首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was undertaken to determine the in vitro effect of lentivirus-mediated siPin1 on cell cycle and apoptosis of vascular smooth muscle cells (VSMCs). Further we sought to provide insight into the mechanisms behind these processes. Human umbilical artery smooth muscle cells (HUASMCs) were transfected with lentiviral siPin1. Real-time RT–PCR and Western blotting were used to examine Pin1 mRNA and protein expression. MTT and [3H]thymidine incorporation assays were employed to observe cell proliferation status. The apoptotic rate and cell cycle were analyzed by Hoechst33258 staining and flow cytometry. Finally we measured the expression of cyclin D1, β-catenin, CDK4, cytochrome c, procaspase-3, cleaved caspase-3, procaspase-9, cleaved caspase-9, Bcl-2, Bax, STAT3, phosphorylated STAT3 and VEGF in lentiviral siPin1 infected VSMCs. Lentivirus-mediated siPin1 effectively diminished endogenous Pin1 expression in VSMCs resulting in cell cycle arrest and enhancement of apoptosis. This was accompanied by downregulation of cyclin D1, β-catenin, CDK4, increase of Bax/Bcl-2 ratio, release of cytochrome c, and activation of caspase-3 and -9. We concluded that this effect was mediated, at least in part, via the β-catenin/cyclin D1/CDK4 cascade, and that the mitochondrial pathway was responsible for VSMC apoptosis in the absence of Pin1. Our observations raised the possibility that Pin1 might be a potential therapeutic target to prevent stenosis.  相似文献   

2.
The present study investigated the effect of cow ghee (clarified butter fat) versus soybean oil on the expression of cyclins A and D1, and apoptosis regulating Bax, Bcl-2 and PKC-α genes in mammary gland of normal and 7,12-dimethylbenz(a)anthracene (DMBA) treated rats. Two groups of 21 days old female rats were fed for 44 weeks diet containing cow ghee or soybean oil (10%). The animals were given DMBA (30 mg/kg body weight) through oral intubation after 5 weeks feeding. Another two groups fed similarly but not given DMBA served as respective controls. In control groups, the expression of cyclin A was similar on both cow ghee and soybean oil, but that of cyclin D1 was more on soybean oil diet. However, in DMBA treated groups, the expression levels of cyclins A and D1 were significantly greater on soybean oil than on cow ghee. The expression levels of Bax, Bcl-2 and PKC-α were similar in two control groups. However, in tumor tissue expression levels of Bcl-2 and PKC-α were significantly lower in cow ghee fed rats than in soybean oil fed ones, but Bax was similarly expressed in both DMBA treated groups. The pro-apoptotic ratio Bax/Bcl-2 increased and the anti-apoptotic ratio PKC-α*(Bcl-2/Bax) decreased in cow ghee group compared to soybean oil group in DMBA treated rats. Hence, the decreased expressions of cyclins A and D1, Bcl-2 and PKC-α mediate the mechanism by which cow ghee protects from mammary carcinogenesis.  相似文献   

3.
Previously, we showed that arsenic trioxide potently inhibited the growth of myeloma cells and head and neck cancer cells. Here, we demonstrate that arsenic trioxide inhibited the proliferation of all the renal cell carcinoma cell lines (ACHN, A498, Caki-2, Cos-7, and Renca) except only one cell line (Caki-1) with IC(50) of about 2.5-10 microM. Arsenic trioxide induced a G(1) or a G(2)-M phase arrest in these cells. When we examined the effects of this drug on A498 cells, arsenic trioxide (2.5 microM) decreased the levels of CDK2, CDK6, cyclin D1, cyclin E, and cyclin A proteins. Although p21 protein was not increased by arsenic trioxide, this drug markedly enhanced the binding of p21 with CDK2. In addition, the activities of CDK2- and CDK6-associated kinase were reduced in association with hypophosphorylation of Rb protein. Arsenic trioxide (10 microM) also induced apoptosis in A498 cells. Apoptotic process of A498 cells was associated with the changes of Bcl-(XL), caspase-9, caspase-3, and caspase-7 proteins as well as mitochondria transmembrane potential (Deltapsi(m)) loss. Taken together, these results demonstrate that arsenic trioxide inhibits the growth of renal cell carcinoma cells via cell cycle arrest or apoptosis.  相似文献   

