首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Alzheimer's disease beta-amyloid precursor protein (APP) is a member of a larger gene family that includes the amyloid precursor-like proteins, termed APLP1 and APLP2. We previously documented that APLP2-/-APLP1-/- and APLP2-/-APP-/- mice die postnatally, while APLP1-/-APP-/- mice and single mutants were viable. We now report that mice lacking all three APP/APLP family members survive through embryonic development, and die shortly after birth. In contrast to double-mutant animals with perinatal lethality, 81% of triple mutants showed cranial abnormalities. In 68% of triple mutants, we observed cortical dysplasias characterized by focal ectopic neuroblasts that had migrated through the basal lamina and pial membrane, a phenotype that resembles human type II lissencephaly. Moreover, at E18.5 triple mutants showed a partial loss of cortical Cajal Retzius (CR) cells, suggesting that APP/APLPs play a crucial role in the survival of CR cells and neuronal adhesion. Collectively, our data reveal an essential role for APP family members in normal brain development and early postnatal survival.  相似文献   

2.
Understanding the intracellular transport of the beta-amyloid precursor protein (APP) is a major key to elucidate the regulation of APP processing and thus beta-amyloid peptide generation in Alzheimer disease pathogenesis. APP and its two paralogues, APLP1 and APLP2 (APLPs), are processed in a very similar manner by the same protease activities. A putative candidate involved in APP transport is protein interacting with APP tail 1 (PAT1), which was reported to interact with the APP intracellular domain. We show that PAT1a, which is 99.0% identical to PAT1, binds to APP, APLP1, and APLP2 in vivo and describe their co-localization in trans-Golgi network vesicles or endosomes in primary neurons. We further demonstrate a direct interaction of PAT1a with the basolateral sorting signal of APP/APLPs. Moreover, we provide evidence for a direct role of PAT1a in APP/APLP transport as overexpression or RNA interference-mediated knockdown of PAT1a modulates APP/APLPs levels at the cell surface. Finally, we show that PAT1a promotes APP/APLPs processing, resulting in increased secretion of beta-amyloid peptide. Taken together, our data establish PAT1a as a functional link between APP/APLPs transport and their processing.  相似文献   

3.
Regulated intramembrane proteolysis (RIP) of the amyloid precursor protein (APP) produces amyloid beta-protein (Abeta), the probable causative agent of Alzheimer's disease (AD), and is therefore an important target for therapeutic intervention. However, there is a burgeoning consensus that gamma-secretase, one of the proteases that generates Abeta, is also critical for the signal transduction of APP and a growing list of other receptors. APP is a member of a gene family that includes two amyloid precursor-like proteins, APLP1 and APLP2. Although APP and the APLPs undergo similar proteolytic processing, there is little information about the role of their gamma-secretase-generated intracellular domains (ICDs). Here, we show that APLP1 and 2 undergo presenilin-dependent RIP similar to APP, resulting in the release of a approximately 6 kDa ICD for each protein. Each of the ICDs are degraded by an insulin degrading enzyme-like activity, but they can be stabilized by members of the FE65 family and translocate to the nucleus. Given that modulation of APP processing is a therapeutic target and that the APLPs are processed in a manner similar to APP, any strategy aimed at altering APP proteolysis will have to take into account possible effects on signaling by APLP 1 and 2.  相似文献   

