首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated butanol fermentation using glucose and culture broth containing butyrate from the butyrate fermentation of a brown alga, Laminaria japonica. Prior to the use of the biologically-produced butyrate, the initial glucose in tryptone-yeast extract acetate (TYA) medium was first optimized for butanol fermentation using Clostridium saccharoperbutylacetonicum N1-4 ATCC 27021T. Then, a commercially-acquired (synthetic) butyrate was supplemented to the TYA medium containing the optimal glucose concentration (around 30 and 60 g/L). According to the experimental results, the highest butanol carbon yield (0.580 C-mol/C-mol) was obtained from the fermentation of 36.65 g/L glucose and 7.29 g/L synthetic butyrate. Fermentation of a similar amount of glucose (32.28 g/L) in the absence of butyrate gave a butanol carbon yield of 0.402 C-mol/C-mol. For the experiment with fermented butyrate, a 100 g/L biomass of brown alga was fermented by Clostridium tyrobutyricum ATCC 25755 and the culture broth containing butyrate was used to prepare TYA medium after removing the bacterial cells. Fermentation using the synthetic butyrate and the biologically-produced butyrate (4.95 g/L) gave a comparable butanol concentration (13.23 g/L) and butanol carbon yield (0.513 C-mol/C-mol). Overall, this study proved that the addition of fermented butyrate from brown alga fermentation could be an effective way to improve butanol production. Furthermore, the reuse of spent medium and the absence of rigorous purification of the broth containing butyrate would lower the production cost of the fermentation.  相似文献   

2.
Polysialic acid (PSA) is a capsular polysaccharide obtained from aerobic fermentation with Escherichia coli. To enhance PSA production and eliminate the influence of phosphate on the PSA purification process, a lower level of initial phosphate was adopted with pH control. The resulting PSA yield reached 4.1 g/L in fed-batch fermentation with 2.5 g/L K2HPO4 and E. coli strain CCTCC M208088. In addition, an ammonia water (NH4OH) feeding strategy to control the pH at 6.4 was developed resulting in PSA production that reached as high as 5.2 g/L. NMR spectra confirmed the purified biopolymer as a α-2,8 linked PSA, identical to the published NMR spectra, with a molecular weight in the range of 16 ∼ 50 kDa.  相似文献   

3.
Saccharina japonica (Sea tangle, Dasima), a seaweed, was fermented in order to produce bioethanol after thermal hydrogen peroxide (H2O2) hydrolysis pretreatment and enzymatic saccharification. The optimal pretreatment conditions of 1% (v/v) H2O2 (28%, Dustan Pure Chemicals Co., Ltd, Ansan, Korea) and 10% (w/v) seaweed slurry at 121°C for 60 min were determined using the Response Surface Method (RSM). A reducing sugar yield of 33.4% (w/w) and a viscosity of 520 cP were obtained. Enzymatic saccharification was then carried out; a monosaccharide concentration of 28.5 g/L with a 40.5% (w/w) theoretical yield was obtained after the addition of 2-mL Celluclast® 1.5L to 100 g/L of seaweed slurry after thermal H2O2 hydrolysis. Fermentation of a two-stage ethanol production was carried out using Saccharomyces cerevisiae KCCM 1129 in order to ferment glucose in the first stage, and a high level of mannitol-acclimated Pichia angophorae KCTC 17574 to ferment mannitol in the second stage. Acclimation of yeast effectively slowed the uptake of sugar in ethanol fermentation. The overall ethanol yield from S. japonica after the two-stage fermentation was 9.9 g/L.  相似文献   

