首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fraction of inducedtrp + reversions in the strains ofEscherichia coli B/rthy trp Hcr + andEscherichia coli B/rthy trp Hcr was studied in the course of starvation for an essential amino acid. UV light as a mutagenic factor was used. It was found that there is a decrease in the proportion of inducedtrp + reversions in the strain ofHcr + type during starvation. Such a decrease was however observed only with that fraction oftrp + reversions which is expressed in selective plates where several divisions of irradiated cells are caused. The proportion oftrp + reversions expressed on minimal plates does not change during starvation. With the strain ofHcr type the proportion of inducedtrp + mutations remains unaltered irrespective of the nature of the selective plates.  相似文献   

2.
In the wild type strain (stock no. 1227) of Thermoactinomyces vulgaris, as reported earlier [Sinha and Singh (1980) Biochem. J. 190, 457–460], all phosphatase isoenzymes (three alkaline — AlpI, AlpII and AlpIII, and one acidic — Acp) are present. However, the auxotrophic mutants, the strains 1286 (thi ), 1279 (nic , ura ) and 1278 (thi , ura ) exhibited two alkaline phosphatase isoenzymes (AlpII and AlpIII), but AlpI was lacking. In the strain 1261 (nic , thi ), only AlpIII was expressed, and AlpI and AlpII isoenzymes were missing. The results suggest that the strains, which require either thiamine (1286 and 1278) or nicotinamide (1279) for their growth, were AlpI mutants; and the strain (1261), which requires both thiamine and nicotinamide for its growth, was AlpI /AlpII double mutant. There was no direct correlation between uracil auxotrophy and the expression of phosphatases. The uniform expression of AlpIII and Acp in all the strains, irrespective of their nutrient requirements, suggest that these constitutive phosphatases are species-specific. The specific activities of the thermophilic acid and alkaline phosphatases were maximum in the wild type strain (1227) of T. vulgaris. The next in phosphatase activity was the strain 1279 (an AlpI mutant), followed by their decrease, in order, in the strains 1286 and 1278 (which were also AlpI mutants); while least activity of these enzymes was observed in the obligate thermophile strain 1261 (AlpI /AlpII double mutant).  相似文献   

3.
Streptomyces rimosus CN08 isolated from Tunisian soil produced 8.6 mg l−1 of oxytetracycline (OTC) under submerged fermentation (SmF). Attempts were made for enhancing OTC production after irradiation-induced mutagenesis of Streptomyces rimosus CN08 with Co60-γ rays. 125 OTC-producing colonies were obtained after screening on kanamycin containing medium. One mutant called Streptomyces rimosus γ-45 whose OTC production increased 19-fold (165 mg l−1) versus wild-type strain was selected. γ-45 mutant was used for OTC production under solid-state fermentation (SSF). Wheat bran (WB) was used as solid substrate and process parameters influencing OTC production were optimized. Solid-state fermentation increased the yield of antibiotic production (257 mg g−1) when compared with submerged fermentation. Ammonium sulphate as additional nitrogen source enhanced OTC level to 298 mg g−1. Interestingly, OTC production by γ-45 mutant was insensitive to phosphate which opens the way to high OTC production even in medium containing phosphate necessary for optimal mycelia growth.  相似文献   

4.
The enzyme reaction mechanism and kinetics for biosyntheses of deoxycytidine triphosphate (dCTP) and deoxythymidine triphosphate (dTTP) from the corresponding deoxycytidine diphosphate (dCDP) and deoxythymidine diphosphate (dTDP) catalyzed by pyruvate kinase were studied. The kinetic model for the two synthetic reactions was found to follow the Bi–Bi random rapid equilibrium mechanism similar to that of the biosynthesis of deoxyadenosine triphosphate (dATP) and deoxyguanosine triphosphate (dGTP) from the corresponding deoxyadenosine diphosphate (dADP) and deoxyguanosine diphosphate (dGDP). Kinetic constants involved in the reactions including the maximum reaction velocity, the Michaelis–Menten constants, and the inhibition constants for dCTP and dTTP biosyntheses were experimentally determined. This enzyme reaction requires Mg2+ ion and the optimal Mg2+ concentration was also determined. The experimental results showed a good agreement with the simulation results obtained from the kinetic model developed. The kinetics of the four biosynthetic reactions for deoxynucleoside triphosphates (dNTP) including dATP, dGTP, dCTP, and dTTP from the corresponding deoxynucleoside diphosphates (dNDP) including dADP, dGDP, dCDP, and dTDP were analyzed. The results suggest that the binding kinetics of phosphoenolpyruvate (PEP) and pyruvate are similar for all four biosynthetic reactions. The affinity of the dNDP substrates to enzyme is of the same order of magnitude as the corresponding dNTP as inhibitors. The order of reactivity and substrate specificity for dNDP is dADP > dGDP > dCDP > dTDP in the pyruvate kinase (PK) reactions. The results obtained from this study can be applied to bioreactor design and production of dCTP and dTTP for biosynthesis of DNA at a significantly lower cost compared to the currently available chemical method.  相似文献   