4.
Treatment of cells with carcinogen Benzo[a]pyrene (B[a]P) allows cells to evade G1 arrest and induces cells abnormal proliferation. However, the mechanisms of its action at cellular level are not well understood. To address this question, normal human embryo lung diploid fibroblasts (HELF) were selected in the present study. We found that exposure of cells with 2.5 μM of B[a]P for 24 h resulted in a decrease of G1 population by 11.9% (P < 0.05) and a increase of S population by 17.2% (P < 0.05). Treatment of cells with B[a]P also caused dose-related activation of MAPK and induction of cyclin D1 protein expression, whereas the CDK4 protein levels were not significantly affected by B[a]P. Overexpression of cyclin D1 protein stimulated by B[a]P was significantly inhibited by 50 μM AG126 (an inhibitor of ERK1/2), but not by 25 μM SP600125 (an inhibitor of JNK1/2) or 5 μM SB203580 (an inhibitor of p38 mapk), suggesting that B[a]P-induced cyclin D1 expression was only regulated by ERK1/2 pathway. However, AG126, SP600125 or SB203580 led to cell cycle significantly arrested in G1 phase, indicating that ERK1/2, JNK1/2 and p38 mapk pathways are all required for B[a]P-induced G1/S transition. In addition, HELF cells transfecting with antisense cyclin D1 cDNA or antisense CDK4 cDNA showed significantly G1 arrest after B[a]P stimulation. These results suggested that B[a]P exposure accelerated the G1→S transition by activation of MAPK signaling pathways. Cyclin D1 and CDK4 are rate-limiting regulators of the G1→S transition and expression of cyclin D1 is predominantly regulated by ERK1/2 pathway in HELF cells.  相似文献   

5.
In this study, six 2-phenylnaphthalenes with hydroxyl groups were synthesized in high yields by the demethylation of the corresponding methoxy-2-phenylnaphthalenes, and one 2-phenylnaphthalene with an amino group was obtained by hydrogenation. All of the 2-phenylnaphthalene derivatives were evaluated for cytotoxicity, and the structure-activity relationship (SAR) against human breast cancer (MCF-7) cells was also determined. The SAR results revealed that cytotoxicity was markedly promoted by the hydroxyl group at the C-7 position of the naphthalene ring. The introduction of hydroxyl groups at the C-6 position of the naphthalene ring and the C-4'' position of the phenyl ring fairly enhanced cytotoxicity, but the introduction of a hydroxyl group at the C-3'' position of the phenyl ring slightly decreased cytotoxicity. Overall, 6,7-dihydroxy-2-(4''-hydroxyphenyl)naphthalene (PNAP-6h) exhibited the best cytotoxicity, with an IC50 value of 4.8 μM against the MCF-7 cell line, and showed low toxicity toward normal human mammary epithelial cells (MCF-10A). PNAP-6h led to cell arrest at the S phase, most likely due to increasing levels of p21 and p27 and decreasing levels of cyclin D1, CDK4, cyclin E, and CDK2. In addition, PNAP-6h decreased CDK1 and cyclin B1 expression, most likely leading to G2/M arrest, and induced morphological changes, such as nuclear shrinkage, nuclear fragmentation, and nuclear hypercondensation, as observed by Hoechst 33342 staining. PNAP-6h induced apoptosis, most likely by the promotion of Fas expression, increased PARP activity, caspase-7, caspase-8, and caspase-9 expression, the Bax/Bcl-2 ratio, and the phosphorylation of p38, and decreased the phosphorylation of ERK. This study provides the first demonstration of the cytotoxicity of PNAPs against MCF-7 cells and elucidates the mechanism underlying PNAP-induced cytotoxicity.  相似文献   