4.
The amyloid precursor protein (APP) and the APP-like proteins 1 and 2 (APLP1 and APLP2) are a family of multidomain transmembrane proteins possessing homo- and heterotypic contact sites in their ectodomains. We previously reported that divalent metal ions dictate the conformation of the extracellular APP E2 domain (Dahms, S. O., Könnig, I., Roeser, D., Gührs, K.-H., Mayer, M. C., Kaden, D., Multhaup, G., and Than, M. E. (2012) J. Mol. Biol. 416, 438–452), but unresolved is the nature and functional importance of metal ion binding to APLP1 and APLP2. We found here that zinc ions bound to APP and APLP1 E2 domains and mediated their oligomerization, whereas the APLP2 E2 domain interacted more weakly with zinc possessing a less surface-exposed zinc-binding site, and stayed monomeric. Copper ions bound to E2 domains of all three proteins. Fluorescence resonance energy transfer (FRET) analyses examined the effect of metal ion binding to APP and APLPs in the cellular context in real time. Zinc ions specifically induced APP and APLP1 oligomerization and forced APLP1 into multimeric clusters at the plasma membrane consistent with zinc concentrations in the blood and brain. The observed effects were mediated by a novel zinc-binding site within the APLP1 E2 domain as APLP1 deletion mutants revealed. Based upon its cellular localization and its dominant response to zinc ions, APLP1 is mainly affected by extracellular zinc among the APP family proteins. We conclude that zinc binding and APP/APLP oligomerization are intimately linked, and we propose that this represents a novel mechanism for regulating APP/APLP protein function at the molecular level.  相似文献   

5.
Missense mutations in the amyloid precursor protein (APP) gene can cause familial Alzheimer disease. It is thought that APP and APP-like proteins (APLPs) may play a role in adhesion and signal transduction because their ectodomains interact with components of the extracellular matrix. Heparin binding induces dimerization of APP and APLPs. To help explain how these proteins interact with heparin, we have determined the crystal structure of the E2 domain of APLP1 in complex with sucrose octasulfate (SOS). A total of three SOS molecules are bound to the E2 dimer. Two SOSs are bound inside a narrow intersubdomain groove, and the third SOS is bound near the two-fold axis of the protein. Mutational analyses show that most residues interacting with SOS also contribute to heparin binding, although in varying degrees; a deep pocket, defined by His-376, Lys-422, and Arg-429, and an interfacial site between Lys-314 and its symmetry mate are most important in the binding of the negatively charged polysaccharide. Comparison with a lower resolution APP structure shows that all key heparin binding residues are conserved and identically positioned, suggesting that APLP1 and APP may bind heparin similarly. In transfected HEK-293 cells, mutating residues responsible for heparin binding causes little change in the proteolysis of APP by the secretases. However, mutating a pair of conserved basic residues (equivalent to Arg-414 and Arg-415 of APLP1) immediately adjacent to the heparin binding site affects both the maturation and the processing of APP.  相似文献   

6.
The Alzheimer's disease amyloid protein precursor (APP) gene is part of a multi-gene super-family from which sixteen homologous amyloid precursor-like proteins (APLP) and APP species homologues have been isolated and characterised. Comparison of exon structure (including the uncharacterised APL-1 gene), construction of phylogenetic trees, and analysis of the protein sequence alignment of known homologues of the APP super-family were performed to reconstruct the evolution of the family and to assess the functional significance of conserved protein sequences between homologues. This analysis supports an adhesion function for all members of the APP super family, with specificity determined by those sequences which are not conserved between APLP lineages, and provides evidence for an increasingly complex APP superfamily during evolution. The analysis also suggests that Drosophila APPL and Caenorhabditis elegans APL-1 may be a fourth APLP lineage indicating that these proteins, while not functional homologues of human APP, are similarly likely to regulate cell adhesion. Furthermore, the betaA4 sequence is highly conserved only in APP orthologues, strongly suggesting this sequence is of significant functional importance in this lineage.  相似文献   

7.
8.
Research on Alzheimer's disease led to the identification of a novel proteolytic mechanism in all metazoans, the presenilin/gamma-secretase complex. This unique intramembrane-cleaving aspartyl protease is required for the normal processing of Notch, Jagged, beta-amyloid precursor protein (APP), E-cadherin, and many other receptor-like proteins. We recently provided indirect evidence of gamma-secretase activity at the cell surface in HeLa cells following inhibition of receptor-mediated endocytosis. Here, we directly identify and isolate gamma-secretase as an intact complex (Presenilin, Nicastrin, Aph-1, and Pen-2) from the plasma membrane, both in overexpressing cell lines and endogenously. Inhibition of its proteolytic activity allowed cell surface gamma-secretase to be captured in association with its plasma membrane-localized APP substrates (C83 and C99). Moreover, non-denaturing isolation of the intact enzyme complex revealed that cell surface gamma-secretase can specifically generate amyloid beta-protein from an APP substrate and similarly cleave a Notch substrate. These data directly establish the proteolytic function of gamma-secretase on the plasma membrane, independent of a hypothesized substrate trafficking role. We conclude that presenilin/gamma-secretase exists as a mature complex at the cell surface, where it interacts with and can cleave its substrates, consistent with an essential function in processing many adhesion molecules and receptors required for cell-cell interaction or intercellular signaling.  相似文献   

