首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most important wheat diseases worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, the tetraploid ancestor (AABB) of domesticated bread and durum wheat, harbors many important alleles for resistance to various diseases, including powdery mildew. In the current study, two tetraploid wheat mapping populations, derived from a cross between durum wheat (cv. Langdon) and wild emmer wheat (accession G-305-3M), were used to identify and map a novel powdery mildew resistance gene. Wild emmer accession G-305-3M was resistant to all 47 Bgt isolates tested, from Israel and Switzerland. Segregation ratios of F2 progenies and F6 recombinant inbred line (RIL) mapping populations, in their reactions to inoculation with Bgt, revealed a Mendelian pattern (3:1 and 1:1, respectively), indicating the role of a single dominant gene derived from T. dicoccoides accession G-305-3M. This gene, temporarily designated PmG3M, was mapped on chromosome 6BL and physically assigned to chromosome deletion bin 6BL-0.70-1.00. The F2 mapping population was used to construct a genetic map of the PmG3M gene region consisted of six simple sequence repeats (SSR), 11 resistance gene analog (RGA), and two target region amplification polymorphism (TRAP) markers. A second map, constructed based on the F6 RIL population, using a set of skeleton SSR markers, confirmed the order of loci and distances obtained for the F2 population. The discovery and mapping of this novel powdery mildew resistance gene emphasize the importance of the wild emmer wheat gene pool as a source for crop improvement.  相似文献   

2.
Powdery mildew is one of the most devastating diseases of wheat in areas with cool and maritime climates. Chinese wheat landrace Baihulu confers a high level of resistance against a wide range of Blumeria graminis DC f. sp. tritici (Bgt) races, especially those currently prevailing in Shaanxi. The objectives of this study were to determine the chromosome bin location of the mlbhl gene from Baihulu and its allelism with Pm24. To investigate the inheritance of powdery mildew resistance and detect adjacent molecular markers, we constructed a segregating population of 301 F2 plants and corresponding F2:3 families derived from Baihulu/Shaanyou 225. Genetic analysis revealed that a single dominant gene was responsible for seedling stage powdery mildew resistance in Baihulu. A genetic map comprising Xgwm106, Xgwm337, Xgwm1675, Xgwm603, Xgwm789, Xbarc229, Xgpw4503, Xcfd72, Xcfd83, Xcfd59, Xcfd19, and mlbhl spanned 28.2?cM on chromosome 1D. Xgwm603/Xgwm789 and Xbarc229 were flanking markers tightly linked to mlbhl at genetic distances of 1.5 and 1.0?cM, respectively. The mlbhl locus was located in chromosome bin 1DS 0.59–1.00 delimited by the SSR markers Xgwm337 and Xbarc229. When tested with a differential array of 23 Bgt isolates Baihulu displayed a response pattern that was clearly distinguishable from that of Chiyacao and varieties or lines possessing documented Pm genes. Allelism analysis indicated that mlbhl is a new gene, either allelic or closely linked with Pm24. The new gene was designated Pm24b.  相似文献   

3.
The Chinese winter wheat cultivar Zhoumai 22 is highly resistant to powdery mildew. The objectives of this study were to map a powdery mildew resistance gene in Zhoumai 22 using molecular markers and investigate its allelism with Pm13. A total of 278 F2 and 30 BC1 plants, and 143 F3 lines derived from the cross between resistant cultivar Zhoumai 22 and susceptible cultivar Chinese Spring were used for resistance gene tagging. The 137 F2 plants from the cross Zhoumai 22/2761-5 (Pm13) were employed for the allelic test of the resistance genes. Two hundred and ten simple sequence repeat (SSR) markers were used to test the two parents, and resistant and susceptible bulks. Subsequently, seven polymorphic markers were used for genotyping the F2 and F3 populations. The results indicated that the powdery mildew resistance in Zhoumai 22 was conferred by a single dominant gene, designated PmHNK tentatively, flanked by seven SSR markers Xgwm299, Xgwm108, Xbarc77, Xbarc84, Xwmc326, Xwmc291 and Xwmc687 on chromosome 3BL. The resistance gene was closely linked to Xwmc291 and Xgwm108, with genetic distances of 3.8 and 10.3 cM, respectively, and located on the chromosome bin 3BL-7-0.63-1.0 in the test with a set of deletion lines. Seedling tests with seven isolates of Blumeria graminis f. sp. tritici (Bgt) and allellic test indicated that PmHNK is different from Pm13, and Pm41 seems also to be different from PmHNK due to its origin from T. dicoccoides and molecular evidence. These results indicate that PmHNK is likely to be a novel powdery mildew resistance gene in wheat.  相似文献   