6.
The capacity of cornel iridoid glycoside (CIG) to suppress the manifestations of ischemic stroke was investigated. CIG was administered to rats by the intragastric route once daily for 7 days. Focal cerebral ischemia was induced by 2 h of middle cerebral artery occlusion followed by 24 h of reperfusion. In non-treated rats large infarct areas were observed within 24 h of reperfusion. Examination of the ischemic cerebral cortex revealed microglia and astrocyte activation, increased interleukin-1β (IL-1 β) and tumor necrosis factor-α (TNF-α) concentrations, increased DNA fragmentation in the ischemia penumbra, elevated Bax expression, increased caspase-3 cleavage, and decreased Bcl-2 expression. Pretreatment with CIG decreased the infarct area, DNA fragmentation, IL-1β and TNF-α concentrations, microglia and astrocyte activation, Bax expression, and caspase-3 cleavage while increasing Bcl-2 expression. CIG exerts anti-neuroinflammatory and anti-apoptotic effects which should prove beneficial for prevention or treatment of stroke.  相似文献   

7.
An epithelial cell adhesion molecule (EpCAM) was selectively expressed in human colorectal carcinoma. Treatment with plant-derived anti-EpCAM mAb (mAbP CO17-1A) and RAW264.7 cells inhibited cell growth in the human colorectal cancer cell line SW620. In SW620 treated with mAbP CO17-1A and RAW264.7 cells, expression of p53 and p21 increased, whereas the expression of G1 phase-related proteins, cyclin D1, CDK4, cyclin E, and CDK2, decreased, similar to mammalian-derived mAb (mAbM) CO17-1A. Similar to mAbM CO17-1A, treatment with mAbP CO17-1A and RAW264.7 cell decreased the expression of anti-apoptotic protein, Bcl-2, but the expression of pro-apoptotic proteins Bax, TNF-α, caspase-3, caspase-6, caspase-8 and caspase-9, increased. Cells treated with mAbP CO17-1A and RAW264.7 cells expressed metastasis-related gangliosides, GM1 and GD1a, similar to mAbM CO17-1A. These results suggest that mAbP CO17-1A is as effective on anti-cancer activity as mAbM CO17-1A.  相似文献   

8.
Protein kinases are critical signalling molecules for normal cell growth and development. CDK11p58 is a p34cdc2-related protein kinase, and plays an important role in normal cell cycle progression. However its distribution and function in the central nervous system (CNS) lesion remain unclear. In this study, we mainly investigated the protein expression and cellular localization of CDK11 during spinal cord injury (SCI). Western blot analysis revealed that CDK11p58 was not detected in normal spinal cord. It gradually increased, reached a peak at 3 day after SCI, and then decreased. The protein expression of CDK11p58 was further analyzed by immunohistochemistry. The variable immunostaining patterns of CDK11p58 were visualized at different periods of injury. Double immunofluorescence staining showed that CDK11 was co-expressed with NeuN, CNPase and GFAP. Co-localization of CDK11/active caspase-3 and CDK11/proliferating cell nuclear antigen (PCNA) were detected in some cells. Cyclin D3, which was associated with CDK11p58 and could enhance kinase activity, was detected in the normal and injured spinal cord. The cyclin D3 protein underwent a similar pattern with CDK11p58 during SCI. Double immunofluorescence staining indicated that CDK11 co-expressed with cyclin D3 in neurons and glial cells. Coimmunoprecipitation further showed that CDK11p58 and cyclin D3 interacted with each other in the damaged spinal cord. Thus, it is likely CDK11p58 and cyclin D3 could interact with each other after acute SCI. Another partner of CDK11p58 was β-1,4-galactosyltransferase 1 (β-1,4-GT 1). The co-localization of CDK11/β-1,4-GT 1 in the damaged spinal cord was revealed by immunofluorescence analysis. The cyclin D3-CDK4 complexes were also present by coimmunoprecipitation analysis. Taken together, these data suggested that both CDK11 and cyclin D3 may play important roles in spinal cord pathophysiology. The authors Yuhong Ji and Feng Xiao contributed equally to this work.  相似文献   

