首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 855 毫秒
1.
O Suzuki  Y Katsumata  M Oya 《Life sciences》1979,24(24):2227-2230
1,4-Methylhistamine was characterized as substrate for monoamine oxidase (MAO) in rat liver mitochondria. The Km and Vmax values were 38.8 μM and 6.33 nmoles/mg protein/60 min, respectively. The inhibition experiments with clorgyline and deprenyl, the selective inhibitors for type A and type B MAO, showed that 1,4-methylhistamine was specific for type B MAO.  相似文献   

2.
The effect of pH on the kinetic parameters for the chloroperoxidase-catalyzed N-demethylation of N,N-dimethylaniline supported by ethyl hydroperoxide was investigated from pH 3.0 to 7.0. Chloroperoxidase was found to be stable throughout the pH range studied. Initial rate conditions were determined throughout the pH range. The Vmax for the demethylation reaction exhibited a pH optimum at approximately 4.5. The Km for N,N-dimethylaniline increased with decreasing pH, while the Km for ethyl hydroperoxide varied in a manner paralleling Vmax. Comparison of the VmaxKm values for N,N-dimethylaniline and ethyl hydroperoxide indicated that the interaction of N,N-dimethylaniline with chloroperoxidase compound I was rate-limiting below pH 4.5, while compound I formation was rate-limiting above pH 4.5. The log of the VmaxKm for ethyl hydroperoxide was independent of pH, indicating that chloroperoxidase compound I formation is not affected by ionizations in this pH range. The plot of the log of the VmaxKm for N,N-dimethylaniline versus pH indicated an ionization on compound I with a pK of approximately 6.8. The plot of the log of the Vmax versus pH indicated an ionization on the compound I-N,N-dimethylaniline complex, with a pK of approximately 3.1. The results show that chloroperoxidase can demethylate both the protonated and neutral forms of N,N-dimethylaniline (pK approximately 5.0), suggesting that hydrophobic binding of the arylamine substrate is more important in catalysis than ionic bonding of the amine moiety. For optimal catalysis, a residue in the chloroperoxidase compound I-N,N-dimethylaniline complex with a pK of approximately 3.1 must be deprotonated, while a residue in compound I with a pK of approximately 6.8 must be protonated.  相似文献   

3.
The reaction of almond β-glucosidase with p-nitrophenyl-β-D-glucoside has been investigated over the temperature range +25° to ?45° using 50% aqueous dimethyl sulfoxide (DMSO) as solvent. At temperatures below those at which turnover occurs a “burst” of p-nitrophenol proportional to the enzyme concentration is observed. Such a “burst” suggests the existence of a glucosyl-enzyme intermediate whose breakdown is rate-limiting, and provides a method for measuring the active-site normality. At pH 5.9, 25°, the presence of 50% DMSO causes an increase in Km from 1.7×10?3M (0%) to 1.7×10?2M, whereas Vmax is unchanged. The DMSO thus apparently acts as a competitive inhibitor with Ki = 0.7M. The Arrhenius plot for turnover is linear over the accessible temperature range with Ea = 23.0 ± 2.0 kcal/mole.  相似文献   

4.
Brinolase, a thrombolytic fungal protease capable of forming vasoactive kinins, has been shown to hydrolyze kinins after their formation. Using synthetic bradykinin as a substrate, the kinetics and mechanism of hydrolysis have been elucidated, evidently explaining the apparently low kinin formation in vivo, Bradykinin hydrolysis proceeded rapidly in vitro with a pH optimum of 7.0–7.5, and a half-life of 5.1 min, using 250 ng/ml bradykinin and 50 μg/ml brinolase. The Km was 3.2×10?6 M and the Vmax was 4.6 × 10?8 mol/liter/min, using 5 μg/ml brinolase. Two-dimensional paper fractionation of the brinolase-bradykinin digest revealed the presence of free arginine amongst the five peptide fragment spots.  相似文献   

