首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomass of a mercury-resistant strain Pseudomonas aeruginosa PU21 (Rip64) and hydrogen-form cation exchange resin (AG 50W-X8) were investigated for their ability to adsorb mercury. The maximum adsorption capacity was approximately 180 mg Hg/g dry cell in deionized water and 400 mg Hg/g dry cell in sodium phosphate solution at pH 7.4, higher than the maximum mercury uptake capacity in the cation exchange resin (100 mg Hg/g dry resin in deionized water). The mercury selectivity of the biomass over sodium ions was evaluated when 50 mM and 150 mM of Na(+) were present. Biosorption of mercury was also examined in sodium phosphate solution andphosphate-buffered saline solution (pH 7.0), containing 50mM and 150 mM of Na(+), respectively. It was found that the presence of Na(+) did not severely affect the biosorption of Hg(2+), indicating a high mercury selectivity ofthe biomass over sodium ions. In contrast, the mercury uptake by the ion exchange resin was strongly inhibited by high sodium concentrations. The mercury biosorption was most favorable in sodium phosphate solution (pH 7.4), with a more than twofold increase in the maximum mercury uptake capacity. The pH was found to affect the adsorption of Hg(2+)bythe biomass and the optimal pH value was approximately 7.4. The adsorption of mercury on the biomass and the ion exchange resin appeared to follow theLangmuir or Freundlich adsorption isotherms. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni(II)-contaminated wastewater.  相似文献   

3.
HZ-841吸附树脂精制银杏叶总黄酮   总被引:4,自引:0,他引:4  
本文研究了用HZ-841吸附树脂精制银杏叶总黄酮的工艺。用10 BV 70%的乙醇分三次提取脱脂银杏叶粉中的银杏叶总黄酮,其收得率为4.8%,纯度为21.7%;用30BV纯净水、微波解冻提取30min,银杏叶总黄酮的收得率及纯度分别是2.63%和13.4%。HZ-841树脂对银杏叶总黄酮的动态吸附容量在pH=7.0时为0.265g/mL,树脂,动态吸附平衡时间为10min。酸度对HZ-841树脂吸附银杏叶总黄酮有显著影响,当pH=5.0时,其静态吸附量可达到0.322g/mL。吸附了银杏叶总黄酮的HZ-841树脂可用乙醇洗脱,当洗脱液pH=9.0、乙醇浓度为90%、洗脱流速3BV/h时,5BV洗脱液的收得率为1.8%。用无水乙醇洗脱的银杏叶总黄酮经过真空浓缩、干燥,获得的浅黄色粉末中银杏叶总黄酮含量为37.3%,产品收得率为2.41%。  相似文献   

4.
GABA茶中γ-氨基丁酸的TLC测定及提纯研究   总被引:3,自引:0,他引:3  
本文对GABA茶中有效成分γ-氨基丁酸的薄层扫描(TLC)检测以及提取、分离、纯化进行了研究,结果表明:正丁醇?醋酸?水体积比为4?1?1展开剂分离效果较好,R f值为0.46。采用双波长扫描法检测,扫描波长分别为λS=515nm,λR=680 nm,检测线性范围:0.5μL~15μL,样品平均回收率为98.75%。采用水提取法比乙醇提取法γ-氨基丁酸含量提高20%左右,732阳离子树脂对γ-氨基丁酸的静态最大吸附量为32.9 mg.g-1,1 h内其吸附速度较快,达吸附量的70%。样液pH值、流速等因子对树脂的吸附效率有影响,当pH值为3.0,流速3 m l.m in-1时,树脂的吸附量达到最大值。采用柠檬酸缓冲液和NH3.H2O进行洗脱,当pH为8.0~9.0时,γ-氨基丁酸洗脱率达94.68%。  相似文献   

5.
离子交换法提取茶氨酸的研究   总被引:20,自引:2,他引:20  
本研究应用国产732阳离子交换树脂,从茶愈伤组织浸提液中提取茶氨酸。通过静态、动态试验,对洗脱液的pH、离子强度、样液浓度和流速等因素进行了考察,比较在不同条件下,树脂对茶氨酸的吸附情况。结果表明用pH9.18,2/15mol/LNa2HPO4作洗脱液,控制流速在0.7BV/h,可分离到茶氨酸,得率70%。  相似文献   

