首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.  相似文献   

2.
Grape proteins aggregate in white wine to form haze. A novel method to prevent haze in wine is the use of haze protective factors (Hpfs), specific mannoproteins from Saccharomyces cerevisiae, which reduce the particle size of the aggregated proteins. Hpf1p was isolated from white wine and Hpf2p from a synthetic grape juice fermentation. Putative structural genes, YOL155c and YDR055w, for these proteins were identified from partial amino acid sequences of Hpf1p and Hpf2p, respectively. YOL155c also has a homologue, YIL169c, in S. cerevisiae. Comparison of the partial amino acid sequence of deglycosylated-Hpf2p with the deduced protein sequence of YDR055w, confirmed five of the 15 potential N-linked glycosylation sites in this sequence were occupied. Methylation analysis of the carbohydrate moieties of Hpf2p indicated that this protein contained both N- and O-linked mannose chains. Material from fermentation supernatant of deletion strains had significantly less activity than the wild type. Moreover, YOL155c and YIL169c overexpressing strains and a strain overexpressing 6xHis-tagged Hpf2p produced greater haze protective activity than the wild type strains. A storage trial demonstrated the short to midterm stability of 6xHis-tagged Hpf2p in wine.  相似文献   

3.
For recombinant production of squalene, which is a triterpenoid compound with increasing industrial applications, in microorganisms generally recognized as safe, we screened Saccharomyces cerevisiae strains to determine their suitability. A strong strain dependence was observed in squalene productivity among Saccharomyces cerevisiae strains upon overexpression of genes important for isoprenoid biosynthesis. In particular, a high level of squalene production (400 ± 45 mg/L) was obtained in shake flasks with the Y2805 strain overexpressing genes encoding a bacterial farnesyl diphosphate synthase (ispA) and a truncated form of hydroxyl-3-methylglutaryl-CoA reductase (tHMG1). Partial inhibition of squalene epoxidase by terbinafine further increased squalene production by up to 1.9-fold (756 ± 36 mg/L). Furthermore, squalene production of 2011 ± 75 or 1026 ± 37 mg/L was obtained from 5-L fed-batch fermentations in the presence or absence of terbinafine supplementation, respectively. These results suggest that the Y2805 strain has potential as a new alternative source of squalene production.  相似文献   

4.
Expression of a heterologous l-lactate dehydrogenase (l-ldh) gene enables production of optically pure l-lactate by yeast Saccharomyces cerevisiae. However, the lactate yields with engineered yeasts are lower than those in the case of lactic acid bacteria because there is a strong tendency for ethanol to be competitively produced from pyruvate. To decrease the ethanol production and increase the lactate yield, inactivation of the genes that are involved in ethanol production from pyruvate is necessary. We conducted double disruption of the pyruvate decarboxylase 1 (PDC1) and alcohol dehydrogenase 1 (ADH1) genes in a S. cerevisiae strain by replacing them with the bovine l-ldh gene. The lactate yield was increased in the pdc1/adh1 double mutant compared with that in the single pdc1 mutant. The specific growth rate of the double mutant was decreased on glucose but not affected on ethanol or acetate compared with in the control strain. The aeration rate had a strong influence on the production rate and yield of lactate in this strain. The highest lactate yield of 0.75 g lactate produced per gram of glucose consumed was achieved at a lower aeration rate.  相似文献   

5.
6.
The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.  相似文献   

7.
8.
The yeast Snf1, animal AMPK, and plant SnRK1 protein kinases constitute a family of related proteins that have been proposed to serve as metabolic sensors of the eukaryotic cell. We have previously reported the characterization of two redundant SnRK1 encoding genes (PpSNF1a and PpSNF1b) in the moss Physcomitrella patens. Phenotypic analysis of the snf1a snf1b double knockout mutant suggested that SnRK1 is important for the plant’s ability to recognize and adapt to conditions of limited energy supply, and also suggested a possible role of SnRK1 in the control of plant development. We have now used a yeast two-hybrid system to screen for PpSnf1a interacting proteins. Two new moss genes were found, PpSKI1 and PpSKI2, which encode highly similar proteins with homologues in vascular plants. Fusions of the two encoded proteins to the green fluorescent protein localize to the nucleus. Knockout mutants for either gene have an excess of gametophores under low light conditions, and exhibit reduced gametophore stem lengths. Possible functions of the new proteins and their connection to the SnRK1 kinase are discussed.  相似文献   