5.
Auxotrophic Pseudomonas aeruginosa are exclusive to respiratory infections in cystic fibrosis (CF) and bronchiectatic patients, and isolates require specific amino acids for growth on minimal media, particularly methionine. Since auxotrophic and prototrophic P. aeruginosa from CF are identical by genotyping, we investigated the genetic events leading to methionine auxotrophy (Met). Most (10/13) Met strains had the same pattern of growth on methionine precursors and required methionine exclusively for growth. Back mutation to prototrophy was very low (frequencies 10−8 to <10−10). Complementation of the mutations leading to auxotrophy was achieved for five strains with a genomic library of P. aeruginosa PAO1. Strains with different patterns of growth on methionine precursors were complemented by clones with different restriction patterns, while identical clones complemented strains with the same pattern of growth on methionine precursors. Methionine auxotrophy in P. aeruginosa from CF results from stable chromosomal mutations, and the commonest defect is probably in gene(s) encoding enzymes that convert homocysteine to methionine. Received: 2 August 1997 / Accepted: 23 September 1997  相似文献   

6.
Xanthomonas campestris pv phaseoli produced an extracellular endoinulinase (9.24 ± 0.03 U mL−1) in an optimized medium comprising of 3% sucrose and 2.5% tryptone. X. campestris pv. phaseoli was further subjected to ethylmethanesulfonate mutagenesis and the resulting mutant, X. campestris pv. phaseoli KM 24 demonstrated inulinase production of 22.09 ± 0.03 U mL−1 after 18 h, which was 2.4-fold higher than that of the wild type. Inulinase production by this mutant was scaled up using sucrose as a carbon source in a 5-L fermenter yielding maximum volumetric (21,865 U L−1 h−1) and specific (119,025 U g−1 h−1) productivities of inulinase after 18 h with an inulinase/invertase ratio of 2.6. A maximum FOS production of 11.9 g L−1 h−1 and specific productivity of 72 g g−1 h−1 FOS from inulin were observed in a fermenter, when the mutant was grown on medium containing 3% inulin and 2.5% tryptone. The detection of mono- and oligosaccharides in inulin hydrolysates by TLC analysis indicated the presence of an endoinulinase. This mutant has potential for large-scale production of inulinase and fructooligosaccharides.  相似文献   

7.
The joint effects of 0.5 M NaCl and light of different intensities on the activity of the photosynthetic apparatus and ATP content in cells of the katG mutant of cyanobacterium Synechocystis sp. PCC 6803 have been studied. The mutant demonstrated a higher photoinhibition rate and a slower rate of recovery compared with the wild type, as shown by measurements of the CO2-dependent O2 production and delayed fluorescence of Chl a. The presence of 0.5 M NaCl in the incubation medium caused equal photoinhibition of the photosynthetic apparatus at I = 1200 μE m−2 s−1 in the mutant and wild-type cells. At I = 2400 μE m−2 s−1, we observed stronger inhibition and slower recovery of the photosynthetic apparatus in the katG mutant than in wild-type cells. The data obtained evidence an important role of catalase-peroxidase in the system of reparation of the photosynthetic apparatus damaged by high-intensity light, especially at the background of NaCl stress.  相似文献   