9.
Natural phytochemicals are attracting increasing interest as anticancer agents. The aim of this study is to evaluate the therapeutic potential of geraniin, a major ellagitannin extracted from Geranium sibiricum L., in human glioma. Human U87 and LN229 glioma cells were treated with different concentrations of geraniin, and cell viability, apoptosis, and gene expression were assessed. The involvement of STAT3 signaling in the action of geraniin was examined. We found that geraniin treatment for 48 h significantly (P < 0.05) impaired the phosphorylation of STAT3 and reduced the expression of downstream target genes Bcl-xL, Mcl-1, Bcl-2, and cyclin D1. Exposure to geraniin led to a concentration-dependent decline in cell viability and increase in apoptosis in glioma cells, but had no significant impact on the viability of normal human astrocytes. Measurement of caspase-3 activity showed that geraniin-treated U87 and LN229 cells showed a 1.8–2.5-fold higher caspase-3 activity than control cells. Overexpression of constitutively active STAT3 significantly (P < 0.05) reversed geraniin-mediated growth suppression and apoptosis, which was accompanied by restoration of Bcl-xL, Mcl-1, Bcl-2, and cyclin D1 expression. In an xenograft tumor mouse model, geraniin treatment significantly retarded tumor growth and induced apoptosis. Western blot analysis confirmed the suppression of STAT3 phosphorylation in glioma xenograft tumors by geraniin. Taken together, these data suggest that geraniin exerts growth-suppressive and pro-apoptotic effects on glioma cells via inhibition of STAT3 signaling and may have therapeutic benefits in malignant gliomas.  相似文献   

10.
The use of natural compounds to potentiate the effect of drugs and lower their adverse effects is an active area of research. The objective is to determine the effect of combined blueberry extracts (BE) and oxaliplatin (OX) in colon cancer cells. The results demonstrated that treatments of BE/OX showed inhibitory effects on HCT-116 cell and nontoxic effect on CCD-18Co normal colon cells. Flow cytometry analysis indicated that treatment with the BE, OX or in combination could induce G0/G1 cell cycle arrest, apoptosis, increase of reactive oxygen species, and induce loss of mitochondrial membrane potential in HCT-116 cells. Furthermore, after treatments, the expression of inflammatory cytokines was decreased, cyclin D1 and CDK4 were decreased; caspases-3 and 9 were activated; the Akt/Bad/Bcl-2 pathway was modulated. Moreover, the combination treatment had a considerably higher growth inhibitory effect on human colon cancer HCT-116 cells than that of BE or oxaliplatin alone. Our results showed that BE increased the anticolon cancer effect of OX making it an attractive strategy as adjuvant therapy to potentially reduce the adverse side effects associated with chemotherapeutic drugs.  相似文献   

11.
This study demonstrated that the availability of oxygen influenc the kinetic parameters of sludge granules for the utilization and mass transfer of substrates. Batch experiments revealed that substrate utilization of the coupled sludge granules followed Monod’s kinetic model under hypoxic conditions and at initial substrate concentrations ranging from 1,350 to 4,456 mg/L. The corresponding kinetic coefficients of ks (maximum specific substrate glucose utilization rate), Ks (half saturation coefficient), and Y (growth yield) were 5.6 ∼ 7.8/day, 58 ∼ 64 mg/L, and 0.11 ∼ 0.17 mg of MLSS/mg of COD, respectively. Low dissolved oxygen content suppressed the activity of aerobic enzymes, which resulted in a ks value between those of aerobic granules and anaerobic granules. The maximum oxygen consumption rate (ko = 0.89/day) was relatively higher while the half-saturation constant (Ko = 1.71 mg/L) was significantly lower than those of aerobic granules. These results imply that dissolved oxygen was used more efficiently under hypoxic conditions. Thiele modulus (ϕ) and effectiveness factor (η) analysis revealed that the activity of microorganisms inside the granules was limited by the availability of oxygen. These properties differed from those found in aerobic granules, anaerobic granules, and activated sludge.  相似文献   