9.
A gratuitous strain was developed by disrupting the GAL1 gene (galactokinase) of recombinant Saccharomyces cerevisiae harboring the antithrombotic hirudin gene in the chromosome under the control of the GAL10 promoter. A series of glucose-limited fed-batch cultures were carried out to examine the effects of glucose supply on hirudin expression in the gratuitous strain. Controlled feeding of glucose successfully supported both cell growth and hirudin expression in the gratuitous strain. The optimum fed-batch culture done by feeding glucose at a rate of 0.3 g h–1 produced a maximum hirudin concentration of 62.1 mg l–1, which corresponded to a 4.5-fold increase when compared with a simple batch culture done with the same strain.  相似文献   

10.
To develop microbial production method for prenyl alcohols (e.g., (E,E)-farnesol (FOH), (E)-nerolidol (NOH), and (E,E,E)-geranylgeraniol (GGOH)), the genes encoding enzymes in the mevalonate and prenyl diphosphate pathways were overexpressed in Saccharomyces cerevisiae, and the resultant transformants were evaluated as to the production of these alcohols. Overexpression of the gene encoding hydroxymethylglutaryl (HMG)-CoA reductase was most effective among the genes tested. A derivative of S. cerevisiae ATCC 200589, which was selected through screening, was found to be the most suitable host for the production. On cultivation of the resultant transformant, in which the HMG-CoA reductase gene was overexpressed, in a 5-liter bench-scale jar fermenter for 7 d, the production of FOH, NOH, and GGOH reached 145.7, 98.8, and 2.46 mg/l, respectively.  相似文献   

11.
In this study, the production of enantiomerically pure (1R,4S,6S)-6-hydroxy-bicyclo[2.2.2]octane-2-one ((−)-2) through stereoselective bioreduction was used as a model reaction for the comparison of engineered Saccharomyces cerevisiae and engineered Escherichia coli as biocatalysts. For both microorganisms, over-expression of the gene encoding the NADPH-dependent aldo-keto reductase YPR1 resulted in high purity of the keto alcohol (−)-2 (>99% ee, 97–98% de). E. coli had three times higher initial reduction rate but S. cerevisiae continued the reduction reaction for a longer time period, thus reaching a higher conversion of the substrate (95%). S. cerevisiae was also more robust than E. coli, as demonstrated by higher viability during bioreduction. It was also investigated whether the NADPH regeneration rate was sufficient to supply the over-expressed reductase with NADPH. Five strains of each microorganism with varied carbon flux through the NADPH regenerating pentose phosphate pathway were genetically constructed and compared. S. cerevisiae required an increased NADPH regeneration rate to supply YPR1 with co-enzyme while the native NADPH regeneration rate was sufficient for E. coli. Nádia Skorupa Parachin and Magnus Carlquist have contributed equally to the paper.  相似文献   

12.
13.
About twenty genes participating in checkpoint control are known in yeast Saccharomyces cerevisiae. The involvement of SRM genes in the cell cycle arrest under the action of DNA damaging agents was studied in this work. These genes were earlier defined as genes affecting genetic stability and radiosensitivity. It was shown that mutations srm5/cdc28-srm, srm8/net1-srm, and srm12/hfi1-srm fail the cell cycle arrest in the presence of DNA damage and influence the checkpoint arrest in G0/S (srm5, srm8), G1/S (srm5, srm8, srm12), S (srm5, srm12), and G2/M (srm5). It seems likely that genes SRM5/CDC28, SRM12/HFI1/ADA1, and SRM8/NET1 are involved in a cell response to DNA damage, and in checkpoint regulation in particular.  相似文献   

14.

Background  

The mal genes that encode maltose transporters have undergone extensive lateral transfer among ancestors of the archaea Thermococcus litoralis and Pyrococcus furiosus. Bacterial hyperthermophiles of the order Thermotogales live among these archaea and so may have shared in these transfers. The genome sequence of Thermotoga maritima bears evidence of extensive acquisition of archaeal genes, so its ancestors clearly had the capacity to do so. We examined deep phylogenetic relationships among the mal genes of these hyperthermophiles and their close relatives to look for evidence of shared ancestry.  相似文献   