8.
The dum gene of Salmonella typhimurium was originally identified as a gene involved in dUMP synthesis (C. F. Beck et al., J. Bacteriol. 129:305–316, 1977). In the genetic background used in their selection, the joint acquisition of a dcd (dCTP deaminase) and a dum mutation established a condition of thymidine (deoxyuridine) auxotrophy. In this study, we show that dum is identical to pyrH, the gene encoding UMP kinase. The level of UMP kinase activity in the dum mutant was found to be only 30% of that observed for the dum+ strain. Thymidine prototrophy was restored to the original dum dcd mutant (KP1361) either by transduction using a pyrH+ donor or by complementation with either of two pyrH+-carrying plasmids. Thymidine auxotrophy could be reconstructed in the dum+ derivative (KP1389) by the introduction of a mutant pyrH allele. To define the minimal mutational complement necessary to produce thymidine auxotrophy in thyA+ strains, a dcd::Km null mutation was constructed. In the wild-type background, dcd::Km alone or in combination with a pyrH (dum) mutation did not result in a thymidine requirement. A third mutation, cdd (cytidine-deoxycytidine deaminase), was required together with the dcd and pyrH mutations to impart thymidine auxotrophy.  相似文献   

9.
Summary A regulatory mutant which leads to constitutive synthesis of enzymes involved in catabolism of nucleosides is described. It is unlinked to the structural genes whose activity is affected. The gene concerned is designated nucR. The amount of thymine required for growth (colony formation) of thy strains is affected by the nucR mutation. The amount required by a thy drm strain is reduced about four fold if it carries the constitutivity mutation. The amount required by a thy drm +strain is increased at least two fold. These differences in nutritional requirement provide a method for selecting constitutives from non-constitutives and vice versa.Abbreviations Rib-1-P Ribose-1-phosphate - dRib-1-P deoxyribose-1-phosphate - Rib-5-P Ribose-5-phosphate - dRib-5-P deoxyribose-5-phosphate - Pi inorganic phosphate  相似文献   

10.
Data from four components of the radiation balance were used to investigate the surface energy budgets for a Carex lasiocarpa mire in the Sanjiang Plain, Northeast China, and the controlling factors of the evapotranspiration (ET) were discussed in detail. During the growing season 2006, the shortwave radiation (SW↓) reaching the mire surface added up to 2,854.3 MJ m−2 and the net radiation (Rn) was 1,637.4 MJ m−2 in total, with an average of 9.86 MJ m−2 day−1. G was the smallest flux at the water-atmosphere interface, with an average of about 0.91 MJ m−2 day−1, but showed high relative variability, even changing its sign. The latent and sensible heat fluxes (LE and H) amounted to 787.48 and 476.26 MJ m−2, respectively, and the total sum of LE and H accounted for 77.18% of Rn. By conversion from LE, the average value of ET from the mire was 1.84 mm day−1, amounting to 298.8 mm. The total ET was almost 60% of the total rainfall in the same period, proving that ET is the primary water consumer in the mire. The growth of C. lasiocarpa was related closely with surface resistance (r s), and analysis of partial correlation indicated that r s correlated negatively with leaf area index (LAI) when the interference of the available energy, Rn-G, was removed. There was a strong linkage between r s and the evaporative fraction [LE/(LE + H)] as well as Bowen ratio (β). r s was the key factor in controlling the variation of ET and regulating energy partitioning between LE and H. During the whole growing season, r s and R nG were the two main factors coupled in ET processes. In spring, r s dominated ET processes, and the increase in LAI led to a decrease in r s, which in turn accelerated ET as vegetation developed until late August. After August, the available energy controlled the process of ET completely until ET reached an equilibrium in mid-October.  相似文献   

11.
The role of tyrosine M210 in charge separation and stabilization of separated charges was studied by analyzing of the femtosecond oscillations in the kinetics of decay of stimulated emission from P* and of a population of the primary charge separated state P+BA in YM210L and YM210L/HL168L mutant reaction centers (RCs) of Rhodobacter sphaeroides in comparison with those in native Rba. sphaeroides RCs. In the mutant RCs, TyrM210 was replaced by Leu. The HL168L mutation placed the redox potential of the P+/P pair 123 mV below that of native RCs, thus creating a theoretical possibility of P+BA stabilization. Kinetics of P* decay at 940 nm of both mutants show a significant slowing of the primary charge separation reaction in comparison with native RCs. Distinct damped oscillations in these kinetics with main frequency bands in the range of 90–150 cm−1 reflect mostly nuclear motions inside the dimer P. Formation of a very small absorption band of BA at 1020 nm is registered in RCs of both mutants. The formation of the BA band is accompanied by damped oscillations with main frequencies from ∼10 to ∼150 cm−1. Only a partial stabilization of the P+BA state is seen in the YM210L/HL168L mutant in the form of a small non-oscillating background of the 1020-nm kinetics. A similar charge stabilization is absent in the YM210L mutant. A model of oscillatory reorientation of the OH-group of TyrM210 in the electric fields of P+ and BA is proposed to explain rapid stabilization of the P+BA state in native RCs. Small oscillatory components at ∼330–380 cm−1 in the 1020-nm kinetics of native RCs are assumed to reflect this reorientation. We conclude that the absence of TyrM210 probably cannot be compensated by lowering of the P+BA free energy that is expected for the double YM210L/HL168L mutant. An oscillatory motion of the HOH55 water molecule under the influence of P+ and BA is assumed to be another potential contributor to the mechanism of P+BA stabilization.  相似文献   