4.

Key message

A single recessive powdery mildew resistance gene Pm61 from wheat landrace Xuxusanyuehuang was mapped within a 0.46-cM genetic interval spanning a 1.3-Mb interval of the genomic region of chromosome arm 4AL.

Abstract

Epidemics of powdery mildew incited by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt) have caused significant yield reductions in many wheat (Triticum aestivum)-producing regions. Identification of powdery mildew resistance genes is required for sustainable improvement of wheat for disease resistance. Chinese wheat landrace Xuxusanyuehuang was resistant to several Bgt isolates at the seedling stage. Genetic analysis based on the inoculation of Bgt isolate E09 on the F1, F2, and F2:3 populations produced by crossing Xuxusanyuehuang to susceptible cultivar Mingxian 169 revealed that the resistance of Xuxusanyuehuang was controlled by a single recessive gene. Bulked segregant analysis and simple sequence repeat (SSR) mapping placed the gene on chromosome bin 4AL-4-0.80-1.00. Comparative genomics analysis was performed to detect the collinear genomic regions of Brachypodium distachyon, rice, sorghum, Aegilops tauschii, T. urartu, and T. turgidum ssp. dicoccoides. Based on the use of 454 contig sequences and the International Wheat Genome Sequence Consortium survey sequence of Chinese Spring wheat, four EST-SSR and seven SSR markers were linked to the gene. An F5 recombinant inbred line population derived from Xuxusanyuehuang?×?Mingxian 169 cross was used to develop the genetic linkage map. The gene was localized in a 0.46-cM genetic interval between Xgwm160 and Xicsx79 corresponding to 1.3-Mb interval of the genomic region in wheat genome. This is a new locus for powdery mildew resistance on chromosome arm 4AL and is designated Pm61.
  相似文献   

5.
The gene-pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbors a rich allelic repertoire for disease resistance. In the current study, we made use of tetraploid wheat mapping populations derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16) to identify and map a new powdery mildew resistance gene derived from wild emmer wheat. Initially, the two parental lines were screened with a collection of 42 isolates of Blumeria graminis f. sp. tritici (Bgt) from Israel and 5 isolates from Switzerland. While G18-16 was resistant to 34 isolates, Langdon was resistant only to 5 isolates and susceptible to 42 isolates. Isolate Bgt#15 was selected to differentiate between the disease reactions of the two genotypes. Segregation ratio of F2-3 and recombinant inbreed line (F7) populations to inoculation with isolate Bgt#15 indicated the role of a single dominant gene in conferring resistance to Bgt#15. This gene, temporarily designated PmG16, was located on the distal region of chromosome arm 7AL. Genetic map of PmG16 region was assembled with 32 simple sequence repeat (SSR), sequence tag site (STS), Diversity array technology (DArT) and cleaved amplified polymorphic sequence (CAPS) markers and assigned to the 7AL physical bin map (7AL-16). Using four DNA markers we established colinearity between the genomic region spanning the PmG16 locus within the distal region of chromosome arm 7AL and the genomic regions on rice chromosome 6 and Brachypodium Bd1. A comparative analysis was carried out between PmG16 and other known Pm genes located on chromosome arm 7AL. The identified PmG16 may facilitate the use of wild alleles for improvement of powdery mildew resistance in elite wheat cultivars via marker-assisted selection.  相似文献   

