共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mian Xia Yuxian Zhu Xiaofeng Cao Lingtao You Zhangliang Chen 《FEMS microbiology letters》1995,127(3):235-241
Abstract Using a genomic subtraction technique, we cloned a DNA sequence that is present in wild-type Escherichia coli strain CSH4 but is missing in a presumptive proline dehydrogenase deletion mutant RM2. Experimental evidence indicated that the cloned fragment codes for proline dehydrogenase (EC 1.5.99.8) since RM2 cells transformed with a plasmid containing this sequence was able to survive on minimal medium supplemented with proline as the sole nitrogen and carbon sources. The cloned DNA fragment has an open reading frame of 3942 bp and encodes a protein of 1313 amino acids with a calculated M r of 143 808. The deduced amino acid sequence of the E. colli proline dehydrogenase has an 84.9% homology to the previously reported Salmonella typhimurium putA gene but it is 111 amino acids longer at the C-terminal than the latter. 相似文献
4.
5.
Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots 总被引:1,自引:0,他引:1
Maruyama-Nakashita A Nakamura Y Watanabe-Takahashi A Inoue E Yamaya T Takahashi H 《The Plant journal : for cell and molecular biology》2005,42(3):305-314
SULTR1;1 high-affinity sulfate transporter is highly regulated in the epidermis and cortex of Arabidopsis roots responding to sulfur deficiency (-S). We identified a novel cis-acting element involved in the -S-inducible expression of sulfur-responsive genes in Arabidopsis. The promoter region of SULTR1;1 was dissected for deletion and gain-of-function analysis using luciferase (LUC) reporter gene in transgenic Arabidopsis. The 16-bp sulfur-responsive element (SURE) from -2777 to -2762 of SULTR1;1 promoter was sufficient and necessary for the -S-responsive expression, which was reversed when supplied with cysteine and glutathione (GSH). The SURE sequence contained an auxin response factor (ARF) binding sequence (GAGACA). However, SURE was not responsive to naphthalene acetic acid, indicating its specific function in the sulfur response. The base substitution analysis indicated the significance of a 5-bp sequence (GAGAC) within the conserved ARF binding site as a core element for the -S response. Microarray analysis of early -S response in Arabidopsis roots indicated the presence of SURE core sequences in the promoter regions of -S-inducible genes on a full genome GeneChip array. It is suggested that SURE core sequences may commonly regulate the expression of a gene set required for adaptation to the -S environment. 相似文献
6.
7.
A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. 总被引:35,自引:0,他引:35 下载免费PDF全文
Two genes, rd29A and rd29B, which are closely located on the Arabidopsis genome, are differentially induced under conditions of dehydration, low temperature, high salt, or treatment with exogenous abscisic acid (ABA). It appears that rd29A has at least two cis-acting elements, one involved in the ABA-associated response to dehydration and the other induced by changes in osmotic potential, and that rd29B contains at least one cis-acting element that is involved in ABA-responsive, slow induction. We analyzed the rd29A promoter in both transgenic Arabidopsis and tobacco and identified a novel cis-acting, dehydration-responsive element (DRE) containing 9 bp, TACCGACAT, that is involved in the first rapid response of rd29A to conditions of dehydration or high salt. DRE is also involved in the induction by low temperature but does not function in the ABA-responsive, slow expression of rd29A. Nuclear proteins that specifically bind to DRE were detected in Arabidopsis plants under either high-salt or normal conditions. Different cis-acting elements seem to function in the two-step induction of rd29A and in the slow induction of rd29B under conditions of dehydration, high salt, or low temperature. 相似文献
8.
9.
We describe an Arabidopsis thaliana gene, ptlpd2, which codes for a protein with high amino acid similarity to lipoamide dehydrogenases (LPDs) from diverse species. Ptlpd2 codes for a precursor protein possessing an N-terminal extension predicted to be a plastid-targeting signal. Expression of the ptlpd2 cDNA in Escherichia coli showed the encoded protein possessed the predicted LPD activity. PTLPD2 protein, synthesized in vitro, was efficiently imported into isolated chloroplasts of Pisum sativum and shown to be located in the stroma. In addition, fusion proteins containing the predicted transit peptide of PTLPD2 or the entire protein fused at the N-terminus with the green fluorescent protein (GFP), showed accumulation in vivo in chloroplasts but not in mitochondria of A. thaliana. Expression of ptlpd2 was investigated by introducing ptlpd2 promoter--glucuronidase (GUS) gene fusions into Nicotiana tabacum. GUS expression was observed in seeds, flowers, root tips and young leaves. GUS activity was highest in mature seeds, decreased on germination and increased again in young leaves. Expression was also found to be temporally regulated in pollen grains where it was highest in mature grains at dehiscence. Database searches on ptlpd2 sequences identified a second A. thaliana gene encoding a putative plastidial LPD and two genes encoding proteins with high similarity to the mitochondrial LPD of P. sativum. 相似文献
10.