5.
DEAE-cellulose-purified Trypanosoma lewisi from 4-day (dividing trypanosomes) and 7-day (non-dividing trypanosomes) infections in rats were compared for initial uptake of glucose, leucine, and potassium. Glucose entered the parasitic cells by mediated (saturable) processes, whereas leucine and K+ entered by mediated processes and diffusion. Glucose entry was significantly elevated in 4-day cells (Vmax 4.00 ± 1.02 nmoles/ 1 × 108 cells/min) with respect to 7-day cells (Vmax 1.83 ± 0.62 nmoles 1 × 108 cells/min). Likewise, the affinity of the glucose carrier was significantly greater in 4-day cells (Km = 0.30 ± 0.02 mM) than in 7-day cells (Km = 0.59 ± 0.11 mM). When leucine and K+ transport were compared in 4- and 7-day populations, significant elevations in the rate of entry (Vmax) of both substrates were observed for 4-day cells; Km values for leucine and K+ were not altered by the stage of infection. For leucine, the Vmax and Km for 4-day cells were 2.40 ± 0.50 nmoles/1 × 108 cells/30 sec and 78 ± 7 μM, respectively; corresponding values in 7-day cells were 1.06 ± 0.02 nmoles/1 × 108 cells/30 sec and 66 ± 11 μM. For K+, the Vmax and Km for 4-day cells were 15.97 ± 0.38 nmoles/1 × 108 cells/min and 1.2 mM, respectively; corresponding values in 7-day cells were 4.76 ± 1.82 nmoles/1 × 108 cells/min and 1.05 mM. The observed increase in the rate of K+ entry into 4-day cells was attributable to enhanced influx; no significant difference in the rate of K+ efflux was noted when 4- and 7-day cells were compared (t12 of K+ leak for 4- and 7-day cells were 68.1 ± 9.3 and 67.9 ± 15.2 min, respectively). Potassium influx was ouabain insensitive. Membrane function in 7-day cells was not uniformly inhibited. No significant difference in the activity of the membrane-bound enzyme, 5′-nucleotidase, was observed when 4- and 7-day cells were compared.  相似文献   

6.
An intracellular N-terminal exopeptidase isolated from cell extracts of Streptococcus durans has been purified 470-fold to homogeneity (specific activity of 12.0 μmol/min per mg). In the absence of thiol compounds, the purified aminopeptidase undergoes a slow oxidation with a 70% loss of activity, which can be restored by the addition of 2 mM β-mercaptoethanol. The purified aminopeptidase (Mr 300 000) preferred L-peptide and arylamide substrates with small nonpolar or basic side chains. SDS electrophoresis yielded a single protein band corresponding to a molecular weight of 49 400, suggesting that the native enzyme is a hexameric protein. The enzyme-catalyzed hydrolysis of L-alanyl-p-nitroanilide exhibited a bell-shaped pH dependence for log Vmax/Km(pK1 = 6.35; pK2 = 8.50) while the log Vmax versus pH profile showed only an acid limb (pK = 6.35). Methylene blue-sensitized photooxidation of the enzyme resulted in the complete loss of activity, while L-leucine, a competitive inhibitor, partially protected against this inactivation. Amino acid analysis indicated that this photooxidative loss of activity corresponded to the modification of one histidine residue per enzyme monomer. N-Ethylmaleimide (100 mM) caused a 78% reduction in enzyme activity. Treatment of the enzyme with 1.0 mM hydrogen peroxide resulted in the oxidation of two cysteine residues per enzyme monomer and caused a 70% decrease in the catalytic activity.  相似文献   

7.
The effects of the inhibitors trimethylacetyl phosphate and cAMP have been determined in reactions catalyzed by d-glyceraldehyde-3-phosphate dehydrogenase. These inhibitors must influence the oxidation of aldehydes through substrate dependent co-operative conformational changes. Both trimethylacetyl phosphate and cAMP give sigmoidal 1V vs (I) plots in oxidation of glyceraldehyde 3-phosphate, but exert linear competitive effects on the acyl phosphatase site in acylation reactions of β-(2-furyl) acryloyl phosphate. The linear inhibition in the latter reactions indicates that one inhibitor molecule is bound per active site. Hydride transfer to NAD+ is the ratedetermining step in oxidation of benzaldehyde to an acylenzyme, as shown by the threefold decrease in Vmax without change in Km when 1-deuterobenzaldehyde is the substrate; it is very likely this step that is affected by acyl phosphate inhibitors. Plots of 1V vs cAMP concentration for oxidation of benzaldehyde at a series of trimethylacetyl phosphate concentrations are parallel at concentrations of acyl phosphate less than 0.00625 m, which demonstrates that binding of the inhibitors is mutually exclusive. However, at higher concentrations of trimethylacetyl phosphate, the slopes are affected, which shows that both inhibitors are then binding. Thus, the binding of high concentrations of acyl phosphate must result in a conformational change of the enzyme that permits binding of both inhibitors. A number of conformations with different kinetic properties are formed with the various substrate and inhibitor combinations. In reactions of muscle d-glyceraldehyde-3-phosphate dehydrogenase, binding of these inhibitors is best explained in terms of induced fit and a sequential model of conformational changes.  相似文献   