6.
Adsorption of BSA on QAE-dextran: equilibria   总被引:1,自引:0,他引:1  
Equilibrium isotherms for adsorption of bovine serum albumin (BSA) on a strong-base (QAE) dextran-type ion exchanger have been determined experimentally. They were not affected by the initial concentration of BSA but were affected by pH considerably. They were correlated by the Langmuir equation when pH >/= 5.05 and by the Freundlich equation of pH 4.8, which is close to pl approximately 4.8 of BSA. The contribution of ion exchange to adsorption of BSA on the ion exchanger was determined experimentally. The maximum amounts of inorganic anion exchanged for BSA were 1% and 0.4% of the exchange capacity of the ion exchanger at pH 6.9, respectively. Since the effect of the ion exchange on the adsorption appeared small, BSA may be adsorbed mainly by electrostatic attraction when pH >/= 5.05 and by hydrophobic interaction or hydrogen bonding at pH 4.8. When NaCl coexisted in the solution, the shape of the isotherm was similar to the Langmuir isotherm, but it is shifted to the right. When the concentration of NaCl was 0.2 mol/dm(3), BsA was not adsorbed on the resin. When BSA was dissolved in pure water, the saturation capacity of BSA on HPO(4) (2-),-orm resin was about 2 times larger than that for adsorption from the solution with buffer (pH 6.9 and 8.79). The saturation capacity for adsorption of BSA in pure water on HPO(4) (2-) + H(2)O(4) (-)-from resin was much smaller than that from the solution with buffer. The isotherms for univalent Cl(-)-and H(2)PO(4) (-)-form resin was peculiar; that is, the amount of BSA adsorbed decreased with increasing the liquid-phase equilibrium concentration of BSA. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
AB-8大孔吸附树脂对红花桑寄生总黄酮静态吸附和动态洗脱的效果,受提取液质量浓度、pH值及环境温度、振速以及洗脱剂乙醇浓度、流速等因素影响。试验表明,提取液质量浓度和pH值对AB-8树脂的吸附效果有显著影响,其吸附分离总黄酮的工艺条件为:浓度为1.2~2.0 mg/ml、pH 3.0~4.0的红花桑寄生提取液,置于摇床上,于室温条件下振荡(振速160 r/min)吸附2~3 h,然后用5倍于树脂体积(5BV)的50%乙醇以1.5 ml/min流速进行柱上动态解吸。AB-8树脂对红花桑寄生总黄酮的饱和吸附量可达29.0 mg/g,动态洗脱率达95.0%,获得产品中黄酮纯度为46.0%,得率为5.5%。  相似文献   

8.
研究比较了5种树脂对肝素的吸附能力,从中选出S5428阴离子交换树脂来纯化肝素。通过对各因素的研究,确定了树脂对肝素的静态、动态吸附以及解吸的最佳条件。结果表明:静态吸附的温度45℃,pH 8.0的条件下吸附2 h,肝素的吸附率为90.5%;层析柱的动态吸附温度45℃,肝素溶液进样浓度1.0 mg/mL,进样速度1.5 mL/min,树脂柱能处理1.5 BV肝素液而不发生泄露,吸附量为3.05 mg/mL,达到饱和吸附时可处理4BV的料液,吸附量为9.18 mg/mL;采用2.0 mol/L NaCl洗脱,洗脱流速1.5 mL/min,肝素解吸率可达95.8%,肝素效价可达150 U/mg,效价回收率98%。  相似文献   

9.
《Chirality》2017,29(9):541-549
A type of resin‐anchored CuPF6‐(S )‐BINAP was synthesized and identified. The PS‐CuPF6‐(S )‐BINAP resin was used to adsorb the phenylalanine enantiomers. The results showed that the adsorption capacity of PS‐CuPF6‐(S )‐BINAP resin toward L‐phenylalanine was higher than that of resin toward D‐phenylalanine. PS‐CuPF6‐(S )‐BINAP resin exhibited good enantioselectivity toward L‐phenylalanine and D‐phenylalanine. The influence of phenylalanine concentration, pH, adsorption time, and temperature on the enantioselectivity of the resin were investigated. The results showed that the enantioselectivity of the resin increased with increasing the phenylalanine concentration, pH, and adsorption time, while it decreased with an increase in temperature. The causes for these influences are discussed. The highest enantioselectivity (α = 2.81) was obtained when the condition of phenylalanine concentration was 0.05 mmol/mL, pH was 8, adsorption time was 12 h, and temperature 5°C. The desorption test for removing D/L‐phenylalanine on PS‐CuPF6‐(S )‐BINAP resin was also investigated. The desorption ratios of D‐phenylalanine and L‐phenylalanine at pH of 1 were 95.7% and 94.3%, respectively. This result indicated that the PS‐CuPF6‐(S )‐BINAP resin could be regenerated by shaking with an acidic solution. The reusability of the PS‐CuPF6‐(S )‐BINAP resin was also assessed and the resin exhibited considerable reusability.  相似文献   