Matsuzaka Y Okamoto K Mabuchi T Iizuka M Ozawa A Oka A Tamiya G Kulski JK Inoko H 《Gene》2004,343(2):291-304
We describe the isolation and characterization of a full-length cDNA encoded by a gene that was significantly down-regulated in the affected skin of patients with psoriasis vulgaris. The cDNA was isolated from a keratinocyte cDNA library and its sequence was found to correspond to a hypothetical locus recorded in GenBank with the accession number . The nucleotide sequence of the full-length cDNA was found to have an open reading frame of 1365 amino acids and to span approximately 12 kb of genomic DNA with 39 exons on chromosome 16q22. The deduced amino acid sequence contains four distinct structural regions, an RGD motif, a leucine-rich repeat (LRR) region, a tropomodulin domain, and a proline-rich domain. The gene was consequently designated as RLTPR (RGD, leucine-rich repeat, tropomodulin and proline-rich containing protein). The RLTPR hypothetical protein has a functional domain organization similar to Acan125, a myosin-binding protein expressed by Acanthamoeba castellanni. RT-PCR with RLTPR PCR primers amplified products from cDNAs prepared from all of the 30 different tissues that we examined including thymus, spleen, colon, skin, skin keratinocytes, skin fibroblasts and fetal skin. During the course of screening the human keratinocyte cDNA library, some alternative splicing was also detected in three regions of the RLTPR gene. In addition, sequence analysis of the RLTPR genes from eight psoriasis patients and eight healthy controls revealed a number of synonymous and nonsynonymous SNPs that may be useful markers for future disease association studies. 相似文献
11.
12.
13.
《Gene》1998,206(1):137-143
The GTPase cycle of Rab/Ypt proteins is strictly controlled by several classes of regulators to ensure their proper roles in membrane traffic. GDP dissociation inhibitor (GDI) is known to play essential roles in regulating nucleotide states and subcellular localizations of Rab/Ypt proteins. To obtain further knowledge on this regulator molecule in plants, we isolated and characterized two genes of Arabidopsis thaliana that encode different GDIs. AtGDI1 has been identified by a novel functional cloning in yeast [Ueda et al. (1996) Plant Cell, 8, 2079–2091] and AtGDI2 was isolated by cross-hybridization in this study. AtGDI2, as well as AtGDI1, complements the yeast sec19/gdi1 mutant, indicating that they can replace the function of yeast GDI. Evidence is shown that both AtGDI1 and AtGDI2 can interact with Ara4, an Arabidopsis Rab protein, in the yeast ypt1 mutant cells. AtGDI2 is ubiquitously expressed in Arabidopsis tissues with some difference from AtGDI1 in expression level. Genomic DNA hybridization using specific probes reveals the presence of one more GDI gene in Arabidopsis. This may imply differentiated roles of GDI in higher plants. 相似文献
14.
15.
16.
The cytochrome P450 Aromatase is the key enzyme catalyzing the conversion of androgens into estrogens. In zebrafish, the brain aromatase is encoded by cyp19b. Expression of cyp19b is restricted to radial glial cells bordering forebrain ventricles and is strongly stimulated by estrogens during development. At the promoter level, we have previously shown that an estrogen responsive element (ERE) is required for induction by estrogens. Here, we investigated the role of ERE flanking regions in the control of cell-specific expression. First, we show that a 20 bp length motif, named G x RE (glial x responsive element), acts in synergy with the ERE to mediate the estrogenic induction specifically in glial cells. Second, we demonstrate that, in vitro, this sequence binds factors exclusively present in glial or neuro-glial cells and is able to confer a glial specificity to an artificial estrogen-dependent gene. Taken together, these results contribute to the understanding of the molecular mechanisms allowing cyp19b regulation by estrogens and allowed to identify a promoter sequence involved in the strong estrogen inducibility of cyp19b which is specific for glial cells. The exceptional aromatase activity measured in the brain of teleost fish could rely on such mechanisms. 相似文献
17.
