresses of ongoing clinical trials involving neutrophil-targeted therapies.  相似文献   

14.
Polymorphoneuclear leukocytes or neutrophils, a major component of white blood cells, contribute to the innate immune response in humans. Upon sensing changes in the microenvironment, neutrophils adhere to the vascular wall, migrate through the endothelial cell (EC)-pericyte bilayer, and subsequently through the extracellular matrix to reach the site of inflammation. These cells are capable of destroying microbes, cell debris, and foreign proteins by oxidative and non-oxidative processes. While primarily mediators of tissue homeostasis, there are an increasing number of studies indicating that neutrophil recruitment and transmigration can also lead to host-tissue injury and subsequently inflammation-related diseases. Neutrophil-induced tissue injury is highly regulated by the microenvironment of the infiltrated tissue, which includes cytokines, chemokines, and the provisional extracellular matrix, remodeled through increased vascular permeability and other cellular infiltrates. Thus, investigation of the effects of matrix proteins on neutrophil-EC interaction and neutrophil transmigration may help identify the proteins that induce pro- or anti-inflammatory responses. This area of research presents an opportunity to identify therapeutic targets in inflammation-related diseases. This review will summarize recent literature on the role of neutrophils and the effects of matrix proteins on neutrophil-EC interactions, with focus on three different disease models: 1) atherosclerosis, 2) COPD, and 3) tumor growth and progression. For each disease model, inflammatory molecules released by neutrophils, important regulatory matrix proteins, current anti-inflammatory treatments, and the scope for further research will be summarized.  相似文献   

15.
Linkage between neutrophil degranulation and calcium discharge   总被引:1,自引:0,他引:1  
Calcium flux across organelle and plasma membranes is an important event in neutrophil activation. We measured calcium discharge into the media from neutrophils stimulated with formyl-methionyl-leucyl-phenylalanine after treatment with cytochalasin b. Cytochalasin markedly potentiated calcium efflux from stimulated neutrophils, and similarly promoted release of lysosomal enzymes into the media. Colchicine neither reproduced nor modified the cytochalasin effect. Neutrophil cytoplasts discharged very little calcium in response to stimulation, and discharge was not significantly altered by cytochalasin b. These findings indicate that neutrophil degranulation is accompanied by efflux of calcium into the media, and suggest that the neutrophil granules constitute a source of mobilizable calcium which could be used to modify the extracellular microenvironment.  相似文献   

16.
Nucleotide signaling is a key element of the neutrophil activation pathway. Neutrophil recruitment and migration to injured tissues is guided by purinergic receptor sensitization, mostly induced by extracellular adenosine triphosphate (ATP) and its hydrolysis product, adenosine (ADO), which is primarily produced by the CD39-CD73 axis located at the neutrophil cell surface. In inflammation unrelated to cancer, neutrophil activation via purinergic signaling aims to eliminate antigens and promote an immune response with minimal damage to healthy tissues; however, an antagonistic response may be expected in tumors. Indeed, alterations in purinergic signaling favor the accumulation of extracellular ATP and ADO in the microenvironment of solid tumors, which promote tumor progression by inducing cell proliferation, angiogenesis, and escape from immune surveillance. Since neutrophils and their N1/N2 polarization spectrum are being considered new components of cancer-related inflammation, the participation of purinergic signaling in pro-tumor activities of neutrophils should also be considered. However, there is a lack of studies investigating purinergic signaling in human neutrophil polarization and in tumor-associated neutrophils. In this review, we discussed the human neutrophil response elicited by nucleotides in inflammation and extrapolated its behavior in the context of cancer. Understanding these mechanisms in cancerous conditions may help to identify new biological targets and therapeutic strategies, particularly regarding tumors that are refractory to traditional chemo- and immunotherapy.  相似文献   