4.
In order to achieve high butanol production by Clostridium saccharoperbutylacetonicum N1-4, the effect of lactic acid on acetone–butanol–ethanol fermentation and several fed-batch cultures in which lactic acid is fed have been investigated. When a medium containing 20 g/l glucose was supplemented with 5 g/l of closely racemic lactic acid, both the concentration and yield of butanol increased; however, supplementation with more than 10 g/l lactic acid did not increase the butanol concentration. It was found that when fed a mixture of lactic acid and glucose, the final concentration of butanol produced by a fed-batch culture was greater than that produced by a batch culture. In addition, a pH-controlled fed-batch culture resulted in not only acceleration of lactic acid consumption but also a further increase in butanol production. Finally, we obtained 15.5 g/l butanol at a production rate of 1.76 g/l/h using a fed-batch culture with a pH-stat continuous lactic acid and glucose feeding method. To confirm whether lactic acid was converted to butanol by the N1-4 strain, we performed gas chromatography–mass spectroscopy (GC-MS) analysis of butanol produced by a batch culture during fermentation in a medium containing [1,2,3-13C3] lactic acid as the initial substrate. The results of the GC-MS analysis confirmed the bioconversion of lactic acid to butanol.  相似文献   

5.
This work aims to evaluate the fermentability of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing using Candida guilliermondii FTI 20037 yeast. The inoculum was obtained from yeast culture in a medium containing glucose as a carbon source supplemented with rice bran extract, CaCl2·2H2O and (NH4)2SO4 in 50 mL Erlenmeyer flasks, containing 20 mL of medium, initial 5.5 pH under agitation of an orbital shaker (200 rpm) at 30°C for 24 h. The cellulosic hydrolysates, prior to being used as a fermentation medium, were autoclaved for 15 min at 0.5 atm and supplemented with the same nutrients employed for the inoculum, except the glucose, using the same conditions for the inoculum, but with a period of 48 h. Preliminary results showed the highest consumption of glucose (97%) for all the hydrolysates, at 28 h of fermentation. The highest concentration of ethanol (20.5 g/L) was found in the procedure of sugarcane bagasse pretreated by hydrothermal processing (195°C/10 min in 20 L reactor) and delignificated with NaOH 1.0% (w/v), 100°C, 1 h in 500 mL stainless steel ampoules immersed in an oil bath.  相似文献   

6.
A two-stage fed-batch process was designed to enhance erythritol productivity by the mutant strain of Candida magnoliae. The first stage (or growth stage) was performed in the fed-batch mode where the growth medium was fed when the pH of the culture broth dropped below 4.5. The second stage (or production stage) was started with addition of glucose powder into the culture broth when the cell mass reached about 75 g dry cell weight l−1. When the initial glucose concentration was adjusted to 400 g l−1 in the production stage, 2.8 g l−1 h−1 of overall erythritol productivity and 41% of erythritol conversion yield were achieved, which represented a fivefold increase in erythritol productivity compared with the simple batch fermentation process. A high glucose concentration in the production phase resulted in formation of organic acids including citrate and butyrate. An increase in dissolved oxygen level caused formation of gluconic acid instead of citric acid. Journal of Industrial Microbiology & Biotechnology (2000) 25, 100–103. Received 25 February 2000/ Accepted in revised form 08 June 2000  相似文献   

7.
A comparative analysis of the chemical composition of brown algae extracts has been performed. It was found that L. cichorioides is characterized by a high content of mannitol, glutaminic acid, and iodine. In the extracts obtained from C. costata, high levels of mineral substances and free amino acids were revealed. Extracts obtained from F. evanescens were rich with proteins and phenol compounds. Extracts obtained from L. japonica were characterized by uniquely high iodine and free amino acid contents, among which glutaminic acid prevailed. All studied extracts were shown to stimulate soy seedling growth and increase its productivity. The strongest stimulatory effect on seedling growth was from the extract obtained from L. japonica in a concentration of 100 μg/ml, whereby the growth of root and stem was increased by 20 and 26%, respectively, compared to the control values. Treatment of seeds with the extract of L. japonica in a concentration of 2 mg/ml led to an increase in productivity by 15.6%. Brown algae extracts can be recommended for agriculture to stimulate growth and prepare seeds for sowing.  相似文献   