6.
Powdery mildew resistance from Thinopyrum intermedium was introgressed into common wheat (Triticum aestivum L.). Genetic analysis of the F1, F2, F3 and BC1 populations from powdery mildew resistant line CH5025 revealed that resistance was controlled by a single dominant allele. The gene responsible for powdery mildew resistance was mapped by the linkage analysis of a segregating F2 population. The resistance gene was linked to five co-dominant genomic SSR markers (Xcfd233, Xwmc41, Xbarc11, Xgwm539 and Xwmc175) and their most likely order was Xcfd233Xwmc41Pm43Xbarc11Xgwm539Xwmc175 at 2.6, 2.3, 4.2, 3.5 and 7.0 cM, respectively. Using the Chinese Spring nullisomic-tetrasomic and ditelosomic lines, the polymorphic markers and the resistance gene were assigned to chromosome 2DL. As no powdery mildew resistance gene was previously assigned to chromosome 2DL, this new resistance gene was designated Pm43. Pm43, together with the identified closely linked markers, could be useful in marker-assisted selection for pyramiding powdery mildew resistance genes. Runli He and Zhijian Chang contributed equally to this work.  相似文献   

7.
Molecular markers were identified in common wheat for the Pm24 locus conferring resistance to different isolates of the powdery mildew pathogen, Erysiphe graminis DM f. sp. tritici (Em. Marchal). Bulked segregant analysis was used to identify amplified fragment length polymorphism (AFLP) markers and microsatellite markers linked to the gene Pm24 in an F2 progeny from the cross Chinese Spring (susceptible)× Chiyacao (resistant). Two AFLP markers XACA/CTA-407 and XACA/CCG-420, and three microsatellite markers Xgwm106, Xgwm337 and Xgwm458, were mapped in coupling phase to the Pm24 locus. The AFLP marker locus XACA/CTA-407 co-segregated with the Pm24 gene, and XACA/CCG-420 mapped 4.5 cM from this gene. Another AFLP marker locus XAAT/CCA-346 co- segregated in repulsion phase with the Pm24 locus. Pm24 was mapped close to the centromere on the short arm of chromosome 1D, contrary to the previously reported location on chromosome 6D. Pm24 segregated independently of gene Pm22, also located on chromosome 1D. An allele of microsatellite locus Xgwm337 located 2.4±1.2 cM from Pm24 was shown to be diagnostic and therefore potentially useful for pyramiding two or more genes for powdery mildew resistance in a single genotype. Received: 25 August 1999 / Accepted: 16 December 1999  相似文献   

8.
Powdery mildew is one of the most destructive foliar diseases of wheat. A set of differential Blumeria graminis f.sp. tritici (Bgt) isolates was used to test the powdery mildew response of a Triticum monococcum-derived resistant hexaploid line, Tm27d2. Segregation analysis of 95 F2:3 lines from a Chinese Spring/Tm27d2 cross revealed that the resistance of Tm27d2 is controlled by a single dominant gene. Using monosomic analysis and a molecular mapping approach, the resistance gene was localized to the terminal end of chromosome 2AL. The linkage map of chromosome 2AL consisted of nine simple sequence repeat markers and one sequence-tagged site (STS) marker (ResPm4) indicative for the Pm4 locus. According to the differential reactions of 19 wheat cultivars/lines with known powdery mildew resistance genes to 13 Bgt isolates, Tm27d2 carried a new resistance specificity. The complete association of the resistance allele with STS marker ResPm4 indicated that it represented a new allele at the Pm4 locus. This new allele was designated Pm4d. The two flanking markers Xgwm526 and Xbarc122 closely linked to Pm4d at genetic distances of 3.4 and 1.0 cM, respectively, are present in chromosome bin 2AL1-0.85-1.00.  相似文献   