12.
In order to analyze dexamethasone effects on peripheral blood lymphocyte proliferation, we defined various experimental conditions: dexamethasone introduced (i) at the time of phytohemagglutinin stimulation, (ii) 48 h after the beginning of phytohemagglutinin stimulation, and (iii) on unstimulated lymphocytes. In stimulated lymphocytes, we observed an early G1 accumulation (P< 0.005), a delayed increase in the duration of S-phase (P< 0.03), and a consequent increase in cell-cycle duration. The expression of several cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors (CKIs) was modified. Cyclin D3, CDK4, and CDK6 involved in G1-phase control were significantly decreased under dexamethasone treatment whatever the level of stimulation of lymphocytes (stimulated or unstimulated PBL). Cyclin E and CDK2, acting in G1/S-phase transition and S-phase regulation, decreased in stimulated lymphocytes before any modification of S-phase (P< 0.002). The expression of CKIs, mainly of p27Kip1, appeared to vary with the degree of cell stimulation: a decrease was observed on treated unstimulated lymphocytes, while p27Kip1increased in dexamethasone-treated cells during stimulation. Our results indicate sequential modifications of the cell-cycle regulation by dexamethasone starting with an action on G1 followed by S-phase control modifications. The protein analysis pinpoints the major complexes concerned: CDK4 and CDK6/cyclin D are mainly involved in G1-phase modifications, while CDK2 and its partner, cyclin E, might be specifically involved in the lengthening of S-phase. The variations observed for p27Kip1might amplify the functional effects of dexamethasone on kinasic complexes.  相似文献   

13.
Colon cancer is the third most common malignancy in both sexes of Korea. Here, we investigated anti-colorectal cancer effects of 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG), a gallotannin from Galla rhois, and its possible mechanisms. PGG induced cytotoxicity and decreased proliferation of colon cancer cells without affecting normal colon fibroblasts. PGG inhibited clonogenic ability and induced apoptosis in cancer cells. One of the underlying mechanisms of the anti-cancer effect exerted by PGG, was owing to the induction p53 expression, a well-known tumor suppressor, and increased in P21, the representative target gene of p53. PGG affected cell-cycle- or apoptosis-related proteins such as cyclin E, CDK2, and Bcl-2, cleaved caspase-3. Also, PGG induced caspase-3/7 activity. These data suggest that PGG exerts anti-colorectal cancer effects.  相似文献   

14.
Long-term excessive fluoride intake is known to be toxic and can lead to fluorosis and bone pathologies. However, the cellular mechanisms underlying sodium fluoride-induced cytotoxicity in the cecal tonsil lymphocytes are not well understood. The aims of this study were to investigate the effects of high dietary fluorine on apoptosis and the expression of the Bcl-2, Bax, and caspase-3 in the cecal tonsil lymphocytes of broilers. The broilers were fed on high-fluorine diets containing 0, 400, 800, and 1,200 mg/kg fluorine. As measured by flow cytometry, the percentage of apoptotic lymphocytes was significantly increased in the high-fluorine groups II and III when compared with those in the control group. Meanwhile, immunohistochemical tests showed that the Bcl-2 protein expression decreased, and the Bax and caspase-3 protein expression increased in the high-fluorine groups II and III. In conclusion, dietary fluorine in the range of 800–1,200 mg/kg increased lymphocyte apoptosis in the cecal tonsil of broilers, suggesting that the lymphocyte apoptosis in the cecal tonsil was mediated by direct effects of fluoride on the expression of Bcl-2, Bax, and caspase-3.  相似文献   