12.
This study was undertaken to explore the role of Trichoderma sp. in phosphate (P) solubilization and antagonism against fungal phytopathogens. All fungal isolates (SE6, KT6, KT28, and BRT11) and a standard culture of T. harzianum (Th-std) were able to antagonize two fungal phytopathogens (Sclerotium rolfsii and Rhizoctonia solani) of chickpea (Cicer arietinum L.) wilt complex. Transmission electron microscopic studies (TEM) further confirmed ultra-cytological changes in the sclerotia of S. rolfsii parasitized by Trichoderma sp. All fungal cultures exhibited production of NH3 and siderophore, but only BRT11, SE6, and Th-std could produce HCN. Among all the cultures tested, isolate KT6 was found to be most effective for solubilization of ferric phosphate releasing 398.4 μg ml−1 phosphate while isolates BRT11 and SE6 showed more potential for tricalcium phosphate (TCP) solubilization releasing 449.05 and 412.64 μg ml−1 phosphate, respectively, in their culture filtrates. Part of this study focused on the influence of abiotic stress conditions such as pH, temperature, and heavy metal (cadmium) on phosphate (TCP) solubilizing efficiency. Two selected cultures KT6 and T. harzianum retained their P solubilizing potential at varying concentrations of cadmium (0–1000 μg ml−1). Isolate KT6 and standard culture of T. harzianum released 278.4 and 287.6 μg ml−1 phosphate, respectively, at 1000 μg ml−1cadmium. Maximum solubilization of TCP was obtained at alkaline pH and at 28°C temperature. Isolate BRT11 was found most alkalo-tolerant releasing 448.0 μg ml−1 phosphate at pH 9.  相似文献   

13.
Chromosomes in spores of a thymineless mutant of Bacillus subtilis strain 168 were shown to have a replication fork, unlike chromosomes in spores of the thy+ strain which are in a complete form. As a consequence the number of replication forks in germinating cultures is higher in the thy strain than in the thy+ one. Chromosome replication time (C) in the thy+ strain was found to be about 53 min for growth rates from 20 to 60 min. In the thy strain, C was about 75 min at high growth rates and increased with decreasing growth rate when the thymine concentration was not limiting. With limiting thymine concentrations in the medium replication velocity decreased independently of growth rate.  相似文献   

14.
Adaptation of Microcystis aeruginosa (Cyanobacteria) to resist the herbicide glyphosate was analysed by using an experimental model. Growth of wild-type, glyphosate-sensitive (Gs) cells was inhibited when they were cultured with 120 ppm glyphosate, but after further incubation for several weeks, occasionally the growth of rare cells resistant (Gr) to the herbicide was found. A fluctuation analysis was carried out to distinguish between resistant cells arising from rare spontaneous mutations and resistant cells arising from other mechanisms of adaptation. Resistant cells arose by rare spontaneous mutations prior to the addition of glyphosate, with a rate ranging from 3.1 × 10−7 to 3.6 × 10−7 mutants per cell per generation in two strains of M. aeruginosa; the frequency of the Gr allele ranged from 6.14 × 10−4 to 6.54 × 10−4. The Gr mutants are slightly elliptical in outline, whereas the Gs cells are spherical. Since Gr mutants have a diminished growth rate, they may be maintained in uncontaminated waters as the result of a balance between new resistants arising from spontaneous mutation and resistants eliminated by natural selection. Thus, rare spontaneous pre-selective mutations may allow the survival of M. aeruginosa in glyphosate-polluted waters via Gr clone selection.  相似文献   

