首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of human neutrophils with phorbol myristate acetate or fMet-Leu-Phe results in translocation to the plasma membrane of approximately 25-40% of the cellular calpain activity. In the membrane-bound form the Ca2+-requirement for proteolytic activity is substantially reduced. An anti-calpain monoclonal antibody that is internalized by stimulated neutrophils is recovered in the same subcellular fraction that contains the membrane-bound calpain, apparently in the form of pinocytotic vesicles. When both monoclonal antibody and calpain were present in these vesicles, a pronounced inhibition of the membrane bound proteinase activity was observed. These results provide an explanation for the previously observed inhibitory effect of the monoclonal antibody on intracellular calpain activity and on the concomitant inhibition of granule exocytosis. The activated calpain associated with the plasma membrane compartment is therefore identified as the form specifically involved in mediating the physiological responses.  相似文献   

2.
Leukotriene B4 (LTB4) is a potent mediator of pro-inflammatory responses including neutrophil degranulation. Leukotriene B4 dimethylamide has been synthesized and shown to inhibit neutrophil degranulation induced by LTB4. The inhibition required time to develop (~60 secs), and had a KD of circa 2 × 10?7M, and occurred at concentrations where LTB4 dimethylamide had negligible agonist activity.  相似文献   

3.
The possible involvement of membrane-bound calcium in the mechanism of action of leukotriene B4 was examined using the fluorescent chelate probe, chlortetracycline. Leukotriene B4 was found to cause a rapid release of membrane-bound calcium at physiologically relevant concentrations. This effect of leukotriene B4 is stereospecific and its magnitude is decreased upon the transformation of leukotriene B4 into its omega-hydroxy and omega-carboxy metabolites. The pool of calcium affected by leukotriene B4 appears to be the same as that released by other chemotactic factors such as formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe). Similarly, preincubation with f-Met-Leu-Phe results in a decreased responsiveness of the cells to the addition of leukotriene B4. These results extend further the analogy between the mechanism of action of peptidic and lipid chemotactic factors, and emphasize the central role of the intracellular redistribution of calcium, as inferred and monitored by chlortetracycline fluorescence and steady-state isotopic flux studies, in neutrophil activation.  相似文献   

4.
Luminol-dependent photonic burst from phorbol ester-treated single neutrophil was visually investigated by using an ultrasensitive photonic image intensifier microscope. Neutrophils stimulated by phorbol myristate acetate (0.1 microgram/ml) alone produced a negligible level of photonic activities in the presence of luminol (10 micrograms/ml). The additional application of 0.1 microM Ca2+ ionophore A23187 induced explosive changes of photonic burst corresponding to the distribution of neutrophils, and these photonic activities were gradually spread to extracellular space. Sodium azide, which prevents myeloperoxidase activity, inhibited Ca2+ ionophore-induced photonic burst from phorbol ester-treated neutrophil. These findings suggest a prerequisite role of degranulation and myeloperoxidase release in luminol-dependent photoemission from stimulated neutrophils.  相似文献   

5.
Platelet-activating factor (PAF) is a potent lipid mediator of inflammation that can act on human neutrophils. When neutrophils are stimulated with PAF at concentrations greater than 10 nM, a double peak of intracellular calcium mobilization is observed. The second calcium peak observed in PAF-treated neutrophils has already been suggested to come from the production of endogenous leukotriene B4 (LTB4). Here we demonstrate the involvement of endogenous LTB4 production and subsequent activation of the high affinity LTB4 receptor (BLT1) in this second calcium mobilization peak observed after stimulation with PAF. We also show that the second, but not the first peak, could be desensitized by prior exposure to LTB4. Moreover, when neutrophils were pre-treated with pharmacological inhibitors of LTB4 production or with the specific BLT1 antagonist, U75302, PAF-mediated neutrophil degranulation was inhibited by more than 50%. On the other hand, pre-treating neutrophils with the PAF receptor specific antagonist (WEB2086) did not prevent any LTB4-induced degranulation. Also, when human neutrophils were pre-treated with U75302, PAF-mediated chemotaxis was reduced by more than 60%. These data indicate the involvement of BLT1 signaling in PAF-mediated neutrophil activities.  相似文献   