15.
The lycopene synthetic pathway was engineered in Escherichia coli using the carotenoid genes (crtE, crtB, and crtI) of Pantoea agglomerans and Pantoea ananatis. E. coli harboring the P. agglomerans crt genes produced 27 mg/l of lycopene in 2YT medium without isopropyl-beta-d-thiogalactopyranoside (IPTG) induction, which was twofold higher than that produced by E. coli harboring the P. ananatis crt genes (12 mg/l lycopene) with 0.1 mM IPTG induction. The crt genes of P. agglomerans proved better for lycopene production in E. coli than those of P. ananatis. The crt genes of the two bacteria were also compared in E. coli harboring the mevalonate bottom pathway, which was capable of providing sufficient carotenoid building blocks, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), with exogenous mevalonate supplementation. Lycopene production significantly increased using the mevalonate bottom pathway and 60 mg/l of lycopene was obtained with the P. agglomerans crt genes, which was higher than that obtained with the P. ananatis crt genes (35 mg/l lycopene). When crtE among the P. ananatis crt genes was replaced with P. agglomerans crtE or Archaeoglobus fulgidus gps, both lycopene production and cell growth were similar to that obtained with P. agglomerans crt genes. The crtE gene was responsible for the observed difference in lycopene production and cell growth between E. coli harboring the crt genes of P. agglomerans and P. ananatis. As there was no significant difference in lycopene production between E. coli harboring P. agglomerans crtE and A. fulgidus gps, farnesyl diphosphate (FPP) synthesis was not rate-limiting in E. coli. Sang-Hwal Yoon and Ju-Eun Kim: These authors contributed equally to this work.  相似文献   

16.
Summary Biosorption of manganese from its aqueous solution using yeast biomass Saccharomyces cerevisiae and fungal biomass Aspergillus niger was carried out. Manganese biosorption equilibration time for A. niger and S. cerevisiae were found to be 60 and 20 min, with uptakes of 19.34 and 18.95 mg/g, respectively. Biosorption increased with rise in pH, biomass, and manganese concentration. The biosorption equilibrium data fitted with the Freundlich isotherm model revealed that A. niger was a better biosorbent of manganese than S. cerevisiae.  相似文献   

17.
18.
Candida lipolytica yeast was grown batchwise on glucose medium. Cerebrosides were isolated from the sphingolipid fraction of total lipids using column chromatography and separated into two compounds by high-performance thin-layer chromatography. Glucose was detected as the sole sugar constituent in cerebrosides. The fatty acid composition of cerebrosides was characterised by a predominance of saturated fatty acids and by a high proportion of fatty acids with 16 carbon atoms. The dominant fatty acid was h16:0. The principal long-chain base components of both cerebroside species were trihydroxy bases, 18- and 20-phytosphinosine. The unique characteristic of cerebrosides was the presence of a high proportion of sphingosine (one-fourth of the total long-chain bases), which is a common characteristic of mammalian sphingolipids and rarely occurs in yeast cerebrosides. The ceramide moiety profile of cerebrosides is similar to that of epidermal ceramides, which implies a possibility for their application in care cosmetics.  相似文献   

19.
20.
Pro-apoptotic proteins from the reaper, hid, grim (RHG) family are primary regulators of programmed cell death in Drosophila due to their antagonistic effect on inhibitor of apoptosis (IAP) proteins, thereby releasing IAP-inhibition of caspases that effect apoptosis. Using a degenerate PCR approach to conserved domains from the 12 Drosophila species, we have identified the first reaper and hid orthologs from a tephritid, the Caribfly Anastrepha suspensa. As-hid is the first identified non-drosophilid homolog of hid, and As-rpr is the second non-drosophilid rpr homolog. Both genes share more than 50% amino acid sequence identity with their Drosophila homologs, suggesting that insect pro-apoptotic peptides may be more conserved than previously anticipated. Importantly, both genes encode the conserved IBM and GH3 motifs that are key for IAP-inhibition and mitochondrial localization. Functional verification of both genes as cell death effectors was demonstrated by cell death assays in A. suspensa embryonic cell culture, as well as in heterologous Drosophila melanogaster S2 cells. Notably, heterologous cell death activity was found to be higher for Anastrepha genes than their Drosophila counterparts. In common with the Drosophila cognates, As-hid and As-rpr negatively regulated the Drosophila inhibitor of apoptosis (DIAP1) gene to promote apoptosis, and both genes when used together effected increased cell death activity, indicating a co-operative function for As-hid and As-rpr. We show that these tephritid cell death genes are functional and potent as cell death effectors, and could be used to design improved transgenic lethality systems for insect population control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号