10.
In the present study, chemically treated Helianthus annuus flowers (SHC) were used to optimize the removal efficiency for Cr(VI) by applying Response Surface Methodological approach. The surface structure of SHC was analyzed by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Analysis (EDX). Batch mode experiments were also carried out to assess the adsorption equilibrium in aqueous solution. The adsorption capacity (qe) was found to be 7.2 mg/g. The effect of three parameters, that is pH of the solution (2.0-7.0), initial concentration (10-70 mg/L) and adsorbent dose (0.05-0.5 g/100 mL) was studied for the removal of Cr(VI) by SHC. Box-Behnken model was used as an experimental design. The optimum pH, adsorbent dose and initial Cr(VI) concentration were found to be 2.0, 5.0 g/L and 40 mg/L, respectively. Under these conditions, removal efficiency of Cr(VI) was found to be 90.8%.  相似文献   

11.
The kinetics and mechanism of lead biosorption by powderized Rhizopus oligosporus were studied using shake flask experiment. The optimum biomass concentration and initial solution pH for lead sorption at initial lead concentrations ranging from 50–200 mg/l was obtained at 0.5 g/l and pH5, respectively. In term of the ratio of initial lead concentration to biomass concentration ratio, the highest lead adsorption was obtained at 750 mg/g which gave the maximum lead uptake capacity of 126 mg/g. The experimental data of lead sorption by R.oligosporus fitted well to the Langmuir sorption isotherm model, indicating that the sorption was similar to that for an ion-exchange resin. This means that the sorption is a single layer metal adsorption that occurred as a molecular surface coverage. This assumption was confirmed by the examination of lead sorption using transmission electron microscope and energy dispersive X-ray analysis, which showed that during sorption most of the lead was adsorbed on the surface of cell.  相似文献   

12.
Growth and nodulation response of soybean (Glycine max (L.) Merr.) to various single nitrogen sources in solution culture is confounded by unequal shifts in solution pH. A recirculating ion exchange system was designed in which a cation exchange resin (Amberlite IRC 50) was used to control the pH of solutions in which soybeans were grown. Nutrient solution pH levels were established at range extremes of 9.0 to 3.7 with 100% Ca2+ or H+ forms of resin, respectively. Intermediate pH levels were established by varying the ratio of Ca2+ to H+ forms of resin. The system is capable of maintaining pH within 0.5 to 0.9 units of the initial pH over a two-week growth period of soybeans with either nitrate- or urea-N sources. In the absence of the resin column, pH of the urea nutrient solution rapidly declined to less than pH 4 which resulted in depressed plant nodule development. The optimum pH range for nodule mass and N2 fixation (measured by acetylene reduction) was between 5.2 and 7.0 with urea nutrition. Both nitrate- and ammonium-N sources were inhibitory to acetylene reduction in comparison with urea which allowed extensive nodule development and activity.  相似文献   

13.
《Process Biochemistry》1999,34(2):159-165
The interaction of a mammalian cell culture broth with two commercially available adsorbents for the use in expanded bed adsorption (EBA) has been studied. A cation exchange resin (Streamline SP) and an affinity adsorbent (Streamline rProtein A) were compared with regard to adsorption of hybridoma cells during sample application as well as potential cell damage. The results showed that hybridoma cells interact significantly with an expanded bed of cation exchange adsorbents but not with the Protein A adsorbent. After application of 17–20 sedimented bed volumes a saturation of the Streamline SP resin with cells was noted. With both adsorbents no measurable cell damage was found and IgG1 was recovered in approximately 95% yield. The capacity for IgG1 adsorption at 3% breakthrough was 2.7 mg IgG1/ml Streamline rProtein A at a constant fluid velocity of 380 cm/h and 1.0 mg IgGl/ml Streamline SP at 215–240 cm/h fluid velocity.  相似文献   

14.
The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution.  相似文献   

15.
L-茶氨酸是茶叶中游离氨基酸的主要组成部分,关于其良好的生理活性已有广泛报道。首次报道了来源于Cunnighamella echinulata 9980的L-氨基酰化酶用于高光学纯度的L-茶氨酸的酶法制备。该酶在pH 6.5,底物N-乙酰-DL-茶氨酸浓度为50 mM,且有40 mM CoCl2时催化效果较好。结果表明,在上述条件下,50℃作用12 h得L-茶氨酸22.5 mM,转化率90%。  相似文献   

16.
Selected samples of waste microbial biomass originating from various industrial fermentation processes and biological treatment plants have been screened for biosorbent properties in conjunction with uranium and thorium in aqueous solutions. Biosorption isotherms have been used for the evaluation of biosorptive uptake capacity of the biomass which was also compared to an activated carbon and the ion exchange resin currently used in uranium production processes. Determined uranium and thorium biosorption isotherms were independent of the initial U or Th solution concentration. Solution pH affected the exhibited uptake. In general, lower biosorptive uptake was exhibited at pH 2 than at pH 4. No discernible difference in uptake was observed between pH 4 and pH 5 where the optimum pH for biosorption lies. The biomass of Rhizopus arrhizus at pH 4 exhibited the highest uranium and thorium biosorptive uptake capacity (g) in excess of 180 mg/g. At an equilibrium uranium concentration of 30 mg/liter, R. arrhizus removed approximately 2.5 and 3.3 times more uranium than the ion exchange resin and activated carbon, respectively. Under the same conditions, R. arrhizus removed 20 times more thorium than the ion exchange resin and 2.3 times more than the activated carbon. R. arrhizus also exhibited higher uptake and a generally more favorable isotherm for both uranium and thorium than all other biomass types examined.  相似文献   