The fluctuation of proline content, and protein and mRNA levels of delta1-pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH), both of which are involved in proline biosynthesis and degradation, in the shoots of Arabidopsis grown in light/dark cycles were demonstrated under salt-stressed and unstressed conditions. Proline content, as well as proteins and mRNAs of these enzymes, clearly oscillated in the light/dark cycles under the stressed and unstressed conditions. A reciprocal relationship between P5CS and ProDH was observed. Protein levels of P5CS and ProDH were well synchronized with their mRNA levels, although the fluctuation of protein levels was not as significant as that of their mRNA levels. Both mRNA and protein levels of the two enzymes as well as the proline content did not oscillate under the continuous light or the dark conditions. Thus, P5CS and ProDH gene expressions seemed to be involved in light irradiation. Moreover, relative water content (RWC) in the plants oscillated in the light/dark cycles. The fluctuations of proline content in shoot reversely responded to that of RWC. It is suggested that the expression of two genes responds sensitively to a subtle change of cellular water status, and accumulated proline keeps the osmotic balance between cells and the outer environment. 相似文献
18.
A cis-acting element and a trans-acting factor involved in the wound-induced expression of a horseradish peroxidase gene 总被引:2,自引:0,他引:2
Akiyoshi Kawaoka Tomohiro Kawamoto Masami Sekine Kazuya Yoshida Mitsuo Takano Atsuhiko Shinmyo 《The Plant journal : for cell and molecular biology》1994,6(1):87-97
The mechanisms that control the wound-induced expression of the prxC2 gene for horseradish peroxidase (HRP) have been investigated. Analysis of the regulatory properties of 5′-deleted promoters showed that a positive element involved in the response to wounding was located between −307 and −99 bp from the site of initiation of translation. In in vitro binding assays of tobacco nuclear proteins and DNA fragments of prxC2 promoter, the binding site was the Box 1 from −296 to −283 containing the CACGTG motif. To identify the functional role of Box 1, the prxC2 promoter that has been digested from the 5′ end to −289 with a disrupted Box 1 was fused to a reporter gene for β-glucuronidase (GUS). No induction of GUS activity was observed in transgenic tobacco plants with the prxC2(−289)/GUS construct. These data indicated that the expression of prxC2 in response to wounding required the Box 1 sequence from −296 to −283. Furthermore, a tobacco cDNA expression library was screened and a cDNA clone for a protein, designated TFHP-1, that bound specifically to the Box 1 sequence was identified. The putative TFHP-1 protein contains a basic region and leucine zipper (bZip) motif and a helix—loop—helix (HLH) motif. The mRNA for TFHP-1 was abundant in roots and stems, and it was not induced by wounding in leaves. In tobacco protoplasts, antisense TFHP-1 suppressed the expression of prxC2 (−529)/GUS. 相似文献
19.
Yoshitani A Yoshida M Ling F 《Biochemical and biophysical research communications》2008,365(1):183-188
Din7 is a DNA damage-inducible mitochondrial nuclease that modulates the stability of mitochondrial DNA (mtDNA) in Saccharomyces cerevisiae. How DIN7 gene expression is regulated, however, has remained largely unclear. Using promoter sequence alignment, we found a highly conserved 19-bp sequence in the promoter regions of DIN7 and NTG1, which encodes an oxidative stress-inducible base-excision-repair enzyme. Deletion of the 19-bp sequence markedly reduced the hydroxyurea (HU)-enhanced DIN7 promoter activity. In addition, nuclear fractions prepared from HU-treated cells were used in in vitro band shift assays to reveal the presence of currently unidentified trans-acting factor(s) that preferentially bound to the 19-bp region. These results suggest that the 19-bp sequence is a novel cis-acting element that is required for the regulation of DIN7 expression in response to HU-induced DNA damage. 相似文献
20.
Gaunitz F Weber S Scheja L Gebhardt R 《Biochemical and biophysical research communications》2001,284(2):377-383
In the mammalian liver the expression of the enzyme glutamine synthetase (GS) is restricted to a small population of hepatocytes. In cells expressing the enzyme up to 3.5% of total cellular protein is GS. In order to identify enhancer elements contributing to this extraordinarily high level of expression we focused on a region roughly 2.5 kbp upstream of the GS promoter. Gel mobility shift assays revealed binding of an unknown protein within the most distal part of this region and reportergene assays demonstrated that roughly 60 bp downstream from position -2503 are indispensable for protein binding and the full effect of the enhancer. In UV cross-link analysis a 38 kDa nuclear protein that binds to the sequence was identified in rat hepatocytes. This nuclear protein, designated as upstream binding factor of the GS gene (UFGS) seems to play an important role in high-level expression of GS in liver. 相似文献