9.
Segregation analysis of resistance to powdery mildew in a F2 progeny from the cross Chinese Spring (CS) × TA2682c revealed the inheritance of a dominant and a recessive powdery mildew resistance gene. Selfing of susceptible F2 individuals allowed the establishment of a mapping population segregating exclusively for the recessive resistance gene. The extracted resistant derivative showing full resistance to each of 11 wheat powdery mildew isolates was designated RD30. Amplified fragment length polymorphism (AFLP) analysis of bulked segregants from F3s showing the homozygous susceptible and resistant phenotypes revealed an AFLP marker that was associated with the recessive resistance gene in repulsion phase. Following the assignment of this AFLP marker to wheat chromosome 7A by means of CS nullitetrasomics, an inspection of simple sequence repeat (SSR) loci evenly spaced along chromosome 7A showed that the recessive resistance gene maps to the distal region of chromosome 7AL. On the basis of its close linkage to the Pm1 locus, as inferred from connecting partial genetic maps of 7AL of populations CS × TA2682c and CS × Virest (Pm1e), and its unique disease response pattern, the recessive resistance gene in RD30 was considered to be novel and tentatively designated mlRD30.Communicated by C. Möllers  相似文献   

10.
11.
Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt‐resistant or Bgt‐tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus‐induced gene silencing (VIGS) induces the up‐regulation of defence responses in wheat. These TaBON1‐ or TaBON3‐silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up‐regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat.  相似文献   

12.
Wheat powdery mildew is a severe foliar disease and causes significant yield losses in epidemic years. Breeding and using resistant cultivars is the most widely employed strategy to curb this disease. To identify and transfer powdery mildew resistance genes in wild emmer wheat accession TA1410 into common wheat, a resistant F3 line derived from the cross of TA1410 × durum wheat line Zhongyin1320 was crossed with common wheat cultivar Yangmai158. The homozygous resistant BC5F2 lines derived from the backcross with Yangmai158 exhibited susceptibility at seedling stage and conferred increasing resistance when the plants were closer to heading stage. In two segregating BC5F3 families investigated at heading stage, the segregation of the resistance fit a 3:1 ratio, suggesting that a single dominant gene controls the resistance. This resistance gene, designated HSM1, was mapped to the 0.6-cM Xmag5825.1–Xgwm344 interval on chromosome 7AL and co-segregated with Xrga-C3 and Xrga-C6. A mapping position comparison with other powdery mildew resistance genes on this chromosome suggested that HSM1 belongs to the Pm1 resistance gene cluster. HSM1 is a useful candidate gene for resistance breeding, particularly in winter-wheat growing areas.  相似文献   

13.
Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt), is one of the important foliar diseases of wheat that can cause serious yield losses. Breeding for cultivars with diverse resources of resistance is the most promising approach for combating this disease. The diploid A genome progenitor species of wheat are an important resource for new variability for disease resistance genes. An accession of Triticum boeoticum (AbAb) showed resistance against a number of Bgt isolates, when tested using detached leaf segments. Inheritance studies in a recombinant inbred line population (RIL), developed from crosses of PM resistant T. boeoticum acc. pau5088 with a PM susceptible T. monococcum acc. pau14087, indicated the presence of two powdery mildew resistance genes in T. boeoticum acc. pau5088. Analysis of powdery mildew infection and molecular marker data of the RIL population revealed that both powdery mildew resistance genes are located on the long arm of chromosome 7A. Mapping was conducted using an integrated linkage map of 7A consisting of SSR, RFLP, STS, and DArT markers. These powdery mildew resistance genes are tentatively designated as PmTb7A.1 and PmTb7A.2. The PmTb7A.2 is closely linked to STS markers MAG2185 and MAG1759 derived from RFLP probes which are linked to powdery mildew resistance gene Pm1. This indicated that PmTb7A.2 might be allelic to Pm1. The PmTb7A.1, flanked by a DArT marker wPt4553 and an SSR marker Xcfa2019 in a 4.3 cM interval, maps proximal to PmT7A.2. PmTb7A.1 is putatively a new powdery mildew resistance gene. The powdery mildew resistance genes from T. boeoticum are currently being transferred to cultivated wheat background through marker-assisted backcrossing, using T. durum as bridging species.  相似文献   