15.
Plasmalogens play multiple roles in the structures of biological membranes, cell membrane lipid homeostasis and human diseases. We report the isolation and identification of choline plasmalogens (ChoPlas) from swine liver by high performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC)/MS. The growth and viability of hepatoma cells (CBRH7919, HepG2 and SMMC7721) was determined following ChoPlas treatment comparing with that of human normal immortal cell lines (HL7702). Result indicated that ChoPlas inhibited hepatoma cell proliferation with an optimal concentration and time of 25 μmol/L and 24 h. To better understand the mechanism of the ChoPlas-induced inhibition of hepatoma cell proliferation, Caveolin-1 and PI3K/Akt pathway signals, including total Akt, phospho-Akt(pAkt) and Bcl-2 expression in CBRH7919 cells, were determined by western blot. ChoPlas treatment increased Caveolin-1 expression and reduced the expression of phospho-Akt (pAkt) and Bcl-2, downstream targets of the PI3K/Akt pathway. Further cell cycle analysis showed that ChoPlas treatment induced G1 and G1/S phase transition cell cycle arrest. The expression of essential cell cycle regulatory proteins involved in the G1 and G1/S phase transitions, cyclin D, CDK4, cyclin E and CDK2, were also analyzed by western blot. ChoPlas reduced CDK4, cyclin E and CDK2 expression. Taken together, the results indicate that swine liver-derived natural ChoPlas inhibits hepatoma cell proliferation associated with Caveolin-1 and PI3K/Akt signals.  相似文献   

16.
We previously reported the potential of a novel small molecule 3-amino-6-(3-methoxyphenyl)thieno[2.3-b]pyridine-2-carboxamide (SKLB70326) as an anticancer agent. In the present study, we investigated the anticancer effects and possible mechanisms of SKLB70326 in vitro. We found that SKLB70326 treatment significantly inhibited human hepatic carcinoma cell proliferation in vitro, and the HepG2 cell line was the most sensitive to its treatment. The inhibition of cell proliferation correlated with G(0)/G(1) phase arrest, which was followed by apoptotic cell death. The SKLB70326-mediated cell-cycle arrest was associated with the downregulation of cyclin-dependent kinase (CDK) 2, CDK4 and CDK6 but not cyclin D1 or cyclin E. The phosphorylation of the retinoblastoma protein (Rb) was also observed. SKLB70326 treatment induced apoptotic cell death via the activation of PARP, caspase-3, caspase-9 and Bax as well as the downregulation of Bcl-2. The expression levels of p53 and p21 were also induced by SKLB70326 treatment. Moreover, SKLB70326 treatment was well tolerated. In conclusion, SKLB70326, a novel cell-cycle inhibitor, notably inhibits HepG2 cell proliferation through the induction of G(0)/G(1) phase arrest and subsequent apoptosis. Its potential as a candidate anticancer agent warrants further investigation.  相似文献   