9.
10.
The view that only the production and deposition of Abeta plays a decisive role in Alzheimer's disease has been challenged by recent evidence from different model systems, which attribute numerous functions to the amyloid precursor protein (APP). To investigate the potential cellular functions of APP and its paralogs, we use transgenic Drosophila as a model. Upon overexpression of the APP-family members, transformations of cell fates during the development of the peripheral nervous system were observed. Genetic analysis showed that APP, APLP1 and APLP2 induce Notch gain-of-function phenotypes, identified Numb as a potential target and provided evidence for a direct involvement of Disabled and Neurotactin in the induction of the phenotypes. The severity of the induced phenotypes not only depended on the dosage and the particular APP-family member but also on particular domains of the molecules. Studies with Drosophila APPL confirmed the results obtained with human proteins and the analysis of flies mutant for the appl gene further supports an involvement of APP-family members in neuronal development and a crosstalk between the APP family and Notch.  相似文献   

11.
Abstract: The Alzheimer amyloid precursor (APP) protein is a member of a family of glycoproteins that includes the amyloid precursor-like proteins (APLPs). Previously, we showed that in C6 glioma cell cultures, secreted APP nexin II occurs as the core protein of a chondroitin sulfate proteoglycan (CSPG). Here, we report that among seven untransfected cell lines, expression of secreted APP CSPG was restricted to two cell lines of neural origin, namely, C6 glioma and Neuro-2a neuroblastoma (N2a) cells. Addition of dibutyryl cyclic AMP in N2a cultures, a treatment that induces the neuronal phenotype in these cells, resulted in a significant reduction in the amount of the secreted APP CSPG, although secretion of APP was only marginally affected. Growth in the presence of serum increased the size of the secreted APP CSPG, suggesting that the number and/or length of the chondroitin sulfate (CS) chains attached to the core APP varies with growth conditions. Extensive mapping with epitope-specific anti-bodies suggested that a CS chain is attached within or proximal to the Aβ sequence of APP. In contrast to the restricted expression of the APP CSPG, expression of secreted APLP2 CSPGs was observed in all cell lines examined. After chondroitinase treatment, two core proteins of ∼100 and 110 kDa were obtained that reacted with an APLP2-specific antiserum, suggesting that non-transfected cell lines contain at least two endogenous APLP2 CSPGs, probably derived by alternative splicing of the APLP2 KPI domain. The fraction of the APLP2 proteins in the CSPG form was dependent on the particular cell line examined. The proteoglycan nature of APP and APLP2 suggests that addition of the CS glycosaminoglycan chains is important for the implementation of the biological function of these proteins. However, the differential expression of these two proteoglycans suggests that their physiological roles and their possible involvement in Alzheimer's disease may differ.  相似文献   

12.
Compelling evidence from in vivo model systems within the past decade shows that the APP family of proteins is important for synaptic development and function in the central and peripheral nervous systems. The synaptic role promises to be complex and multifaceted for several reasons. The three family members have overlapping and redundant functions in mammals. They have both adhesive and signaling properties and may, in principle, act as both ligands and receptors. Moreover, they bind a multitude of synapse-specific proteins, and we predict that additional interacting protein partners will be discovered. Transgenic mice with modified or abolished expression of APP and APLPs have synaptic defects that are readily apparent. Studies of the neuromuscular junction (NMJ) in these transgenic mice have revealed molecular and functional deficits in neurotransmitter release, in organization of the postsynaptic receptors, and in coordinated intercellular development. The results summarized here from invertebrate and vertebrate systems confirm that the NMJ with its accessibility, large size, and homogeneity provides a model synapse for identifying and analyzing molecular pathways of APP actions.  相似文献   