14.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is an important disease that causes substantial yield losses in wheat (Triticum aestivum) in China and other parts of the world. This foliar disease can be effectively managed by host resistance. The Chinese landrace Hongyanglazi from Shaanxi province is highly resistant to many Bgt isolates at the seedling stage. Genetic analysis using an F2:3 population derived from a cross between Hongyanglazi and susceptible cultivar Zhongzuo 9504 indicated that Hongyanglazi carried a single recessive gene (tentatively designated PmHYLZ) conferring its resistance to Bgt isolate E09. PmHYLZ was flanked by EST marker BE606897 and microsatellite marker Xgwm46 on chromosome 7BS at genetic distances of 1.7 and 3.6 cM, respectively. This gene differed from Pm40, also located on 7BS, by origin, linked markers, and reactions to 13 Bgt isolates. Based on these findings, PmHYLZ was permanently designated as Pm47.  相似文献   

15.
Wheat is one of the most widely grown cereal crops in the world and is an important food grain source for humans. However, wheat yields can be reduced by many abiotic and biotic stress factors, including powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt). Generating resistant varieties is thus a major effort in plant breeding. Here, we took advantage of the non‐transgenic Targeting Induced Lesions IN Genomes (TILLING) technology to select partial loss‐of‐function alleles of TaMlo, the orthologue of the barley Mlo (Mildew resistance locus o) gene. Natural and induced loss‐of‐function alleles (mlo) of barley Mlo are known to confer durable broad‐spectrum powdery mildew resistance, typically at the expense of pleiotropic phenotypes such as premature leaf senescence. We identified 16 missense mutations in the three wheat TaMlo homoeologues, TaMloA1, TaMloB1 and TaMloD1 that each lead to single amino acid exchanges. Using transient gene expression assays in barley single cells, we functionally analysed the different missense mutants and identified the most promising candidates affecting powdery mildew susceptibility. By stacking of selected mutant alleles we generated four independent lines with non‐conservative mutations in each of the three TaMlo homoeologues. Homozygous triple mutant lines and surprisingly also some of the homozygous double mutant lines showed enhanced, yet incomplete, Bgt resistance without the occurrence of discernible pleiotropic phenotypes. These lines thus represent an important step towards the production of commercial non‐transgenic, powdery mildew‐resistant bread wheat varieties.  相似文献   

16.
Powdery mildew is one of the most devastating wheat fungal diseases. A diploid wheat relative, Haynaldia villosa L., is highly resistant to powdery mildew, and its genetic resource of resistances, such as the Pm21 locus, is now widely used in wheat breeding. Here we report the cloning of a resistance gene from H. villosa, designated CMPG1–V, that encodes a U–box E3 ubiquitin ligase. Expression of the CMPG1–V gene was induced in the leaf and stem of H. villosa upon inoculation with Blumeria graminis f. sp. tritici (Bgt) fungus, and the presence of Pm21 is essential for its rapid induction of expression. CMPG1–V has conserved key residues for E3 ligase, and possesses E3 ligase activity in vitro and in vivo. CMPG1–V is localized in the nucleus, endoplasmic reticulum, plasma membrane and partially in trans‐Golgi network/early endosome vesicles. Transgenic wheat over‐expressing CMPG1–V showed improved broad‐spectrum powdery mildew resistance at seedling and adult stages, associated with an increase in expression of salicylic acid‐responsive genes, H2O2 accumulation, and cell‐wall protein cross‐linking at the Bgt infection sites, and the expression of CMPG1–V in H. villosa was increased when treated with salicylic acid, abscisic acid and H2O2. These results indicate the involvement of E3 ligase in defense responses to Bgt fungus in wheat, particularly in broad‐spectrum disease resistance, and suggest association of reactive oxidative species and the phytohormone pathway with CMPG1V‐mediated powdery mildew resistance.  相似文献   