8.
The addition of glucagon to hepatocytes in primary culture produced a rapid and sustained increase in the Km (1.27 mM phosphoenol pyruvate) of pyruvate kinase. The low Km (0.4 mM) form of the enzyme was seen when cells were retreated with insulin, demonstrating a short-term regulation mechanism. Injections of insulin, glucagon or glucagon followed by insulin demonstrated that a similar mechanism occurs invivo. Results from longer times after injection indicated that another mechanism occurs when altered activity was the result of changes in Vmax and not Km. Thus, a dual mechanism for regulation of pyruvate kinase occurs. A rapid responding system functions by modification of the enzyme, while a long-term system functions by altering the rate of synthesis, thus changing the amount of enzyme present.  相似文献   

9.
Luit Slooten  Adriaan Nuyten 《BBA》1984,766(1):88-97
(1) Rates of ATP synthesis and ADP-arsenate synthesis catalyzed by Rhodospirillum rubrum chromatophores were determined with the firefly luciferase method and by a coupled enzyme assay involving hexokinase and glucose-6-phosphate dehydrogenase. (2) Vm for ADP-arsenate synthesis was about 2-times lower than Vm for ATP-synthesis. With saturating [ADP], K(Asi) was about 20% higher than K(Pi). With saturating [anion], K(ADP) was during arsenylation about 20% lower than during phosphorylation. (3) Plots of 1v vs. 1[substrate] were non-linear at low concentrations of the fixed substrate. The non-linearity was such as to suggest a positive cooperativity between sites binding the variable substrate, resulting in an increased VmKm ratio. High concentrations of the fixed substrate cause a similar increase in VmKm, but abolish the cooperativity of the sites binding the variable substrate. (4) Low concentrations of inorganic arsenate (Asi) stimulate ATP synthesis supported by low concentrations of Pi and ADP about 2-fold. (5) At high ADP concentrations, the apparent Ki of Asi for inhibition of ATP-synthesis was 2–3-times higher than the apparent Km of Asi for arsenylation; the apparent Ki of Pi for inhibition of ADP-arsenate synthesis was about 40% lower than the apparent Km of Pi for ATP synthesis. (6) The results are discussed in terms of a model in which Pi and Asi compete for binding to a catalytic as well as an allosteric site. The interaction between these sites is modulated by the ADP concentration. At high ADP concentrations, interaction between these sites occurs only when they are occupied with different species of anion.  相似文献   

10.
The amino acid sequence of toxin V from Anemonia sulcata   总被引:3,自引:0,他引:3  
Preparations of the β-galactoside-binding lectin of bovine heart have been shown to stimulate in vitro the sialylation of the oligosaccharide Ga1β1→4G1cNAc and asialo-α1-acid glycoprotein by bovine colostrum β-D-galactoside α2→6 sialyltransferase. Kinetic data revealed that in the presence of lectin the Km values for Ga1β1→4G1cNAc and CMP-NeuAc were reduced from 25.0 to 11.6 mM and from 0.42 to 0.19 mM respectively, but the Km for asialo-α1-acid glycoprotein and the Vmax values for all three substrates were little affected. Stimulation by the lectin was partially inhibited by Fucα1→2Ga1β1→4G1cNAc. This, together with the effects of certain plant lectins, suggests that the stimulation of sialytransferase may be mediated through the carbohydrate-binding properties of the lectin.  相似文献   