13.
Alzheimer's disease is a progressive neurodegenerative disorder characterized by extracellular deposition of beta-amyloid (Abeta) peptide containing neuritic plaques. Abeta peptides are proteolytically derived from the membrane-bound amyloid precursor protein (APP). Although the function of APP is not entirely clear, previous studies demonstrate that neuronal APP colocalizes with beta(1) integrin receptors at sites of focal adhesion, suggesting that APP is involved in mediating neuronal process adhesion. Integrin-dependent adhesion is also a well-characterized component of immune cell proinflammatory activation. Using primary mouse microglia and the human monocytic cell line, THP-1, we have begun investigating the role of APP in integrin-dependent activation. Co-immunoprecipitation studies demonstrate that APP is recruited into a multi-receptor signaling complex during beta(1) integrin-mediated adhesion of monocytes. Stimulation induces a subsequent, specific recruitment of tyrosine phosphorylated proteins to APP, including Lyn and Syk. Antibody cross-linking of cell surface APP leads to a similar response characterized by activation and recruitment of tyrosine kinases to APP as well as subsequent activation of mitogen-activated protein kinases and increased proinflammatory protein levels. These data demonstrate that APP can act as a proinflammatory receptor in monocytic lineage cells and provide insight into the contribution of this protein to the inflammatory conditions described in Alzheimer's disease.  相似文献   

14.
Nectins are Ca(2+)-independent immunoglobulin (Ig)-like cell-cell adhesion molecules that form cell-cell junctions, cooperatively with or independently of cadherins, in a variety of cells. Nectins comprise a family of four members, nectin-1, -2, -3, and -4. All nectins have one extracellular region with three Ig-like loops, one transmembrane segment, and one cytoplasmic tail. It has been shown mainly by use of cadherin-deficient L fibroblasts stably expressing each nectin that nectins first form homo-cis-dimers and then homo- or hetero-trans-dimers, causing cell-cell adhesion, and that the formation of the cis-dimers is necessary for the formation of the trans-dimers. However, kinetics of the formation of these dimers have not been examined biochemically by use of pure nectin proteins. We prepared here pure recombinant proteins of extracellular fragments of nectin-3 containing various combinations of Ig-like loops, all of which were fused to the Fc portion of IgG and formed homo-cis-dimers through the Fc portion, and of an extracellular fragment of nectin-1 containing three Ig-like loops which was fused to secreted alkaline phosphatase and formed homo-cis-dimers. We showed here by use of these proteins that the first Ig-like loop of nectin-3 was essential and sufficient for the formation of trans-dimers with nectin-1, but that the second Ig-like loop of nectin-3 was furthermore necessary for its cell-cell adhesion activity.  相似文献   

15.
Associations between plasma membrane-linked proteins and the actin cytoskeleton play a crucial role in defining cell shape and determination, ensuring cell motility and facilitating cell-cell or cell-substratum adhesion. Here, we present evidence that CEACAM1-L, a cell adhesion molecule of the carcinoembryonic antigen family, is associated with the actin cytoskeleton. We have delineated the regions involved in actin cytoskeleton association to the distal end of the CEACAM1-L long cytoplasmic domain. We have demonstrated that CEACAM1-S, an isoform of CEACAM1 with a truncated cytoplasmic domain, does not interact with the actin cytoskeleton. In addition, a major difference in subcellular localization of the two CEACAM1 isoforms was observed. Furthermore, we have established that the localization of CEACAM1-L at cell-cell boundaries is regulated by the Rho family of GTPases. The retention of the protein at the sites of intercellular contacts critically depends on homophilic CEACAM1-CEACAM1 interactions and association with the actin cytoskeleton. Our results provide new evidence on how the Rho family of GTPases can control cell adhesion: by directing an adhesion molecule to its proper cellular destination. In addition, these results provide an insight into the mechanisms of why CEACAM1-L, but not CEACAM1-S, functions as a tumor cell growth inhibitor.  相似文献   