17.
Two stripe-rust resistance genes, YrH52 and Yr15, derived from the Israeli wild emmer wheat, Triticum dicoccoides, have been located on chromosome 1B. The main objectives of the present study were to increase marker density in the vicinity of YrH52 gene by means of AFLP, RAPD and microsatellite markers, to improve the map of another T. dicoccoides-derived stripe-rust resistance gene Yr15 using microsatellite markers, and to preliminarily discriminate these two genes. Additional 26 marker loci comprising 20 AFLPs, three RAPDs, and three microsatellites were found to be linked to YrH52 gene. An updated genetic map consisting of 45 marker loci, in the region of YrH52 gene, was constructed with a total map length of 107.7 cm. The mean interval length was 0.96 cm in the region Xgwm359b–P55M53b carrying YrH52 gene. YrH52 was bracketed by Xgwm413 (Nor1 and UBC212a) and Xgwm273a (Xgwm273d) with map distance of 1.3 and 2.7 cm from either side, respectively. Eight additional microsatellite markers were found to be linked with Yr15, and the linkage map of Yr15 gene was thus obviously improved. In the YrH52-mapping population, no crossover was detected in the interval UBC212a (Xgwm413)–Yr15Nor1, and YrH52 was located distally outside this interval. It may suggest that YrH52 is different from Yr15 even though both of them are derived from T. dicoccoides and are mapped on chromosome 1BS. The large number of molecular makers revealed in the present study would be helpful for the marker-assisted introgression of the T. dicoccoides-derived YrH52 and Yr15 stripe-rust resistance genes into elite cultivars of wheat, and the high-density map would accelerate the map-based cloning of the two genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
19.
从波兰小麦与普通小麦感病品系‘中13’杂交后代中选育出小麦抗源材料WP6192,田间表现高抗白粉病,遗传分析表明其含有1对显性抗白粉病基因,暂定名为PmWP6192。用分离群体分组分析法筛选多态性SSR标记,并用F2代群体进行遗传连锁分析。结果表明,SSR标记Xgwm515、Xgwm249、Xgwm425、Xgwm372、Xg-wm630、Xbarc10、Xbarc220、Xbarc201和Xbarc353与PmWP6192基因连锁,相距最近的标记是Xbarc353,遗传距离为2.3cM。根据连锁标记所在的染色体位置,将PmWP6192定位于2AL染色体。通过基因来源分析和2AL染色体上已有抗白粉病基因的等位性分子检测,推断PmWP6192可能是1个新的抗白粉病基因。  相似文献   

20.
A detailed RFLP map was constructed of the distal end of the short arm of chromosome 1D of Aegilops tauschii and wheat. At least two unrelated resistance-gene analogs (RGAs) mapped close to known leaf rust resistance genes (Lr21 and Lr40) located distal to seed storage protein genes on chromosome 1DS. One of the two RGA clones, which was previously shown to be part of a candidate gene for stripe rust resistance (Yr10) located within the homoeologous region on 1BS, identified at least three gene family members on chromosome 1DS of Ae. tauschii. One of the gene members co-segregated with the leaf rust resistance genes, Lr21 and Lr40, in Ae. tauschii and wheat segregating families. Hence, a RGA clone derived from a candidate gene for stripe rust resistance located on chromosome 1BS detected candidate genes for leaf rust resistance located in the corresponding region on 1DS of wheat. Received: 10 January 2000 / Accepted: 25 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号