8.
Enhanced 2,3-butanediol (BD) production was carried out by Klebsiella pneumoniae SDM. The nutritional requirements for BD production by K. pneumoniae SDM were optimized statistically in shake flask fermentations. Corn steep liquor powder and (NH4)2HPO4 were identified as the most significant factors by the two-level Plackett–Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform fed-batch fermentations with K. pneumoniae SDM. BD production was then studied in a 5-l bioreactor applying different fed-batch strategies, including pulse fed batch, constant feed rate fed batch, constant residual glucose concentration fed batch, and exponential fed batch. The maximum BD concentration of 150 g/l at 38 h with a diol productivity of 4.21 g/l h was obtained by the constant residual glucose concentration feeding strategy. To the best of our knowledge, these results were new records on BD fermentation. Cuiqing Ma and Ailong Wang contributed equally to this work.  相似文献   

9.
The growth of Clostridium populeti in 2% (w/v) glucose medium containing 0.2% (w/v) yeast extract was optimal with 10 mM NH4Cl as the nitrogen source. Although the maximum specific growth rate (=0.32 h-1) with 5 mM NH4Cl was similar, the biomass yield was about 30% lower than that at the optimum. Either sodium sulphide or cysteine-HCl at an optimum concentration of 0.33 mM and 5.0 mM respectively, could serve as the sole sulphur source for growth. The growth rate was unaffected by initial glucose concentrations of up to 10% (w/v), but in the presence of 15% glucose it declined by about 35%. The molar yield of butyric acid (mol/mol glucose) declined from 0.70 in 1% (w/v) initial glucose medium to 0.39 in 10% glucose medium. In 5.7% initial glucose medium, butyric acid levels of 6.3 g/l were obtained (0.56 mol butyrate/mol glucose) after 72 h of incubation in 2.5 l batch cultures. A decrease of about 50% in the maximum specific growth rate of C. populeti was observed in the presence of an initial concentration of either 1.2 g/l of butyric acid or 18.9 g/l of acetic acid.This paper is issued as NRCC No. 29032  相似文献   

10.
In this work, fermentation and formulation aspects of the nematophagous fungus Hirsutella rhossiliensis BBA were investigated. When incubated in 2% (w/w) glucose and 0.5% (w/w) yeast extract medium in a 1-L Erlenmeyer flask without baffles, heavy pellet formation was observed. Only 40% of the mycelium had a size less than 500 μm. When a flask with three baffles was used, the portion of mycelium <500 μm rose to 95%. In the next step, the influence of aeration rate and stirrer speed on production of finely dispersed mycelium in a stirred tank reactor was investigated. The best fermentation results were obtained at 0.4 vvm and 400 rpm stirrer speed with 90% mycelium <500 μm and 5 g/L biomass. Then, mycelium was microencapsulated in hollow beads based on sulfoethylcellulose (SEC). Experiments on the capsule nutrient reservoir showed that 15% (w/w) corn gluten and 0.5% (w/w) yeast extract could be replaced with 3% (w/w) autoclaved baker's yeast which was never used as capsule additive before. Radial growth of mycelium out of dried hollow beads containing 1% (w/w) biomass and 3% (w/w) baker's yeast was faster than for alginate beads containing equivalent amounts of biomass and yeast indicating a higher bio-control potential.  相似文献   

11.
The optimization of culture conditions for the bacteriumPseudomonas aeruginosa BYK-2 KCTC 18012P, was performed to increase its rhamnolipid production. The optimum level for carbon, nitrogen sources, temperature and pH, for rhamnolipid production in a flask, were identified as 25 g/L fish oil, 0.01% (w/v) urea, 25 and pH 7.0, respectively. Optimum conditions for batch culture, using a 7-L jar fermentor, were 200 rpm of agitation speed and a 2.0 L/min aeration rate. Under the optimum conditions, on fish oil for 216 h, the final cell and rhamnolipid concentrations were 5.3 g/L and 17.0 g/L respectively. Fed-batch fermentation, with different feeding conditions, was carried out in order to increase, cell growth and rhamnolipid production by thePseudomonas aeruginosa, BYK-2 KCTC 18012P. When 2.5 g of fish oil and 100 mL basal salts medium, containing 0.01% (w/v) urea, were fed intermittently during the fermentation, the final cell and rhamnolipid concentrations at 264 h, were 6.1 and 22.7 g/L respectively. The fed-batch culture resulted in a 1.2-fold increase in the dry cell mass and a 1.3-fold increase in rhamnolipid production, compared to the production of the batch culture. The rhamnolipid production-substrate conversion factor (0.75 g/g) was higher than that of the batch culture (0.68 g/g).  相似文献   