11.
Quercetin inhibited a dog kidney (Na+ + K+)-ATPase preparation without affecting Km for ATP or K0.5 for cation activators, attributable to the slowly-reversible nature of its inhibition. Dimethyl sulfoxide, a selector of E2 enzyme conformations, blocked this inhibition, while the K+-phosphatase activity was at least as sensitive to quercetin as the (Na+ + K+)-ATPase activity, all consistent with quercetin favoring E1 conformations of the enzyme. Oligomycin, a rapidly-reversible inhibitor, decreased the Km for ATP and the K0.5 for cation activators, and its inhibition was also diminished by dimethyl sulfoxide. Although oligomycin did not inhibit the K+-phosphatase activity under standard assay conditions, a reaction presumably catalyzed by E2 conformations, its effects are nevertheless accommodated by a quantitative model for that reaction depicting oligomycin as favoring E1 conformations. The model also accounts quantitatively for effects of both dimethyl sulfoxide and oligomycin on Vmax, Km for substrate, and K0.5 for K+, as well as for stimulation of phosphatase activity by both these reagents at low K+ but high Na+ concentrations.  相似文献   

12.
Samuel A. Sholl 《Steroids》1981,38(2):221-228
C17–20Lyase and 21-hydroxylase activities were measured during late gestation In the rhesus monkey (Macaca mulatta) fetal adrenal. Activities were assessed in 10,000 × g supernatants with 17-hydroxyprogesterone and NADPH as substrates. Although conversion of [14C]17-hydroxyprogesterone to [14C]androstenedione was noted, activity was often nonlinear and far less than the rate of hydroxylation which together prevented an accurate estimation of lyase rate, Km and Vmax. 21-Hydroxylase activity was characterized; the mean reaction rate was 1.6 × 10?3 μmoles NADPH oxidized/min. × mg?1 protein with an apparent Km of 3.6 × 10?7 M and a Vmax of 2.2 × 10?3 μmoles/min. × mg?1 protein. These values were similar to data obtained In adrenals from adult monkeys. A relatively high level of hydroxylase activity in the fetal gland might lead to an Inadequate supply of precursors for the synthesis of dehydroepiandrosterone sulfate (DHEAS) in the adrenal if it also contained 3β-hydroxysteroid dehydrogenase (3β-hsdh). However, the fact that the fetal adrenal reportedly is deficient in 3β-hsdh may serve to protect both DHEAS and corticoid synthesis.  相似文献   

13.
Methanol at 35% (vv) overcomes the latency of spinach thylakoid ATPase. Activation is immediate and reversible involving changes in the Vmax, not the Km of the enzyme, MgATP is a much better substrate than CaATP; free Mg2+ noncompetitively inhibits activity. This inhibition can be overcome by the addition of Na2SO3. While both MgATP and MgGTP act as substrates, free ATP and GTP both inhibit activity. ADP and MgADP are also inhibitory. Insensitivity to certain inhibitors indicates that methanol neither induces the same conformational changes in CF1 as illumination does, nor does it lead to coupling between H+ movement through CF0 and ATP hydrolysis. Methanol activation provides a much improved method for assaying thylakoid ATPase.  相似文献   

14.
Two nitroxide radicals (TEMPO, I; OXAN, II) and a spin labeled penicillin (III) were reduced by Staphylococcus aureus. A short induction period preceded zero order reduction of these substrates leading to a Km of 8 × 10?4M, 6.67 × 10?5M and 5.7 × 10?4M and Vmax of 106, 26 and 11 μ mole/min mg bacteria for I, II and III, respectively.  相似文献   

15.
Kinetic parameters for high affinity [HA] uptake in vitro in synaptosomes from different mouse brain regions were investigated. Vmax was highest in the striatum [200 pmol.· mg protein?1 · 4 min?1], followed by the cortex [111 pmol · mg protein?1 · 4 min?1], hippocampus [63 pmol · mg protein?1 · 4 min?1], midbrain [21 pmol · mg protein?1 · 4 min?1] and, lowest, medulla oblongata [5 pmol · mg protein?1 · 4 min?1]. Km was about the same in all brain regions [0.9–1.4 μM]. No sign of HA uptake was detected in synaptosomes from the cerebellum. A clear relationship between Vmax for synaptosomal HA uptake of Ch in vitro and apparent turnover of ACh in vivo was found between the brain regions. Administration of oxotremorine [1 mg·kg?1 i.p.] decreased Vmax for HA uptake of Ch by 60% in the cortex and hippocampus, by 50% in the striatum and by 20% in the midbrain. This effect is in accordance with the previously observed marked decrease in turnover of ACh in these brain regions following oxotremorine treatment.  相似文献   