17.
This study involved the development of formaldehyde-treated, deseeded sunflower head waste–based biosorbent (FSH) for the biosorption of Cr(VI) from aqueous solution and industrial wastewater. Batch-mode experiments were conducted to determine the kinetics, sorption isotherms, effect of pH, initial Cr(VI) concentration, biosorbent dose, and contact time. The results demonstrated that FSH can sequester Cr(VI) from the aqueous solution. The maximum sorption occurred at pH = 2.0, biosorbent dose = 4.0 g/L, concentration of 100 mg/L at 25°C at 180 rpm after 2 h contact time. The FSH had an adsorption capacity of 7.85 mg/g for Cr(VI) removal at pH 2.0. The rate of adsorption was rapid, and equilibrium was attained within 2 h. The equilibrium sorption data fitted the Langmuir isotherm model, which was further confirmed by the chi-square test.  相似文献   

18.
用固定化弗劳地柠檬酸杆菌XP05从溶液中回收铂   总被引:1,自引:0,他引:1  
比较了5种固定弗劳地柠檬酸杆菌XP05菌体的方法,其中明胶海藻酸钠包埋法为固定菌体的最佳方法。扫描电子显微镜观察表明,XP05菌体较均匀地分布于包埋基质中。固定化XP05菌体吸附Pt4+受吸附时间、固定化菌体浓度、溶液的pH值和Pt4+起始浓度的影响。吸附作用是一个快速的过程;吸附Pt4+的最适pH值为1.5;在50~250 mg P4+/L范围内,吸附量与Pt4+起始浓度成线性关系,吸附过程符合Langmuir和Freundlich吸附等温模型。在Pt4+起始浓度250 mg/L、固定化菌体2.0 g/L、pH 1.5和30℃条件下,振荡吸附60 min, 吸附量为35.3 mg/g。0.5 mol/L HCl能使吸附在固定化菌体上的Pt解吸98.7%。从废铂催化剂处理液回收铂的结果表明,在Pt4+起始浓度111.8 mg/L、固定化菌体4.0 g/L、pH 1.5和30℃条件下,振荡吸附60 min, 吸附量为20.9 mg/g。在填充床反应器中,在Pt4+起始浓度50 mg/L、流速1.2 ml/min、固定化菌体1.86 g的条件下,饱和吸附量达24.7 mg/g; 固定化XP05菌体经4次吸附解吸循环后吸附率仍达78%。  相似文献   

19.
The cyanobacterium Arthrospira (Spirulina) platensis was used to study the process of silver biosorption. Effects of various parameters such as contact time, dosage of biosorbent, initial pH, temperature, and initial concentration of Ag(I) were investigated for a batch adsorption system. The optimal biosorption conditions were determined as pH 5.0, biosorbent dosage of 0.4 g, and initial silver concentration of 30 mg/L. Equilibrium adsorption data were analyzed by the Langmuir and Freundlich models – however, the Freundlich model provided a better fit to the experimental data. The kinetic data fit the pseudo-second-order model well, with a correlation coefficient of 0.99. The analysis of thermodynamic parameters (ΔG°, ΔH° and ΔS°) revealed that the adsorption process of silver ion by spirulina biomass was exothermic and spontaneous (ΔG° < 0), and exothermic (ΔH° < 0) process. The biosorption capacity of biomass A. platensis serves as a basis for the development of green technology for environmental remediation.  相似文献   

20.
A new separation and purification process was developed for recovering 1,3‐propanediol (1,3‐PD) from crude glycerol‐based fermentation broth with high purity. The downstream process integrated chitosan flocculation, activated carbon decolorization, fixed bed cation exchange resin adsorption, and vacuum distillation. Breakthrough curves were measured considering the effect of sample concentration, flow rate, temperature, and resin stack height. Yoon–Nelson model was proposed to fit the fixed bed adsorption. The characteristic column parameters were calculated. Optimal condition for adsorption was 1,3‐PD, 30.0 g/L; flow rate, 1.00 mL/min; stacking height, 30.0 cm; and temperature, 298 K. Ethanol‐water (75%, 1 mL/min) was used as eluent to separate 1,3‐PD and glycerol with 95.3% 1,3‐PD elution rate. After vacuum distillation, the overall purity and yield of 1,3‐PD were 99.2% and 80.8% in the purification process, respectively. This is a simple and efficient downstream strategy for 1,3‐PD purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号