16.
Growing evidence shows that the soluble N-terminal form (sAPPalpha) of the amyloid precursor protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, migration and adhesion. APP is a member of a protein family including the two mammalian amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, which could be completely rescued by either exogenously added recombinant sAPPalpha, or by co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP-knockout keratinocytes revealed reduced migration velocity resulting from severely compromised cell substrate adhesion. Keratinocytes from double knockout mice died within the first week of culture, indicating essential functions of APP-family members for survival in vitro. Our data indicate that sAPPalpha has to be considered as an essential epidermal growth factor which, however, in vivo can be functionally compensated to a certain extent by other growth factors, e.g., factors released from dermal fibroblasts.  相似文献   

17.
The cytoplasmic polyadenylation element (CPE) binding factor, CPEB, is a sequence-specific RNA binding protein that controls polyadenylation-induced translation in germ cells and at postsynaptic sites of neurons. A yeast two-hybrid screen with a mouse brain cDNA library identified the transmembrane amyloid precursor-like protein 1 (APLP1) as a CPEB-interacting factor. CPEB binds the small intracellular domain (ICD) of APLP1 and the related proteins APLP2 and APP. These proteins promote polyadenylation and translation by stimulating Aurora A catalyzed CPEB serine 174 phosphorylation. Surprisingly, CPEB, Maskin, CPSF, and several other factors involved in polyadenylation and translation and CPE-containing RNA are all detected on membranes by cell fractionation and immunoelectron microscopy. Moreover, most of the RNA that undergoes polyadenylation does so in membrane-containing fractions. These data demonstrate a link between cytoplasmic polyadenylation and membrane association and implicate APP family member proteins as anchors for localized mRNA polyadenylation and translation.  相似文献   

18.
Protocadherins (Pcdhs) are a family of cadherins considered to play an important role in the cell-cell adhesion of specific neurons in the central nervous system. Of the reported Pcdhs, relatively little is known about the functional role of protocadherin 7 (Pcdh7), and there is no evidence of Pcdh7 mediated cell-cell adhesion. To date, three splicing variants are known; they may have different effects on cell phenotype. We report here that mouse fibroblast L cells stably overexpressing the Pcdh7 isoforms 7a and 7b, but not 7c, showed a morphological change and Ca(2+)dependent cell adhesion.  相似文献   

19.
20.
Corneodesmosomes, the modified desmosomes of the uppermost layers of the epidermis, play an important role in corneocyte cohesion. Corneodesmosin is a secreted glycoprotein located in the corneodesmosomal core and covalently linked to the cornified envelope of corneocytes. Its glycine- and serine-rich NH(2)-terminal domain may fold to give structural motifs similar to the glycine loops described in epidermal cytokeratins and loricrin and proposed to display adhesive properties. A chimeric protein comprising human corneodesmosin linked to the transmembrane and cytoplasmic domains of mouse E-cadherin was expressed in mouse fibroblasts to test the ability of corneodesmosin to promote cell-cell adhesion. Classic aggregation assays indicated that corneodesmosin mediates homophilic cell aggregation. Moreover, Ca(2+) depletion showed a moderate effect on aggregation. To assess the involvement of the glycine loop domain in adhesion, full-length corneodesmosin, corneodesmosin lacking this domain, or this domain alone were expressed as glutathione S-transferase fusion proteins and tested for protein-protein interactions by overlay binding assays. The results confirmed that corneodesmosin presents homophilic interactions and indicated that its NH(2)-terminal glycine loop domain is sufficient but not strictly necessary to promote binding. Altogether, these results provide the first experimental evidence for the adhesive properties of corneodesmosin and for the involvement of its glycine loop domain in adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号