16.
A mathematical model of the 51Cr-release microcytotoxicity assay is utilized to find conditions under which the kinetics of this assay resemble the kinetics of a classical enzyme-substrate reaction. Assuming a steady-state approximation, that “bystander” effector cells do not bind markedly better than the cytotoxic effector cells, and that the programming of the target cells for lysis is irreversible, it is shown that the velocity of label release is v = vmaxTT/(K12+TT), where both Vmax and K12 are linear functions of the effector-cell population and TT is the initial target-cell population. Moreover, the expressions for K12 and Vmax are expressed in terms of natural kinetic parameters of the process and attributes of the noncytotoxic bystanders.  相似文献   

17.
The sarcolemmal membrane obtained from rat heart by hypotonic shock-LiBr treatment method was found to incorporate 32P from [γ-32P] ATP in the absence and presence of cyclic AMP and protein kinase. The phosphorylated membrane showed an increase in Ca2+ ATPase and Mg2+ ATPase activities without any changes in Na+K+ ATPase activity. The observed increase in Ca2+Mg2+ ATPase activity was found to be associated with an increase in Vmax value of the reaction whereas Ka value for Ca2+Mg2+ was not altered. These results provide information concerning biochemical mechanism for increased calcium entry due to hormones which are known to elevate cyclic AMP levels in myocardium and produce a positive inotropic effect.  相似文献   

18.
Sedimentation equilibrium studies on arylsulfate sulfohydrolase II (EC 3.1.6.1) from Aspergillus oryzae under nondissociating conditions have resulted in a revised molecular weight of 94,900 ± 7100. Sedimentation equilibrium and gel electrophoresis data collected in the presence of the dissociating agents, urea and sodium dodecylsulfate demonstrate that the native enzyme is composed of two identical subunits as suggested by previous studies employing an irreversible inhibitor.The pH dependencies of the kinetic parameters V and VKm for the enzymic hydrolysis of 4-nitrophenyl sulfate indicate that two groups of pKa 4.7 and 6.0 control the activity of the enzyme. The product inorganic sulfate was shown to be a linear competitive inhibitor of the enzyme at pH 4.0, implying that it is a last released product along the reaction pathway. Inhibition by the phenol product was not observed. Enzymic hydrolysis of 4-nitrophenyl sulfate in 18O enriched water revealed that one atom of solvent oxygen is incorporated per molecule of inorganic sulfate, which is consistent with a mechanism featuring sulfur-oxygen bond cleavage. Evidence is presented based on stopped-flow kinetics, partitioning experiments in the presence of amine nucleophiles, and 18O exchange studies that collectively suggest that the breakdown of a covalent sulfuryl enzyme intermediate probably is not the rate-limiting step along the reaction pathway.The substrate specificity of the enzyme was examined by testing a variety of sulfate and phosphate esters as inhibitors of the hydrolysis of 4-nitrophenyl sulfate. The Cbz-l-Phe-l-Tyrosine-O-sulfate methyl ester serves as a substrate for the enzyme. Apparently substrate activity requires an aromatic sulfate ester whose binding is enhanced by incorporating the aromatic moiety in a hydrophobic matrix.  相似文献   

19.
The Ki for the interaction of 2-fluorourocanic acid with urocanase (from Pseudomonas fluorescens) is 1000 times as great as Km for the natural substrate, urocanic acid, whereas enzymatic hydration of the fluoro analog occurs ca. 100 times more slowly. Inhibition is competive and is eventually overcome by utilization of the analog. By contrast, 4-fluoro- and 2-amino-urocanic acid are neither significant inhibitors nor substrates for the enzyme. 2-Fluorourocanic acid may prove a useful tool for blocking the utilization of histidine as a one-carbon source in metabolism.  相似文献   

20.
Summary Rare mutations that alter the substrate specificity of proline permease cluster in discrete regions of theputP gene, suggesting that they may replace amino acids at the active site of the enzyme. IfputP substrate specificity mutations directly alter the active site of proline permease, the mutants should show specific defects in the kinetics of proline transport. In order to test this prediction, we examined the kinetics of threeputP substrate specificity mutants. One class of mutation increases theK m over 120-fold but only decreases theV max fourfold. SuchK m mutants may be specifically defective in substrate recognition, thus identifying an amino acid critical for substrate binding. Another class of mutation decreases theV max 80-fold without changing theK m .V max mutants appear to alter the rate of substrate translocation without affecting the substrate binding site. The last class of mutation alters both theK m andV max of proline transport. These results indicate that substrate specificity mutations alter amino acids critical for Na+/proline symport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号