6.
P Gelas  G Ribbes  M Record  F Terce  H Chap 《FEBS letters》1989,251(1-2):213-218
Signal transduction involving phosphatidylcholine hydrolysis has been investigated in human neutrophils (PMN) after in situ generation of [3H]alkylacyl-sn-glycero-3-phosphocholine ([3H]alkylacyl-GPC) by cell incubation with [3H]alkylacetyl-GPC. When PMN were stimulated with the chemotactic peptide N-formyl-Met-Leu-Phe(fMLP) or phorbol myristate acetate (PMA) in the presence of cytochalasin B, both 1-O-alkyl-2-acyl-sn-glycero-3-phosphate (PA) and 1-O-alkyl-2-acyl-sn-glycerol (AAG) were generated. On addition of the agonists in the presence of ethanol, phosphatidylethanol (PEt) [corrected] was formed with a concomitant decrease in PA and AAG. These results indicate the presence of a phospholipase D (PLD) acting on phosphatidylcholine in human PMN. The kinetics of hydrolysis were quite different according to the stimulus. Whereas fMLP induced a maximum rise in PA and AAG at 30-45 s, these products began to appear only after 1 min upon cell incubation with PMA. Similar amounts of products were formed at 1 min with fMLP and only at 5 min with PMA. Although similar time courses of PA generation were obtained in the absence of cytochalasin B, AAG were no longer involved and therefore cannot account for intracellular second messenger under physiological conditions. Subcellular distribution studies demonstrated the exclusive location of PA and PEt [corrected] in the plasma membrane. The possible involvement of PA in respiratory burst activation is discussed.  相似文献   

7.
One of the important biological activities of human neutrophils is degranulation, which can be induced by leukotriene B4 (LTB4). Here we investigated the intracellular signaling events involved in neutrophil degranulation mediated by the high affinity LTB4 receptor, BLT1. Peripheral blood neutrophils as well as the promyeloid PLB-985 cell line, stably transfected with BLT1 cDNA and differentiated into a neutrophil-like cell phenotype, were used throughout this study. LTB4-induced enzyme release was inhibited by 50-80% when cells were pretreated with the pharmacological inhibitors of endocytosis sucrose, Con A and NH4Cl. In addition, transient transfection with a dominant negative form of dynamin (K44A) resulted in approximately 70% inhibition of ligand-induced degranulation. Pretreating neutrophils or BLT1-expressing PLB-985 cells with the Src family kinase inhibitor PP1 resulted in a 30-60% inhibition in BLT1-mediated degranulation. Yes kinase, but not c-Src, Fgr, Hck, or Lyn, was found to exhibit up-regulated kinase activity after LTB4 stimulation. Moreover, BLT1 endocytosis was found to be necessary for Yes kinase activation in neutrophils. LTB4-induced degranulation was also sensitive to inhibition of PI3K. In contrast, it was not affected by inhibition of the mitogen-activated protein kinase MEK kinase, the Janus kinases, or the receptor tyrosine kinase epidermal growth factor receptor or platelet-derived growth factor receptor. Taken together, our results suggest an essential role for BLT1 endocytosis and Yes kinase activation in LTB4-mediated degranulation of human neutrophils.  相似文献   

8.
9.
The activation requirements of murine peritoneal B cells differ from those of conventional (splenic) B cells; in particular, peritoneal B cells are stimulated to enter S phase by phorbol ester, acting alone. This pathway was studied to assess the susceptibility of peritoneal B cells to regulation by T cell products. Three T cell supernatants enhanced phorbol myristate acetate (PMA)-induced peritoneal B cell stimulation. This enhancement was reproduced by recombinant interleukin 4 (IL-4), and IL-4-mediated enhancement was reversed by 11B11 anti-IL-4 antibody. Enhancement of S phase entry was dose dependent for IL-4 and required stimulatory concentrations of PMA. In addition, IL-4 in combination with PMA produced a marked increase in IgM secretion by peritoneal B cells cultured in vitro. Neither an enhancement of S phase entry nor an increase in IgM secretion was observed with splenic B cells similarly treated with IL-4 and PMA. These results suggest that IL-4 modulates the proliferative and differentiative responses of the unusual B cells that reside in the peritoneal cavities of normal mice.  相似文献   