17.
A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the fibro-inflammatory microenvironment, consisting of activated pancreatic stellate cells, extracellular matrix proteins, and a variety of inflammatory cells, such as T cells, macrophages, or neutrophils. Tumor-infiltrating immune cells, which are found in nearly all cancers, including PDAC, often fail to eliminate the tumor, but conversely can promote its progression by altering the tumor microenvironment. Pancreatic cancer cells are able to attract polymorphonuclear neutrophils (PMN) via tumor secreted chemokines and in human PDAC, PMN infiltrates can be observed in the vicinity of tumor cells and in the desmoplastic tumor stroma, which correlate with undifferentiated tumor growth and poor prognosis. The behavior of tumor-infiltrating neutrophils in the tumor micromilieu is not yet understood at a mechanistic level. It has been shown that PMN have the potential to kill tumor cells, either directly or by antibody-dependent cell-mediated cytotoxicity, but on the other side various adverse effects of PMN, such as promotion of aggressive tumor growth with epithelial-to-mesenchymal transition and increased metastatic potential, have been described. Recent therapeutic approaches for PDAC focus not only the tumor cell itself, but also elements of the tumor microenvironment. Therefore, the role of PMN and their derived products (e.g. cytokines, proteases) as a new vein for a therapeutic target should be critically evaluated in this context. This review summarizes the current understanding of the interplay between proteases of tumor-infiltrating neutrophils and pancreatic tumor cells and elements of the desmoplastic stroma.  相似文献   

18.
Neutrophils are significant compositions of solid tumors and exert distinct functions in different types of tumors. However, the precise role of neutrophils in the progression of breast cancer (BC) is presently unclear. In this study, by investigating the single-cell RNA sequencing data, we identify a new neutrophil subset, C5aR1-positive neutrophils, that correlates with tumor progression and poor survival for BC patients. Furthermore, it is discovered that C5aR1-positive neutrophils enhance BC cell glycolysis via upregulating ENO1 expression. Mechanically, C5aR1-positive neutrophil-secreted IL1β and TNFα cooperatively activate ERK1/2 signaling, which phosphorylates WTAP at serine341 and thereby stabilizes WTAP protein. The stabilization of WTAP further promotes RNA m6A methylation of ENO1, impacting the glycolytic activity of BC cells. Importantly, C5aR1-positive neutrophils also promote breast cancer growth in vivo, and this effect is abolished by WTAP silencing. In clinical BC samples, increased C5aR1-positive neutrophils correlate with elevated IL1β, TNFα, and ENO1 expression. A high co-expression of C5aR1-positive neutrophil gene signature and ENO1 predicts worse prognosis of BC patients compared with a low co-expression. Collectively, our study reveals a novel subset of C5aR1-positive neutrophils that induces breast cancer glycolysis via increasing ERK1/2-WTAP-dependent m6A methylation of ENO1. These findings support the potential for exploration of C5aR1-positive neutrophils as a therapeutic target in breast cancer.Subject terms: Cancer microenvironment, Breast cancer, Oncogenesis  相似文献   

19.
It is assumed that oxidative damage caused by reactive oxygen species (ROS) from activated neutrophil granulocytes may contribute to pathology of tumors. ROS are crucial in neutrophil-mediated tumor cell lysis. The present study is focused on the oxidative burst and antitumorous activities of neutrophils when challenged with Walker carcinoma W256. Survival and tumor growth dynamics were monitored in vivo, while tumor cell proliferation when mixed with neutrophils was studied in vitro together with the generation/release of neutrophil respiratory burst products, primarily 1O2. Neutrophils were collected upon Sephadex injection. The survival of Sephadex injected animals was slightly improved, while their tumors grew less than in controls. The presence of tumor cells in vitro activated neutrophils to produce singlet oxygen similar to phorbol ester. Neutrophils from Sephadex-bearing animals diminished tumor cell proliferation in vitro (measured by 3H-TdR incorporation), while neutrophils from Sephadex and the tumor-bearing animals did not show such activity in vitro. Our results confirm that in the case of rapidly growing tumors such as murine W256 carcinoma neutrophils have antitumorous effects in the early phase of tumor development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号