12.
Of six strains of Mortierella tested, Mortierella alpina ATCC 32222 produced the highest yields of arachidonic acid. Supplementation of soy flour (1% w/v) and vegetable oils (1% v/v) significantly increased the biomass, lipid content and arachidonic acid level. Replacement of NaNO3 with corn steep liquor (1% w/v) also improved arachidonic acid production. A fed-batch culture system at 25 °C, producing a high biomass (52.4 g/l) and arachidonic acid content (9.1 g/l) in 8␣days, was developed. A fed-batch system at low temperature (15 °C) gave even higher arachidonic acid levels (11.1 g/l) in 11 days. Received: 28 October 1996 / Received revision: 3 March 1997 / Accepted: 7 March 1997  相似文献   

13.
14.
A simple method was developed for extracting DNA from brown algae Laminaria japonica, which possess large amounts of acidic polysaccharides. Firstly, the sporophyte were washed by eliminating polysaccaride buffer to remove the polysaccharides and then ground in liquid nitrogen. Secondly, the powders were treated with lysing buffer. Thirdly, KAc was used to eliminate the remaining acidic polysaccharides. The extracted DNA was purified using a chloroform-isoamyl alcohol (24:1 v/v), and precipitated in cold isopropanol. The yield was from 18.7 to 37.5 μg g−1 (wet weight) and the purity of total DNA was determined spectrophotometrically as the ratio of A260/A280, which was about 1.7–1.9. The extracted DNA was of high quality and suitable for molecular analyses, such as PCR, restriction enzyme digestion. This method is a reproducible, simple, and rapid technique for routine DNA extraction from sporophyte in Laminaria japonica. Furthermore, the low cost of this method makes it attractive for large-scale studies.  相似文献   

15.
Abstract

The optimal fermentation medium and conditions for mycelial growth and water-soluble exo-polysaccharides production by Isaria farinosa B05 were investigated. The medium components and fermentation conditions were optimized according to the one at a time method, while the concentration of medium components was determined by the orthogonal matrix method. The results showed that the optimal fermentation medium was as follows: sucrose 3.5% (w/v), peptone 0.5%, yeast extract 0.2%, K2HPO4 0.1%, and MgSO4 0.05%. The suitable fermentation conditions were as follows: initial pH 7.0, temperature 25°C, medium volume 75 mL/250 mL, inoculum volume 5% (v/v), time 5d. In such optimal nutrition and environmental conditions, the maximal mycelial yield was 2.124 g/100 mL after 4 day's fermentation, while maximal water-soluble exo-polysaccharides production reached 2.144 g/L after 5 day's fermentation.  相似文献   