10.
11.
Stimulus-activated polymorphonuclear neutrophils (PMN) produce leukotriene B4 (LTB4), 5-hydroxyeicosatetraenoate (5-HETE), and platelet-activating factor (PAF). Each of these lipids promotes PMN degranulation; in combination they have additive and potentiating effects that result in prominent degranulation responses at relatively low concentrations. Thus, the combined interactions of LTB4, 5-HETE, and PAF may mediate responses in PMN activated by other stimuli. This possibility was examined by measuring the responses of PMN made insensitive to one or more of these lipids. Cells were pretreated with LTB4, 5-HETE, and/or PAF for 8 min; exposed for 2 min to cytochalasin B (which is required for lipid-induced degranulation); and then challenged. PMN challenged with only buffer released minimal amounts of granule-bound enzymes. Furthermore, the lipid-pretreated cells were hyporesponsive to challenge with 1) various combinations of these same lipids or 2) ionophore A23187. The relative potencies of the lipids in producing hyporesponsiveness to themselves or A23187 were: 5-HETE less than PAF less than or equal to LTB4 less than PAF + LTB4 less than PAF + LTB4 + 5-HETE. For both types of challenge, reduced responsiveness occurred in cells pretreated with greater than 0.1 nM LTB4 and/or greater than 0.2 nM PAF, persisted in cells washed after lipid pretreatment, and did not develop in cells pretreated with various combinations of bioinactive structural analogues of the lipids. Thus, PAF, LTB4, and 5-HETE interacted to desensitize PMN, and the degranulating actions of A23187 required cells that were fully responsive to each of the three lipids. This supports the concept that the lipids act together in mediating certain of the ionophore's effects. However, lipid-desensitized PMN degranulated fully when challenged with C5a, a formylated oligopeptide, or phorbol myristate acetate. Degranulation responses, therefore, may proceed through various pathways, only some of which involve the lipid products studied here.  相似文献   

12.
G protein-coupled chemoattractants recruit neutrophils (PMN) to sites of injury and infection. The leukotrienes (LT) and CXC chemokines (CXC) and their receptors (BLT1/BLT2 and CXCR1/CXCR2) are all known to play roles in these responses. Each system has been studied separately in vitro, but in vivo they act concurrently, and the clinical interactions between the two systems are unstudied. We prospectively studied calcium mobilization and chemotactic responses to LTB(4) in PMN from major trauma patients. The responses of the high affinity BLT1 receptor were suppressed at the 3-day postinjury time point, but recovered by 1 wk. Trauma patients had transient elevations of plasma LT and CXC levels. Functional deficits identical with those in trauma PMN were reproduced in vitro by exposing healthy PMN to CXCs at the elevated plasma concentrations found. Functional responses to LTB(4) were suppressed by cross-talk with CXC and BLT2 receptors that desensitize BLT1. Since the suppression of intracellular calcium mobilization was prominent, we also studied the role of suppressed cell calcium mobilization in the defective chemotactic responses to LTB(4). We noted that PMN chemotaxis to LTB(4) showed far more dependence on store-operated calcium entry than on the release of cellular calcium stores, and that store-operated calcium responses to BLT1 activation were markedly inhibited during the same time period as was chemotaxis. The intermittent release of inflammatory mediators after injury can blunt PMN responses to LTs by suppressing BLT1 as well as downstream calcium entry. Diminished LT receptor activity due to cross-talk with CXC receptors can inhibit PMN recruitment to infective sites. This may predispose injured patients to septic complications.  相似文献   

13.
Following its addition to a suspension of rabbit neutrophils, leukotriene B4 is rapidly (less than 1 min) recovered from the cytoskeletal fraction (Triton X-100 insoluble pellet) of these cells. The association of leukotriene B4 with the cytoskeleton can be competed with by leukotriene B4 itself and by 20-OH leukotriene B4 but not by 20-COOH leukotriene B4. In addition, the preincubation of the cells with fMet-Leu-Phe or with phorbol 12-myristate 13-acetate, but not with 4 alpha-phorbol 12,13-didecanoate, results in a greatly decreased association of leukotriene B4 with the cytoskeleton. These results suggest that a specific association between the leukotriene B4 receptors and the cytoskeleton may be involved in signal transduction in the leukotriene B4 stimulated neutrophils.  相似文献   

14.
Three protein kinase C blockers (staurosporin, Cl, and sphinganine) acted temperature- and time-dependently on human neutrophils to lower the affinity and number of high affinity plasmalemma receptors available to leukotriene B4. The drugs did not alter the ligand's binding to isolated plasma membranes or reduce intact cell binding of platelet-activating factor. Thus, protein kinase C may regulate the expression of certain receptors in resting cells and blockers of this enzyme, by interfering with receptor expression, have secondary effects that complicate their use as pharmacological probes.  相似文献   

15.
Preincubation of rabbit neutrophils with the synthetic chemotactic factor f-Met-Leu-Phe has been found to diminish the ability of these cells to mobilize calcium upon subsequent stimulation by f-Met-Leu-Phe or by leukotriene B4. The preexposure of the neutrophils to leukotriene B4 on the other hand results in a diminished subsequent response to itself but an unaltered response to f-Met-Leu-Phe. These results demonstrate that deactivation can be observed at the level of calcium mobilization, strengthen the postulated second messenger role of calcium in neutrophils and imply that neutrophil activation by chemotactic factors can bypass the arachidonic acid metabolic pathway.  相似文献   