17.
18.
Styrax japonica Siebold et al Zuccarini (SJSZ) has been used to heal inflammation and bronchitis as folk medicine in Korea. Firstly, glycoprotein isolated from SJSZ (SJSZ glycoprotein) has a molecular weight with 38 kDa and consists of carbohydrate (57.64%) and protein (42.35%). In the composition of SJSZ glycoprotein, carbohydrate mostly consists of glucose (28.17%), galactose (21.85%), and mannose (2.62%) out of 52.64%, respectively. The protein consists of Trp (W, 7.01%), Pro (P, 6.72%), and Ile (I, 5.42%) out of 42.35% as three major amino acids, while total amount of other amino acids is 23.20%. The purpose of this study is to know whether the SJSZ glycoprotein (38 kDa) induces the cell cycle arrest and apoptosis in HepG2 cells. Cytotoxicity was evaluated using MTT and lactate dehydrogenase assay and amount of intracellular reactive oxygen species (iROS) and nitric oxide (NO) was measured using fluorescence microplate reader. Activities of cell cycle-related proteins [p53, p21, p27, Cyclin D1, and cyclin-dependent kinase (CDK)4] and apoptosis-related factors [iNOS, Bid, Bcl-2/bax, cytochrome c, caspase-9, caspase-3, and poly-(ADP-ribose) polymerase (PARP)] were assessed by Western blot and fluorescence-activated cell sorter (FACS) analysis. In the cell cycle-related proteins, SJSZ glycoprotein (50 μg/ml) significantly enhances the expression of p53, p21, and p27, whereas it suppressed the activity of cyclin D1/CDK4. In the apoptosis-related factors, SJSZ glycoprotein (50 μg/ml) stimulates to increase iROS, and NO, to activate iNOS, Bid, Bcl-2/bax, cytochrome c, caspase-9, caspase-3, and PARP. SJSZ glycoprotein (50 μg/ml) has potent effect to arrest cell cycle from G(0) /G(1) to S and to induce apoptosis in HepG2 cells.  相似文献   

19.
A triterpenediol (TPD) comprising of isomeric mixture of 3α, 24-dihydroxyurs-12-ene and 3α, 24-dihydroxyolean-12-ene from Boswellia serrata induces apoptosis in cancer cells. An attempt was made in this study to investigate the mechanism of cell death by TPD in human leukemia HL-60 cells. It inhibited cell proliferation with IC50 ∼ 12 μg/ml and produced apoptosis as measured by various biological end points e.g. increased sub-G0 DNA fraction, DNA ladder formation, enhanced AnnexinV-FITC binding of the cells. Further, initial events involved massive reactive oxygen species (ROS) and nitric oxide (NO) formation, which were significantly inhibited by their respective inhibitors. Persistent high levels of NO and ROS caused Bcl-2 cleavage and translocation of Bax to mitochondria, which lead to loss of mitochondrial membrane potential (Δψm) and release of cytochrome c, AIF, Smac/DIABLO to the cytosol. These events were associated with decreased expression of survivin and ICAD with attendant activation of caspases leading to PARP cleavage. Furthermore, TPD up regulated the expression of cell death receptors DR4 and TNF-R1 level, leading to caspase-8 activation. These studies thus demonstrate that TPD produces oxidative stress in cancer cells that triggers self-demise by ROS and NO regulated activation of both the intrinsic and extrinsic signaling cascades.  相似文献   

20.
Glioblastoma is the most prevalent and highly malignant brain tumor that continues to defy current treatment strategies. This investigation used all-trans retinoic acid (ATRA) and taxol (TXL) as a combination therapy for controlling the growth of human glioblastoma T98G xenografted in athymic nude mice. Histopathological examination revealed that ATRA induced differentiation and combination of ATRA and TXL caused more apoptosis than either treatment alone. Combination therapy decreased expression of telomerase, nuclear factor kappa B (NFκВ), and inhibitor-of-apoptosis proteins (IAPs) indicating suppression of survival factors while upregulated Smac/Diablo. Combination therapy also changed expression of Bax and Bcl-2 proteins leading to increased Bax:Bcl-2 ratio, mitochondrial release of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9. Increased activities of calpain and caspase-3 degraded 270 kD α-spectrin at the specific sites to generate 145 kD spectrin breakdown product (SBDP) and 120 kD SBDP, respectively. Further, increased activity of caspase-3 cleaved inhibitor-of-caspase-activated DNase (ICAD). In situ double immunofluorescent labelings showed overexpression of calpain, caspase-12, caspase-3, and AIF during apoptosis, suggesting involvement of both caspase-dependent and caspase-independent pathways for apoptosis. Our investigation revealed that treatment of glioblastoma T98G xenografts with the combination of ATRA and TXL induced differentiation and multiple molecular mechanisms for apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号