16.
Mango peel is one of the major wastes from fruit processing industries, which poses considerable disposal problems and ultimately leads to environmental pollution. The objective of the current research was to determine the significant parameters on the production of polygalacturonase from mango peel which is a major industrial waste. Solid state culture conditions for polygalacturonase production by Fusarium moniliforme from dried mango peel powder were optimized by Taguchi’s L-18 orthogonal array experimental design methodology. Eight fungal metabolic influencing variables, viz. temperature, mango peel, inoculum, peptone, ammonium nitrate (NH4NO3), magnesium sulphate (MgSO4), zinc sulphate (ZnSO4) and potassium dihydrogen phosphate (KH2PO4) were selected to optimize polygalacturonase production. The optimized parameters composed of temperature (30°C), mango peel (6.5%, g, w/v), inoculum (8%, ml, v/v), peptone (1%, g, w/v), NH4NO3 (0.60%, g, w/v), MgSO4 (0.05%, g, w/v), ZnSO4 (0.06%, g, w/v) and KH2PO4 (0.4%, g, w/v). Based on the influence of interaction of fermentation components of fermentation, these could be classified as the least significant and the most significant at individual and interaction levels. The temperature, inoculum level, mango peel substrate and KH2PO4 showed maximum production impact at optimized conditions. From the optimized conditions the polygalacturonase activity was maximized to 43.2 U g−1.  相似文献   

17.
In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg2+ were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.  相似文献   

18.
Summary In an effort to establish the reasons for the limitations in the final ethanol concentration of Zymomonas mobilis fermentation, the effects of CO2 and ethanol on the fermentation were investigated using continuous and fed-batch cultivation systems. The nucleation and stripping out of CO2 from the fermenter using diatomaceous earth or nitrogen gas or both exhibited a profound effect on the glucose uptake rate during the early stages of fed-batch fermentation, but did not improve final ethanol yields. The addition of ethanol together with above mentioned experiments confirmed conclusively that ethanol inhibition is responsible for the final ethanol concentration obtainable during Zymomonas mobilis fermentation. The final concentration lies between 90 and 110 gl−1 or approximately 12–15% (v/v) ethanol.  相似文献   

19.
刘亚妹  丛丽娜  陈明 《微生物学通报》2023,50(10):4533-4543
【背景】丁酸梭菌是专性厌氧的新一代芽孢益生菌,耐热、耐酸、抗逆性强,极具应用价值和开发前景。【目的】优化丁酸梭菌发酵培养基并初步研究其发酵液对黄曲霉菌的抑制作用和降解黄曲霉毒素B1 (aflatoxin B1, AFB1)的能力。【方法】利用响应面法对发酵培养基进行优化,采用牛津杯法对丁酸梭菌发酵液抑制黄曲霉菌生长进行研究,并通过酶联免疫法测定发酵液对AFB1的降解能力。【结果】优化后的发酵培养基为:葡萄糖18.1g/L,大豆蛋白胨29.7g/L,磷酸氢二钾3.8 g/L,氯化钠2.0 g/L,乙酸钠4.0 g/L,结晶硫酸镁1.2 g/L,L-半胱氨酸盐酸盐0.3 g/L。优化后的丁酸梭菌生物量由8.99×108个/mL提高至2.28×109个/mL,是优化前的2.54倍。丁酸梭菌发酵液对致病真菌黄曲霉菌的抑菌效果十分显著,其上清液经浓缩后对AFB1降解72h的降解率达到68.65%,初步分析表明上清液中对AFB1  相似文献   

20.
In this study, cutinase production by Thermobifida fusca WSH03-11 was investigated with mixed short-chain organic acids as co-carbon sources to demonstrate the possibility of producing high value-added products from organic wastes. T. fusca WSH03-11 was cultured with different combinations of butyrate, acetate, and lactate with a purpose of increasing cutinase activity. The optimum proportion of butyrate, acetate, and lactate was 4:1:3. In batch cultivation, acetate and lactate were consumed quickly, while the consumption of butyrate was depressed in the presence of acetate with a concentration higher than 0.5 g/L. Based on these results, a two-stage batch and fed-batch cultivation strategy was proposed: a batch culture with acetate and lactate as the co-carbon sources in the first 10 h, and then a fed-batch culture with a constant butyrate feeding rate of 12 mL/h during 11∼20 h. By this two-stage cultivation strategy, cutinase activity, dry cell weight, and consumption rate of butyrate were increased by 70%, 103.4%, and 4.3-fold, respectively, compared to those of the batch cultivation. These results provided a novel and efficient way to produce high value-added products from organic wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号