16.
Specific high-affinity binding sites for [3H]-leukotriene B4 have been identified on membrane preparations from rat and human leukocytes. The rat and human leukocyte membrane preparations show linearity of binding with increasing protein concentration, saturable binding and rapid dissociation of binding by excess unlabelled leukotriene B4. Dissociation constants of 0.5 to 2.5 nM and maximum binding of 5000 fmoles/mg protein were obtained for [3H] leukotriene B4 binding to these preparations. Displacement of [3H]-leukotriene B4 by leukotriene B4 was compared with displacement by leukotriene B3 and leukotriene B5 which differ from leukotriene B4 only by the absence of a double bond at carbon 14 or the presence of an additional double bond at carbon 17, respectively. Leukotriene B3 was shown to be equipotent to leukotriene B4 in ability to displace [3H]-leukotriene B4 from both rat and human leukocyte membranes while leukotriene B5 was 20-50 fold less potent. The relative potencies for the displacement of [3H]-leukotriene B4 by leukotrienes B3, B4 and B5 on rat and human leukocyte membranes were shown to correlate well with their potencies for the induction of the aggregation of rat leukocytes and the chemokinesis of human leukocytes.  相似文献   

17.
Isolated neutrophils were used to study the intracellular calcium ([Ca2+]i) dependency of Pasteurella haemolytica leukotoxin-induced production of leukotriene B4 and plasma membrane damage. Exposure of neutrophils to leukotoxin caused a rapid and concentration-dependent increase in [Ca2+]i, followed by simultaneous plasma membrane damage and production of leukotriene B4. Removal of extracellular Ca2+, replacement of Ca2+ with other divalent cations, or exposure to high concentration of verapamil, an inhibitor of voltage-dependent calcium channels, inhibited leukotoxin-induced increases in [Ca2+]i, leukotriene B4 production, and membrane damage, thus indicating that influx of extracellular Ca2+ is necessary to produce these leukotoxin-induced neutrophil responses.  相似文献   

18.
Leukotriene B4 (LTB4) is reported to exert its biological activity in neutrophils through the increase in cytosolic free calcium that follows binding to its specific receptor. Leukotriene B5 has been shown to be far less active than LTB4. Therefore we compared the capacity of LTB4 and LTB5 to stimulate the rise in cytosolic free calcium using fura-2-loaded human neutrophils, to assess the relationship between the calcium mobilizing activity and biological potency of LTB4 and LTB5. At any concentration tested, LTB5 was less active than LTB4 in increasing cytosolic free calcium. ED50 for LTB4 and LTB5 were 5 X 10(-10) M and 5 X 10(-9) M, respectively. The difference in the binding affinities of LTB4 and LTB5 to the LTB4 receptor has been reported to explain the difference in their biological activities. In the present study we further demonstrated that the calcium mobilizing activity of LTB4 and LTB5 also correlates the different biological activity of the two compounds.  相似文献   

19.
In the presence of pyrithione, which was used as a Zn2+ ionophore, Zn2+ (10-100 microM) increased phorbol ester binding by intact B-CLL cells in a dose-dependent fashion. Zn pyrithione increased 2-fold the number of phorbol ester receptors in B-cells (0.74 to 1.4 pmol/10(6) cells), neutrophil polymorphs (0.2 to 0.51 pmol/10(6) cells) and platelets (91 to 209 pmol/10(10) cells). Fractionation of cells after treatment with Zn pyrithione showed that increased binding of PDBu occurred in the particulate fraction of cells and this was accompanied by loss of phorbol ester receptors from the cytosol. These data are compatible with a role for Zn in the subcellular distribution and activation of protein kinase C.  相似文献   

20.
The preincubation of rabbit neutrophils with the chemotactic factor F-Met-Leu-Phe and the subsequent addition of cytochalasin B has previously been shown to induce a time, concentration and calcium dependent loss of secretory responsiveness in neutrophils. This has been termed desensitization. The results reported here first confirm that lysosomal enzyme release from neutrophils will still occur in the absence of extracellular calcium. In addition, a time dependent decrease in the magnitude of the cytochalasin B induced influxes of 45Ca and 22Na was found upon preincubation with F-Met-Leu-Phe. In the presence of extracellular Ca2+, this decrease in ionic responsiveness reaches a maximum by five minutes preincubation with F-Met-Leu-Phe. In the absence of added extracellular Ca2+ an initial and rapid (less than 1 minute) loss of ionic responsiveness is followed by partial recovery as the length of the preincubation with the chemotactic factor is increased from one to five minutes. These changes in ionic responses correspond exactly to the changes in secretory behavior of the neutrophils. Desensitization can thus be explained on the same ionic basis as that underlying the secretory response of the neutrophils. In addition, these results provide information about the sequence of events involved in the cytochalasin B and chemotactic factor induced release of lysosomal enzymes in neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号