15.
Weiss B 《Journal of bacteriology》2007,189(21):7922-7926
When thymidylate production is diminished by a mutation affecting dCTP deaminase, Escherichia coli is known to use an alternate pathway involving deoxycytidine as an intermediate. The pathway requires the gene for any of three nucleoside diphosphate kinases (ndk, pykA, or pykF) and the gene for a 5′-nucleotidase (yfbR).  相似文献   

16.
The strain of Trichoderma reesei Rut C-30 was subjected to mutation after treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NG) for 6 h followed by UV irradiation for 15 min. Successive mutants showed enhanced cellulase production, clear hydrolysis zone and rapid growth on Avicel-containing plate. Particularly, the mutant NU-6 showed approximately two-fold increases in activity of both FPA and CMCase in shake flask culture when grown on basal medium containing peptone (1%) and wheat bran (1%). The enzyme production was further optimized using eight different media. When a mixture of lactose and yeast cream was used as cellulase inducer, the mutant NU-6 yielded the highest enzyme and cell production with a FPase activity of 6.2 U ml−1, a CMCase activity of 54.2 U ml−1, a β-glucosidase activity of 0.39 U ml−1, and a fungal biomass of 12.6 mg ml−1. It deserved noting that the mutant NU-6 also secreted large amounts of xylanases (291.3 U ml−1). These results suggested that NU-6 should be an attractive producer for both cellulose and xylanase production.  相似文献   

17.
An acetate-negative mutant of Yarrowia lipolytica Wratislavia K1 was selected that, when grown with 300 g raw glycerol l−1 at pH 3, produced 170 g erythritol l−1 after 7 days, corresponding to a 56% yield and a productivity of 1 g l−1 h−1. The Wratislavia K1 strain did not produce citric acid.  相似文献   

18.
The mutagenic effect of nitrosoguanidine onMycobacterium phlei PA   总被引:4,自引:0,他引:4  
The effect of nitrosoguanidine on the induction of three types of mutagenic changes inMycobacterium phlei PA was studied. The mutagenic changes included: change of prototrophy to auxotrophy, conversion of sensitivity to isoniazide to resistańce and sensitivity to streptomycin to resistance. The induction of auxotrophic mutants was successful especially when using NTG at a concentration of 1000 μg/ml. A total of 100 auxotrophs was obtained out of which only 13 were sufficiently stable to be used in further studies. Amino acid requirements especially the glycine(serine) type characterized more than half of all auxotrophic mutants obtained. A group of mutants requiring purines also included a high number of mutants. A considerable spontaneous reversion frequency was found in both groups of auxotrophs. The kinetics of the induction of INH-resistant mutants by nitrosoguanidine at a concentration of 1000 μg/ml was studied and a high induction of these mutants, particularly at high lethal effect of the mutagen found. The mutability of the STMr marker was relatively low in the present model microorganism as compared with the two markers mentioned earlier.  相似文献   

19.
20.
Difference femtosecond absorption spectroscopy with 20-fsec temporal resolution was applied to study a primary stage of charge separation and transfer processes in reaction centers of YM210L and YM210L/FM197Y site-directed mutants of the purple bacterium Rhodobacter sphaeroides at 90 K. Photoexcitation was tuned to the absorption band of the primary electron donor P at 880 nm. Coherent oscillations in the kinetics of stimulated emission of P* excited state at 940 nm and of anion absorption of monomeric bacteriochlorophyll BA at 1020 nm were monitored. The absence of tyrosine YM210 in RCs of both mutants leads to strong slowing of the primary reaction P* → P+BA and to the absence of stabilization of separated charges in the state P+BA. Mutation FM197Y increases effective mass of an acetyl group of pyrrole ring I in the bacteriochlorophyll molecule PB of the double mutant YM210L/FM197Y by a hydrogen bond with OH-TyrM197 group that leads to a decrease in the frequency of coherent nuclear motions from 150 cm−1 in the single mutant YM210L to ∼100 cm−1 in the double mutant. Oscillations with 100–150 cm−1 frequencies in the dynamics of the P* stimulated emission and in the kinetics of the reversible formation of P+BA state of both mutants reflect a motion of the PB molecule relatively to PA in the area of mutual overlapping of their pyrrole rings I. In the double mutant YM210L/FM197Y the oscillations in the P* emission band and the BA absorption band are conserved within a shorter time ∼0.5 psec (1.5 psec in the YM210L mutant), which may be a consequence of an increase in the number of nuclei forming a wave packet by adding a supplementary mass to the dimer P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号